
Journal of Physics: Conference Series

OPEN ACCESS

Testing of several distributed file-systems (HDFS,
Ceph and GlusterFS) for supporting the HEP
experiments analysis
To cite this article: Giacinto Donvito et al 2014 J. Phys.: Conf. Ser. 513 042014

View the article online for updates and enhancements.

Related content
Building an organic block storage service
at CERN with Ceph
Daniel van der Ster and Arne Wiebalck

-

Investigation of Storage Options for
Scientific Computing on Grid and Cloud
Facilities
Gabriele Garzoglio

-

Streamlining CASTOR to manage the LHC
data torrent
G Lo Presti, X Espinal Curull, E Cano et al.

-

Recent citations
Wei Li and William Guo-

Frustrated magnetism in a Mott insulator
based on a transition metal chalcogenide
S Kawamoto et al

-

The Big Data Tools Impact on
Development of Simulation-Concerned
Academic Disciplines
Artem Sukhobokov and Dmitri Lakhvich

-

This content was downloaded from IP address 172.93.102.2 on 02/10/2018 at 07:57

https://doi.org/10.1088/1742-6596/513/4/042014
http://iopscience.iop.org/article/10.1088/1742-6596/513/4/042047
http://iopscience.iop.org/article/10.1088/1742-6596/513/4/042047
http://iopscience.iop.org/article/10.1088/1742-6596/396/4/042021
http://iopscience.iop.org/article/10.1088/1742-6596/396/4/042021
http://iopscience.iop.org/article/10.1088/1742-6596/396/4/042021
http://iopscience.iop.org/article/10.1088/1742-6596/513/4/042031
http://iopscience.iop.org/article/10.1088/1742-6596/513/4/042031
http://dx.doi.org/10.1007/978-981-13-2203-7_2
http://iopscience.iop.org/1742-6596/683/1/012025
http://iopscience.iop.org/1742-6596/683/1/012025
http://dx.doi.org/10.7463/0315.0761354
http://dx.doi.org/10.7463/0315.0761354
http://dx.doi.org/10.7463/0315.0761354
http://oas.iop.org/5c/iopscience.iop.org/984184639/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?

Testing of several distributed file-systems (HDFS,

Ceph and GlusterFS) for supporting the HEP

experiments analysis.

Giacinto Donvito1, Giovanni Marzulli2, Domenico Diacono1

1 INFN-Bari, via Orabona 4, 70126 Bari
2 GARR and INFN-Bari, via Orabona 4, 70126 Bari

E-mail: giacinto.donvito@ba.infn.it, giovanni.marzulli@ba.infn.it,

domenico.diacono@ba.infn.it

Abstract. The activity of testing new storage solution is of great importance in order to
provide both features and performance evaluation and give few hints to small-medium sites
that are interested in exploiting new storage technologies. In particular this work will cover
storage solutions that provide both standard POSIX storage access and cloud technologies; we
focused our attention and our test on HDFS, Ceph, and GlusterFS.

1. Introduction
In this work we will show the testing activity carried out on aforementioned distributed open
source file-systems in order to check the capability of supporting HEP data analysis.

HDFS is an Apache Foundation software and is part of a more general framework, that
contains a task scheduler, a NoSQL DBMS, a data warehouse system, etc. It is used by several
big companies and institutions (Facebook, Yahoo, Linkedin, etc).

Ceph is a quite young file-system that has been designed in order to guarantee great
scalability, performance and very good high availability features. It is also the only file-system
that is able to provide three interfaces to storage: POSIX file-system, REST object storage and
device storage. Native support for Ceph was introduced in the 2.6.34 Linux kernel.

GlusterFS has been recently acquired by RedHat and this will ensure the long term support
of the code. It has indeed a large user base both in HPC computing farms, and in several Cloud
computing facilities. It supports access to storage both in terms of POSIX file-system and via
a REST gateway for object storage support.

All those file-systems are capable of supporting high availability of the data and metadata
in order to build a distributed structure that could provide resilience to the hardware and/or
software failure of one or more data server in the cluster.

We will describe each file-system in detail providing the technical specification and reporting
about the testing of the most interesting functionalities of each one. We will focus our attention
on the capabilities to recover from failures of both hardware and software and on how each
software is able to provide those capabilities, and we will describe the tests carried out on to
prove them.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042014 doi:10.1088/1742-6596/513/4/042014

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

In this work we will also present the results of tests that will highlight the scalability of each
of those file-systems. We will show also the development that we have done to provide more
powerful monitoring capabilities for HDFS. We have developed a web based monitoring system
that is capable to show in detail the information about the status of the data nodes or the status
and the historical information about the location of each block. We will also provide detailed
information on automatic scripts developed in order to easily manage a big datacenter composed
of hundreds of data node installed with HDFS.

2. Description and architecture GlusterFS
GlusterFS is a storage technology that permits, starting from several volumes hosted on different
servers, the construction of a distributed replicated network file-system, fully POSIX compliant,
also with support of new storage paradigms such as Block Storage and Object Storage. GlusterFs
stores the data on stable kernel file-systems like ext4, xfs, etc.; it doesn’t use an additional
metadata server for the files metadata, using instead a unique hash tag for each file, stored
within the file-system itself.

In the Gluster terminology a volume is the share that the servers, that host the actual kernel
space file-system in which the data will be stored, expose to the clients. Each volume can be
built by several subvolumes, generally hosted by different servers. A subvolume is built by a
brick, the storage file-system that has been assigned to the volume, processed by at least one
translator. A translator connects to one or more subvolumes, does something with them, and
offers a subvolume connection. [1].

2.1. Working with GlusterFS
With these basic concepts one can build 3 types of complex volumes: distributed, replicated and
striped. The most basic volume is a distribute only volume, that simply spread the data across
the available bricks, so that over 100 files written on a volume built by two bricks, an average
fifty will end up on one brick, and fifty on the other. If the bricks are hosted on two different
servers, we have something similar to RAID0 for physical disks, with all the pros (increased
velocity) and cons (increased fragility of the volume). With the replicated volume glusterFS can
trasparently replicate the data with the multiplicity choosen at the volume creation, when it is
possible to set the number of file replicas that the volume must contain. Obviously this setup
is particularly useful if the bricks are located on different servers.

It is also possible to mix the basic volume types, so for example one can build a distributed-
replicated volume, that distributes the data across multiple servers and replicates them in order
to obtain an increased availability.

We have used this type of volume, and set the replica 2 directive, so each file must be written
twice. We have built a distributed replicated volume from 20 nodes: each node hosted 6 bricks,
coupled with the 6 bricks on another node.

3. Description and architecture of HDFS
Apache Hadoop is an open-source software framework developed in Java that allows distributed
processing of large data sets across clusters of computers using simple programming models. It is
composed of several modules such as Hadoop Yarn and Hadoop MapReduce for cluster resource
management and parallel processing, Hadoop Distributed File System (HDFS) that provides
high-throughput access to application data and other related sub-projects such as Cassandra,
HBase, Zookeeper, etc.[2]

Several big companies use Hadoop for their services; Yahoo! has by far the most number of
nodes in its massive Hadoop clusters at over 42,000 nodes as of July 2011, while Facebook stores
more than 100 PetaByte of data on HDFS. Many others famous companies use Hadoop such as
Amazon, E-Bay, Linkedin, etc.[3]

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042014 doi:10.1088/1742-6596/513/4/042014

2

3.1. HDFS Architecture
HDFS has a master/slave architecture. The NameNode is the master server that manages
file-system namespace and regulates access to files by clients. It can be replicated in high-
availability in Active/StandBy configuration sharing metadata via NFS to enable automatic or
manual failover. In order to scale the name service horizontally, is possible to split namespace
into multiple federations with independent namenodes and namespaces. They don’t require
coordination with each other but use the same datanodes as common storage.

HDFS is designed to reliably store very large files across machines in a large cluster. It
stores each file as a sequence of blocks on datanodes. The size of the blocks is configurable
by dfs.blocksize parameter. Every block is replicated as many times as specified by replication
factor parameter (dfs.replication) according to a replica placement policy managed by active
namenode. To realize data reliability, namenode needs to know network topology of the cluster,
and so the node-rack relationship, to place file blocks on datanodes according to replica policy
that by default writes the first replica on a node of the local rack, and second and third replica
on a different nodes of a remote rack, considering three as replication factor. The file-system
resists the failure of a whole rack. In our activities, we developed two custom replica policies:
One Replica Policy and Hierarchical Policy. The first one places a replica per rack in order to
increase reliability (resisting the failure of two racks) and available bandwidth for read operation;
the second one, instead, is able to exploit a geographically distributed infrastructure because it
gives Hadoop the awareness of a hierarchical network topology organized in datacenters, racks
and nodes. This data policy place first replica on a rack of a local site, and second and third on
different racks of a remote site; in this way, the system resists failure of a whole datacenter. After
a datanode failure, automatically Namenode schedules a re-replication of the blocks stored on
that datanode. If it come back up, blocks are marked as over-replicated, so they will be deleted
automatically in order to balance the number of replicas.

We have tested these and others type of failure such as: metadata failures, datanode failures
during I/O operations, mis-replicated blocks. We always succeeded to fulfill the expected
behaviour and, as expected, no data loss were registered.

Hadoop software includes the Fuse-DFS module that allows to mount HDFS in userspace; it
supports many operations such as reads, writes, and directory operations (e.g., cp, ls, more, cat,
find, less, rm, mkdir, mv, rmdir), however it isn’t fully POSIX compliant to enable streaming
access to file-system data.

3.2. Other developments
We developed parameterized and automatic script procedures to easily manage big a Hadoop
cluster in order to provide:

• installation by getting software packages from an ad-hoc repository built for this specific
use case; it contains Hadoop packages with policies developed;

• Configuration based on the type of node (namenode, datanode);

– formatting, mounting and assigning unused disks/partitions to HDFS editing Hadoop
file configurations;

• Process restart if node fails.

Since the namenode doesn’t know what data contains a datanode when it is down, and doesn’t
store replica locations history, we developed a web-based monitoring system that tracks each
data block and its replicas keeping a recent history of them; when a system administrator wants
to know which datanode is the cause of a missing block, can easily see it by accessing the
monitor. It shows also several detailed informations and attributes of nodes, files and blocks.
The monitor is composed of a multi-thread Java application that is the core of the system, a
Cassandra database for managing the big quantity of data and a PHP web interface. It uses

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042014 doi:10.1088/1742-6596/513/4/042014

3

Java Hadoop API to query periodically namenode executing a file-system check and stores the
informations obtained into the database; the web interface presents them.

4. Description and architecture of Ceph
Ceph is an open source distributed storage system, supported by Inktank Inc., designed to
provide Object, Block and file storage in order to guarantee performance, reliability without
single point of failure, fault tolerance by data replication and scalability to the exabyte level.

Ceph provides seamless access to objects using native language bindings or RADOS (Reliable
Autonomic Distributed Object Store) gateway, a RESTful interface that’s compatible with
applications written for Amazon S3 and OpenStack Swift. Ceph’s RADOS Block Device (RBD)
provides access to block device images that are striped and replicated across the entire storage
cluster. Ceph’s RBD also integrates with Kernel Virtual Machines (KVMs). Several IaaS cloud
platforms (i.e.: OpenStack, CloudStack) officially supports Ceph to provide a block storage
solution.

The file-system provides also a POSIX interface named CephFS using an experimental native
Linux driver written by Linus Torvalds and integrated into 2.6.34 kernel or using a more stable
Fuse-based solution.

A Ceph Storage Cluster is composed of three types of daemon: Ceph Object Storage Daemon
(OSD) that is responsible for storing objects on a local file-system and providing access to
them over the network, Ceph Monitor (Mon) that maintains maps of the cluster state, and
Ceph MetaData Server (MDS) stores metadata on behalf of the Ceph file-system. In order to
guarantee the absence of single point of failure and scalability, a Ceph cluster can (should) be
deployed with multiples nodes of them. Monitor nodes should be in odd number in order to
provide a quorum. This is important as it avoid the risk of a typical problems called split-brain
that could lead to data corruption or data loss problems.

Ceph stores a client’s data as objects within storage pools. Using the CRUSH (Controlled
Replication Under Scalable Hashing) algorithm, Ceph calculates which placement group should
contain the object, and further calculates which Ceph OSD Daemon should store the placement
group. The CRUSH algorithm enables the Ceph Storage Cluster to scale, rebalance, and recover
dynamically. It is possible to define failure domain at the level of: disk, server and rack defining
the CRUSH map that contains a list of OSDs, a list of ”buckets” for aggregating the devices
into physical locations, and a list of rules that tell CRUSH how it should replicate data in a
Ceph cluster’s pools.

CRUSH placement policies can separate object replicas across different failure domains while
still maintaining the desired distribution. For example, to address the possibility of concurrent
failures, it may be desirable to ensure that data replicas are on devices using different shelves,
racks, power supplies, controllers, and/or physical locations.

Ceph does striping of individual files across multiple nodes to achieve higher throughput,
similarly to how RAID0 stripes partitions across multiple hard drives and to avoid inconsistencies
between data and metadata, missing or mismatched objects, Ceph scrubs placement groups
comparing each primary object and its replicas as a fsck on the object storage layer. Two types
of data scrubbling are executed: a daily light scrubbing for object attributes check and a weekly
deep scrubbling for data integrity check.[6]

In our testing activities, we verified Ceph reliability by simulating some several failures such
as corrupting MDS node to test metadata service, OSD to test data service and MON to test
storage availability; both using POSIX and RBD access. In all cases Ceph worked always as
expected.

We tested also the possibility to export Ceph storage using standard NFS protocols: it works
quite well both using RBD and POSIX interface, but it was very unstable using direct kernel
access because Ceph kernel driver is in an experimental phase yet.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042014 doi:10.1088/1742-6596/513/4/042014

4

We also conducted two sessions of access performance comparison using dd as tool of
measurement between Ceph Fuse, CephFS with kernel driver and RBD: the first one using
directly the three interfaces, the second one exporting them with NFS.

5. Test description and methodology
The testbed was designed to realize a writing and reading access data performance comparison
of HDFS, GlusterFS and CephFS. There are many useful benchmark tools for this aim; we
used two of them: IOzone which is a very popular file-system benchmark tool that uses POSIX
multithreading, and dd which isn’t a real benchmark tool but it converts and copies a file by
streaming blocks data and return I/O throughput; generally it is used as benchmarking tool.
The environment of the testbed consisted of a cluster composed of 20 worker nodes with 24 CPU
cores, 80 GBytes of RAM and 6 hard disks of 2 TBytes per machine; they are connected by a
10Gbit/s wire speed SFP+ link. All tests were performed on Scientific Linux Cern v6, except
for the Ceph-dev v0.70 round that was performed on Ubuntu 12.04 LTS. Each file-system was
installed in cluster-mode on every node and was mounted in userspace through relative Fuse
module, so each cluster node was configured as client, too. They was tested by executing
IOzone simultaneously and concurrently on each nodes of the cluster, set as following:

iozone -r 128k -i 0 -i 1 -i 2 -t 24 -s 10G

where:

• -r 128K: is used to specify the record size at 128 Kbytes;

• -i 0 -i 1 -i 2: is used to specify which tests to run: 0=write/rewrite, 1=read/re-read,
2=random-read/write;

• -t 24 (or 36): is used to specify the number of concurrent threads or processes to have
active during the measurement at 24 (or 36);

• -s 10G: is used to specify the size of the file to test at 10GBytes.[4]

Since IOzone doesn’t perform correctly with HDFS, because this file-system isn’t fully POSIX
compliant, and Ceph Cuttlefish, because this file-system was affected by several bugs, we decided
to run another test with a different tool that can perform the whole test without errors: dd. It
doesn’t allow to specify multiple threads for a single execution, so we simulated 24 threads by
starting 24 instances of dd set as following:

dd if=/dev/zero of=zerofile bs=4M count=2560 conv=fdatasync

for writing measurement, and

dd if=zerofile of=/dev/null bs=4M count=2560

for reading measurement respectively, where:

• if is used to specify input file;

• of is used to specify output file;

• bs is used to set the quantity of bytes that reads or writes at a time at 4MBytes;

• conv=fdatasync tells dd to require a complete sync once, right before it exits;[5]

6. Test results and discussion
In this paragraph, file-systems settings and results of the measurements are reported. All file-
systems were configured with two replicas and flat network topology.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042014 doi:10.1088/1742-6596/513/4/042014

5

6.1. HDFS
For the HDFS test, the cluster was composed of 20 datanodes and 1 namenode; a release of
Cloudera Hadoop 4.1.1 (based on Apache Hadoop v2) patched by the USCMS group of Nebraska
was installed on them. The fuse dfs module was configured with rdbuffer set at 128 MBytes and
big writes enabled; Hadoop block size was set at 128 MBytes. This test round was performed
with 24 and 36 concurrent threads.

6.2. CephFS
Three releases of Ceph were tested: Ceph Cuttlefish (0.61) deployed on 3 Monitors nodes, 1
Metadata server and 120 Object storage daemons i.e. one OSD per hard disk, so 6 OSDs by
20 nodes; Ceph Dumpling (0.67.3) deployed on 3 Monitors, 1 Metadata server and 95 OSDs,
5 OSDs by 19 nodes; and Ceph-Dev (0.70) deployed on 3 Monitors, 1 Metadata server and 15
OSDs (5 OSDs by 3 nodes).

6.3. GlusterFS
Lastly, also two releases of Gluster we tested: Gluster v3.3 deployed with 21 nodes and v3.4
deployed with 20 nodes; both with 6 bricks per node.

Here are listed iozone findings, as throughput average per single host, so as aggregate of 24
(or 36) iozone threads:

Table 1. Test results using iozone. MB/s

HDFS HDFS Ceph Ceph Ceph Gluster Gluster
24 Threads 36 Threads 0.61 0.67.3 0.70 3.3 3.4

Initial Write 239.72 N.A. 52.49 18.93 51.06 234.06 306.34
Re-Write ERROR ERROR 54.05 19.31 60,05 311.75 406.90
Random Write ERROR ERROR ERROR 13.96 7,00 326.89 406.33
Read 155.18 193.65 95.38 53.40 101,58 621.08 688.06
Re-Read 151.33 207.43 102.04 57.29 133,61 662.92 711.46
Random Read 29.06 39.98 ERROR 5.13 12,05 242.75 284.00

Here are listed dd findings as throughput average per single host, so as aggregate of 24 dd
instances:

Table 2. Test results using dd. MB/s

Ceph CF GLUSTER 3.3 HDFS

read 126.91 427.3 220.05
write 64.71 268.57 275.27

In dd round, we compared Cuttlefish (CF) release of Ceph and 3.3 version of Gluster because
they are last stable versions released at the test moment.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042014 doi:10.1088/1742-6596/513/4/042014

6

Figure 1. HDFS, GlusterFS, CephFS aggregate network performance.

By results HDFS appears faster in writing than in reading and this is due to the Fuse
parameter big writes enabled. It’s pretty noticeable that Gluster performs better than others in
all cases; it reached over 12 GByte/s as aggregate bandwidth throughput in reading compared to
3 GByte/s of HDFS and about 2 GBytes/s of Ceph Cuttlefish. Trying to justify large variations
in the results, we can consider that: all file-systems were configured on a flat network topology,
so no ones have data placement informations; they were tested on the same hardware, then we
can suppose that results difference may be imputable to a simpler implementation of GlusterFS
and less performance overhead then HDFS and CephFS. Infact HDFS is developed in Java that
involves an additional software layer: JVM, Ceph instead is a quite young product, so it needs
performance improvements by its developers.

7. Future works and conclusions
We will continue this activity of testing storage solution in order to follow the quite fast evolution
in this field. In particular Ceph looks quite promising if/when stability and performance
issues will be solved, but currently Gluster remains the best system in all performance test we
conducted, although it presents some instabilities. In fact in two different setups, we were able
to completely trash a working file-system simply adding a new volume to the pre-esistent ones
and launching the ”rebalance” command. HDFS instead appears the more stable and reliable
storage system, performs quite well but can’t support cloud technologies. The increasing interest
in cloud storage solution are forcing the developers to put effort in providing both block and
object storage solutions together with the standard POSIX.

References
[1] http://gluster.org/community/documentation/index.php/GlusterFS Concepts, August 2013
[2] http://hadoop.apache.org
[3] http://www.hadoopwizard.com/whichbigdatacompanyhastheworldsbiggesthadoopcluster, February 2013
[4] http://linux.die.net/man/1/iozone
[5] http://linux.die.net/man/1/dd
[6] http://ceph.com

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042014 doi:10.1088/1742-6596/513/4/042014

7

