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Abstract. We study unsupervised Hebbian learning in a recurrent network in which synapses
have a finite number of stable states. Stimuli received by the network are drawn at random at
each presentation from a set of classes. Each class is defined as a cluster in stimulus space,
centred on the class prototype. The presentation protocol is chosen to mimic the protocols
of visual memory experiments in which a set of stimuli is presented repeatedly in a random
way. The statistics of the input stream may be stationary, or changing. Each stimulus induces,
in a stochastic way, transitions between stable synaptic states. Learning dynamics is studied
analytically in theslow learninglimit, in which a given stimulus has to be presented many times
before it is memorized, i.e. before synaptic modifications enable a pattern of activity correlated
with the stimulus to become an attractor of the recurrent network. We show that in this limit
the synaptic matrix becomes more correlated with the class prototypes than with any of the
instances of the class. We also show that the number of classes that can be learned increases
sharply when the coding level decreases, and determine the speeds of learning and forgetting of
classes in the case of changes in the statistics of the input stream.

1. Introduction

It is widely believed that synaptic plasticity is the basic phenomenon underlying learning
and memory. There is experimental evidence that neuronal activity can affect synaptic
strength, through both long-term potentiation (LTP, e.g. Bliss and Collingridge 1993) and
long-term depression (LTD, e.g. Artola and Singer 1993, Christieet al 1994). A large
number of learning ‘rules’, specifying how activity and training experience change synaptic
efficacies, has been proposed (Hebb 1949, Sejnowski 1977, Bienenstocket al 1982); such
learning rules have been essential for the construction of most models of associative memory
(Hopfield 1982, Amit 1989). In such models, the presentation of a stimulus to a recurrent
network provokes modifications in the efficacy of recurrent collaterals. These modifications
enable the pattern of activity evoked by the stimulus to sustain itself after the removal of the
stimulus; this pattern becomes an attractor of the system. Such ‘active memory states’ have
been observed in several areas of association cortex of monkeys performing delay memory
tasks (Miyashita 1993, Fuster 1995). Recently, more realistic associative memory models
have been developed (Amitet al 1994, Amit and Brunel 1997), allowing for quantitative
comparisons with available experimental data.
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Since the structure of the synaptic efficacies is an essential characteristic of these models,
the development of a realistic synaptic dynamics is particularly important. Most models
of associative memory have left aside this issue, usually taking for granted a ‘covariance-
type’ synaptic matrix (Hopfield 1982, Tsodyks and Feigel’man 1988), with the underlying
assumption that any single synapse is able to preserve an arbitrarily high number of stable
states over long timescales. A notable exception is the Willshaw model (Willshawet al
1969), in which each synaptic efficacy has only two states, but again this model leaves
aside the question of the dynamics. Shinomoto (1987) has introduced an on-line learning
dynamics, but in this model the synaptic efficacies must have a long time constant and the
stimuli must be presented continuously, otherwise the network returns to the initial (before
learning) state. Nadalet al (1986) and Parisi (1986) showed that modifications of the
Hopfield model to prevent memory blackout during sequential learning of patterns could
make the network exhibit the ‘palimpsest’ property (old stimuli are automatically forgotten
to make room for the most recent ones). In Nadalet al (1986) at each presentation the
new synaptic efficacy is the sum of the old value multiplied by a decay factor plus the
contribution of the new stimulus. In Parisi (1986) the ‘palimpsest’ property was obtained
by bounding the synaptic efficacies.

More recently, the idea that synaptic efficacies have only a limited number of stable
states and that a stimulus arriving at the network provokes transitions between these states
began to develop as an alternate, more realistic, description of the learning process. Tsodyks
(1990) showed that a drastic reduction in the memory capacity is inherent to such a learning
process, as compared with the usual ‘covariance’ matrix. In this context, Wonget al (1991)
studied the dependence of short-term memory behaviour on the initial synaptic distribution.
In their study stimuli were learned in one shot and with certain choices of parameters the
network exhibited primacy or recency phenomena. The idea of the learning process as a
random walk was also considered, in a more general context, by Heskes and Kappen (1991).

Amit and Fusi (1992, 1994) have studied a learning process in which each synapse
has only a finite number of stable states on long timescales, and neural activities induce
stochastic transitions between these states, in the situation in which stimuli to be learned are
random, uncorrelated and each of them is presented once. They pointed out the importance
of (i) the stochasticity of the learning dynamics, (ii) the sparseness of the stimuli, and (iii)
the global balance between numbers of potentiating and depressing transitions. Amit and
Brunel (1995) used simulations to study such a learning process in a more realistic case
in which stimuli are drawn randomly at each presentation from a set of classes, defined
by clusters in stimulus space. The differences in the patterns of activity evoked by stimuli
belonging to the same class may reflect either some noise added to the signal in the visual
pathways (early preprocessing) or small differences in some of the features of the visual
stimuli. For example, the stimulus degradation studied by Amitet al (1997) leads to gradual
modifications in the visual response that are observable at the level of the inferotemporal
cortex of a behaving monkey. Amit and Brunel (1995) demonstrated how the resulting
modifications in the synaptic structure could stabilize attractors (internal representations)
corresponding to the extracted prototypes of the classes of shown stimuli. The existence of
an attractor state (a stable pattern of activities) correlated with a prototype defines whether
the corresponding class is learned or not, since it makes it possible to maintain an active
representation of this class, in the absence of the stimulus correlated with it. This is the
definition of learning adopted in this paper.

The present study represents an analytical approach to this learning process. The
environment, from which the network learns, is defined by a set of prototypes. Each
prototype defines a class, or cluster, of similar patterns of activities (patterns belonging
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to a class are correlated with the corresponding prototype). At discrete points in time, a
randomly selected pattern is presented and synaptic transitions take place. The sequence
of presentations of stimuli is composed of members of these classes, in which at each
presentation both the prototype and the specific class member are chosen at random. It is
a relatively common protocol of visual memory experiments. The environment (i.e. the set
of prototypes or classes) is either fixed, or changing. In the latter case, classes are added
to or removed from the set. This allows the study of the speed at which classes are learned
or forgotten.

Any presentation of a stimulus provokes stochastic transitions between synaptic
efficacies. Each synapse has two stable states, a low background state and an elevated
state. Transitions from low to high are functionally similar to LTP, while the reverse
transitions are similar to LTD. The model can incorporate different types of LTD, such as
homosynaptic, heterosynaptic, or both. Such a model of unsupervised synaptic plasticity
can be easily implemented in a material device (Badoniet al 1995, Annunziato 1995).

In Amit and Fusi (1994) the memory capacity of this model had been estimated by
assuming that each pattern can be learned after a single presentation. By contrast, in some
areas in which attractors are observed, e.g. inferotemporal (IT) cortex, a large number of
presentations of the same pattern seem to be required to produce reverberating activity
(Miyashita 1993), which suggests a rather slow learning process. In this paper we shall
study such aslow learningsituation, i.e. a scenario in which a given pattern has to be shown
many times before it is learned.

1.1. Summary of the main results

The main results in the slow learning limit are as follows.

1.1.1. Dependence on the sequence of presentations.In the slow learning limit and if there
are no temporal correlations in the sequence (i.e. choices of the class to be presented at any
two different times are uncorrelated), the degree of correlation between the synaptic matrix
and a given prototype, which determines whether this prototype is learned or not, does not
depend on the specific sequence of presentations of stimuli but only on the set of stimuli
in the environment. The final configuration of the synaptic matrix contains information
about the statistics of the last stimuli presented, those appearing in a sliding time window
whose length depends on synaptic transition probabilities. For a fixed environment, as the
transition probability goes to zero, this time window gets longer and (i) the number of
times a given prototype appears in it increases; (ii) for a given presentation, the number of
modified synapses decreases. This means that, following any presentation, a smaller amount
of information is acquired, and also that a smaller fraction of synapses forgets the patterns
presented in the past. The final outcome is a synaptic matrix which is less biased toward
the most recent stimuli compared to conventional palimpsest memories (Nadalet al 1986,
Parisi 1986). Nevertheless, the system is still able to adapt itself to new environments since
the sliding time window is finite. The price to be paid is a longer adaptation time: as the
transition probability decreases the adaptation time increases.

1.1.2. Categorization properties.If learning is slow enough, the memory of the class
prototypes is always stronger than the memory of any other members of the same class
shown. Thus, the learning process naturally categorizes the input stimuli by extracting a
good representative of a class of similar patterns in the stream of stimuli. If the members
are generated as clouds around fixed prototypes, the extracted representatives become closer
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and closer to the real prototypes as the sliding memory window becomes larger, i.e. when
the transition probabilities get smaller. Intuitively, a larger memory window means a larger
sampling of the entire class. In this paper we focus on the limit of very small transition
probabilities, and we show that in this limit the extracted prototypes coincide with the
prototypes underlying the stream of stimuli. If the environment changes and the prototypes
move in the space of all possible activity configurations, then the synaptic configuration is
able to adapt to new prototypes, provided that they move slowly enough.

1.1.3. Storage capacity.This is defined as the maximum number of classes that can be
memorized. It depends on the sparseness of the internal representations of the stimuli (the
mean fraction of neurons activated by each stimulus): the sparser the representation, the
larger the storage capacity. A good storage capacity also requires a global balance between
LTP and LTD, as in (Amit and Fusi 1994). Moreover, we show that it is independent of
the specific implementation of LTD provided the global balance between LTP and LTD is
preserved.

1.1.4. Learning and forgetting rates.We define the learning rate as the inverse of the
typical number of repetitions of a new class which must be presented in order for it to
be learned. The time at which a new class becomes recallable depends on this number
of repetitions and on the frequency with which the network is presented the stimuli of the
environment.

We also consider a situation in which a class is removed from the environment and
the network is still presented a stream of uncorrelated stimuli belonging to other classes.
In this case, the removed class is forgotten after a certain number of presentations of each
remaining class. The forgetting rate is defined as the inverse of this number of presentations.

Learning and forgetting rates are proportional to the LTP/LTD transition probabilities.
The learning rate is almost independent of the number of classes present in the environment,
except when it is close to the storage capacity. Near the limit of storage capacity it decreases
sharply, owing to the fact that all the information about a specific class is forgotten in the
interval between two successive presentations of the members of the class. The forgetting
rate is much smaller than the learning rate when there are few classes in the environment,
but increases as the number of classes increases, until it eventually becomes larger than the
learning rate. The forgetting rate becomes infinite when the storage capacity is reached.

These results are demonstrated both analytically and by simulations. The organization
of the paper is as follows: first we define the model neurons and the external stimuli.
In section 2 we define the synaptic dynamics. In section 3 we calculate the synaptic
distribution for a generic sequence and in section 4 we study the slow learning situation.
Then in section 5 we study the sparse coding limit. This allows us to determine relatively
simple expressions for the quantities of interest. Lastly, in section 6 we describe the results
of the simulations that confirm the main analytical results.

2. The model

2.1. Neuronal response to stimuli

We consider a network composed of a large number of neurons, which are taken to represent
the pyramidal cells of a cortical network. Each neuron in the network is labelled by an
index i = 1, . . . , N whereN is the number of neurons. In this paper we do not consider the
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neuronal dynamics explicitly, but rather consider the steady state imposed on the network
by an external stimulus. For simplicity, any stimulus leaves neuroni at one of two possible
activity states,Vi i = 0, 1 which may be related to spike rates:Vi = V0 the neuron shows no
visual response (spontaneous activity state);Vi = V1� V0 the neuron has visual response.
The ensemble of activations in the network by a given stimulus represents the way in which
this stimulus is encoded in the network.

A stimulus shown at timet can therefore be characterized by a binary string{ξ ti = 0, 1},
which determines the activation of all neurons in the network during its presentation:

Vi(t) =
{
V1 if ξ ti = 1

V0 if ξ ti = 0.

The population of neurons which is activated by a given stimulus will be called the
foreground of this stimulus. The remaining neurons define its background.

2.2. Statistics of stimuli: classes

Stimuli shown to the network belong to a set ofp predetermined classes, which defines
the ‘environment’ of the network. Each class is defined by a representative pattern, the
prototypeηµ, µ = 1, . . . , p. Prototypes are random and uncorrelatedN -bit words chosen
according to

Pr(ηµi = 1) = f Pr(ηµi = 0) = 1− f (1)

wheref is the coding level (or sparseness) of the class prototypes.
Each prototype defines its corresponding class (or cluster) of stimuli. The members of

a class are noisy versions of the prototype. In a visual memory experiment the noise may
be interpreted as follows.

• Noise due to preprocessing in the early visual stages or to small eye movements: even if
the animal is always presented the same stimulus, the pattern of activity in the network
might be different from presentation to presentation because of the noise generated by
other networks.

• Degradation of the visual stimulus: the patterns of activities corresponding to the
members of a specific class, are the outcome of the degradation of the visual stimulus
(e.g. when RGB noise is added to the prototype, as in Amitet al (1997)).

• Small changes in the visual stimuli (e.g. in one or more of the features) that induce
modifications in the visual response of the neurons of the network. The similarity of
the visual stimuli is reflected by the correlations between the prototype and stimuli
belonging to the same class.

A stimulusηµν belonging to classµ is chosen randomly in the following way.

• If the neuron is in the foreground of the prototype,ηµi = 1:

Pr(ηµνi = 1) = 1− x(1− f ) Pr(ηµν = 0) = (1− f )x. (2)

• If the neuron is in the background of the prototype,η
µ

i = 0:

Pr(ηµν = 1) = f x Pr(ηµν = 0) = 1− f x. (3)

x measures the extent of a given class or the distance between a typical instance and its
class prototype. Ifx = 0, instances are identical to their prototype. Ifx = 1, examples
are uncorrelated with their prototype. This procedure ensures that the average fraction of
activated neurons isf .
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A sequence of presentations specifies which stimulus is shown at each time stept . In a
random sequence, a class is selected at random at each presentation with equal probability
1/p, and then an instance is generated at random from the class using equations (2) and
(3). The formalism developed in this paper could easily be generalized to the case in which
the probabilities of presentation are different from class to class. Choices of the class and
of the class member at two different presentations are uncorrelated. The case of temporal
correlations in the sequence of presentations will be considered in a future study (see also
(Brunel 1996) for a study of learning of temporal correlations in a simplified situation in
which stimuli activate non-overlapping sets of neurons).

In the following, ξ t always denotes a generic stimulus shown at timet , ηµ a class
prototype,ηµν an instanceν of classµ.

2.3. Synaptic dynamics and the standard learning model

Two essential features characterize the synaptic dynamics: the fact that each synapse is
discrete with a finite number of states (limited analogue depth); and the stochasticity of
transitions occurring from state to state. In a material neural network the elements are
assumed to be implementable in simple devices (electronic or biochemical). It is unlikely
that a biological or an electronic device could preserve a large set of stable values during
long time intervals, in the absence of a stimulus.

In what follows we assume that on long timescales the synaptic efficacy has only two
stable states because:

(i) such a structure is sufficient for learning selective delay activity;
(ii) it simplifies the calculations and the design of the electronic implementation of the

synapse;
(iii) the discreteness of synaptic efficacies is consistent with experiment (Bliss and

Collingridge 1993).

The synaptic efficacy connecting neuronj to neuroni is denoted byJij . All synaptic
efficacies have two stable states, denoted byJ0 < J1. In the following, for simplicity, we
useJ1 = 1, J0 = 0, without loss of generality.

Stochastic transitions between these states may occur if either the presynaptic or the
postsynaptic neuron is active during presentation of a stimulus. At timet , when a stimulus
{ξ ti } is presented:

• If Jij = 0, thenJij → 1 with probability a(ξ ti , ξ
t
j ) (LTP transition). a(ξ ti , ξ

t
j ) can be

written as

a(ξ ti , ξ
t
j ) = q+p(ξ ti , ξ tj )

whereq+ is the intrinsic potentiation probability, andp(ξ ti , ξ
t
j ) ∈ [0, 1] is a function

carrying the dependence on the activities of the two neurons connecting the synapse.
If the two activitiesξ ti , ξ

t
j are such thatp = 1, then an LTP transition occurs with

probability q+. Otherwisep = 0 and no LTP transition can occur.
• If Jij = 1, thenJij → 0 with probability b(ξ ti , ξ

t
j ) (LTD transition). Again, we can

write

b(ξ ti , ξ
t
j ) = q−d(ξ ti , ξ tj )

whereq− is the intrinsic depression probability, andd(ξ ti , ξ
t
j ) ∈ [0, 1].

Thus, learning is a random walk among the two stable states of synaptic efficacy, and
any synapse is characterized at any timet by a probability distribution (Pr(Jij = 1, t),



Slow stochastic Hebbian learning 129

Pr(Jij = 0, t)), which depends on all stimuli which have been presented to the network
before timet .

The formalism developed in this paper applies to any functionsp andd describing LTP
and LTD. In most of the following, however, we shall restrict ourselves to a symmetric
learning dynamics introduced in (Amit and Fusi 1994, Amit and Brunel 1995) which
captures features of experimental results on synaptic plasticity (Bliss and Collingridge 1993,
Christieet al 1994):

p(ξ ti , ξ
t
j ) = ξ ti ξ tj (4)

corresponding to LTP obtained only when both presynaptic and postsynaptic neurons are
sufficiently depolarized; and

d(ξ ti , ξ
t
j ) = ξ ti (1− ξ tj )+ ξ tj (1− ξ ti ) (5)

corresponding to LTD in the case of either postsynaptic but not presynaptic activity
(heterosynaptic LTD), or presynaptic but not postsynaptic activity (homosynaptic LTD).
This learning dynamics will be referred to as the standard learning model (SLM) in the
following. In section 5.3 we shall compare different types of LTD characterized by different
mixtures of homosynaptic and heterosynaptic LTD:

d(ξ ti , ξ
t
j ) = uξ ti (1− ξ tj )+ vξ tj (1− ξ ti ) (6)

where u (v), varying in the interval [0, 1], is the relative strength of heterosynaptic
(homosynaptic) LTD.

2.4. Measures of the degree of learning

To monitor the effect of learning on the synaptic matrix we define the following quantities.

(i) The mean potentiationg at time t :

g(t) = 1

N(N − 1)

∑
i 6=j

Jij (t) (7)

is the average fraction of potentiated synapses in the network at timet .
(ii) The mean ‘intra-class’ (ICP) potentiationgµ of the prototype of classµ (Amit and

Brunel 1995)

gµ(t) = 1

fN(fN − 1)

∑
i,j

Jij (t)η
µ

i η
µ

j (8)

measures the correlation between the prototype of classµ and the synaptic matrix,
and thus of the degree of learning of the corresponding class. Ifgµ = g there is no
correlation between the class and the synaptic matrix.

(iii) The mean ‘intra-example’ (IEP) potentiationGµν of instanceν of classµ:

gµν(t) = 1

fN(fN − 1)

∑
i,j

Jij (t)η
µν

i η
µν

j (9)

measures the correlation between a particular instance and the synaptic matrix. It can
be used to evaluate whether the synaptic matrix is more correlated with instances or
with their class prototypes.
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Realistic associative memory models (see e.g. Amit and Brunel 1995, 1997) show that,
depending on the value ofg+ relative tog, two types of behaviour are observed. When
g+ − g < 1gc, where1gc depends on the details of the neuronal model, the network is
unable to sustain attractors correlated with learned stimuli. In this case, the only stable state
in the network is a completely silent state or a spontaneous activity state in a network of
spiking neurons with strong recurrent inhibition. On the other hand, when the ICP becomes
significantly larger than the mean potentiation in the network, network states correlated with
the class prototype become stable. The precise criteria depend on the neuronal model; for
the particular case of a network of analogue neurons characterized by a continuous transfer
function we have typically1gc ∼ 0.5.

On the other hand, the relative values of the IEP and the ICP determine whether
the attractor stabilized by the network is more correlated with the class prototype (thus
categorizing the input stimuli) or with the most recent instance of the class.

3. Synaptic distribution for a generic sequence

3.1. Sources of stochasticity: learning as a Markov process

The intrinsic stochastic mechanism which drives transitions from one stable state to another
is not the only source of stochasticity. Learning can be considered stochastic either due to
the dynamics of the synaptic modifications or due to the nature of the data shown to the
network (Amit and Fusi 1994, Heskes and Kappen 1991). In fact, the sequence of random
uncorrelated stimuli presented to the network represents a sequence of random activity levels
imposed on the synapse. Since the learning dynamics is local in time, the presentation of a
sequence of uncorrelated random stimuli induces a Markov process on the set of values of
each synapse. In our case the synapse has only two stable states, so the synaptic dynamics
can be fully described in terms of the transition probabilities of transferring to the up/down
state.

3.2. Probability distribution as an explicit function of the sequence of stimuli

We start our analysis with the computation of the final synaptic distribution as an explicit
function of the activitiesηµi presented to the synapse by each stimulus of the sequence. The
transition matrix corresponding to the Markov process of a single presentation at timet can
be written as

Mij (t) =
(

1− atij atij
btij 1− btij

)
where atij = a(ξ ti , ξ

t
j ) (btij = b(ξ ti , ξ

t
j )) is the probability that synapseJij is potentiated

(depressed) following the presentation of patternξ t at time t , as defined in section 2.3.
From this transition matrix, we can find the probability distribution of the synaptic

efficacies at timeT , as a function of the initial distribution and of all stimuli presented
between 0 andT .

The probabilities of the synapseij being in the excited state (Gij (T ) ≡ Pr(Jij = 1, T ))
or in the background state (1−Gij (T ) ≡ Pr(Jij = 0, T )) at timeT are calculated explicitly
in appendix A. We obtain:

Gij (T ) =
T∑
t=1

atij

T∏
s=t+1

λsij +Gij (0)
T∏
s=1

λsij (10)
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in which λtij = 1−atij −btij . λtij appears in equation (10) as an ‘instantaneous decay factor’
at time t : it is the probability that no transition occurred at timet , given that stimulusξ t

had been presented. In equation (10), each term in the sum on the right-hand side (RHS)
corresponds to a stimulus presented at timet < T . These terms are weighted by the ‘decay’
factor

∏
s λ

s provoked by successive presentations. This factor is the probability that no
synaptic transition occurred between timet and timeT . In this way, the contributions
of earlier stimuli are obscured by more recent ones. If there is a finite probability that
potentiating and (or) depressing stimuli occur in the sequence, after a sufficiently long time
(T → ∞) the second term in the RHS of equation (10) vanishes, i.e. the synapse forgets
its initial condition, and we obtain

Gij (T ) =
∑
t6T

atij

T∏
s=t+1

λsij . (11)

This is the case in which at least one of the prototypes in the ‘environment’ tends to
potentiate or depress the synapse, or where the size of clusters around the prototypes is
finite (x > 0).

Note that the synaptic distribution, equation (11), depends, in the case of the presentation
protocol described in section 2.2, on

• the set of classes;
• the particular realization of the (random) sequence of presentation of classes, i.e. the

specification of the classes shown at each time step;
• and, in the case of classes of finite extent, the extraction of class members at each time

step.

Thus the distribution of synaptic efficacies depends on the specification of the entire
sequence of stimuli. On the other hand, one would like to know the properties of the
synaptic matrix for a ‘typical’ sequence. We shall see in section 4 that this is possible
when the transition probabilitiesq+, q− are small: in this case theaverage over all
possible realizations of the sequence of presentations gives a good approximation for most
realizations, in the sense that the variability of the average potentiation levels from sequence
to sequence goes to zero with the transition probabilities.

4. Slow learning: averaging over random sequences

To study the properties of the synaptic matrix in the slow learning scenario we shall proceed
as follows.

(i) We start from the general expression for the synaptic distribution following the
presentation of a specific, arbitrary sequence of stimuli (equation (10)). This is an
explicit function of the pairs of activities(ξ ti , ξ

t
j ) imposed on the synapse by all the

stimuli ξ ti (0< t < T ) of the input stream.
(ii) The synaptic distribution is then averaged over all possible realizations of the random

sequences defined in section 2.2.
(iii) Next we calculate the average over all sequences of the potentiation levelsg andgµ

of equations (7) and (8).
(iv) Finally we compute the variability of these potentiation levels from sequence to

sequence in section 4.3, and find that when learning is sufficiently slow, this variability
becomes negligible with respect to the average potentiation levels.
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Hence, in the slow learning limit the sequence-averaged potentiation levels give a good
estimate of the statistical properties of a ‘typical’ synaptic matrix which has seen a random
sequence of the set of stimuli.

4.1. Sequence average of synaptic efficacy

The average of a quantity over all possible sequences is denoted by〈. . .〉. For a random
sequence, when only prototypes are shown,ξ ti is chosen at random in the set of all the
prototypes independently at allt : ξ ti = ηµi with probability 1/p for eachµ = 1, . . . , p. We
have, for example,

〈ξ ti 〉 =
1

p

p∑
µ=1

η
µ

i .

In order to perform the average over sequences of the synaptic distribution, (11), we note that
each of theatij

∏
s λ

s
ij is a product of terms corresponding to different times, and that they

can be averaged independently since presentations at different time steps are uncorrelated.
Thus we obtain:

〈Gij 〉 = 〈aij 〉
∞∑
s=0

〈λij 〉s = 〈aij 〉
〈aij + bij 〉 (12)

in which

〈aij 〉 = q+
p

∑
µ

p(η
µ

i , η
µ

j ) 〈bij 〉 = q−
p

∑
µ

d(η
µ

i , η
µ

j ). (13)

Defining

Pij =
∑
µ

p(η
µ

i , η
µ

j ) Dij =
∑
µ

d(η
µ

i , η
µ

j ) (14)

we obtain the sequence-averaged probability that synapseJij is potentiated,

gij = 〈Gij 〉 = q+Pij
q+Pij + q−Dij

. (15)

4.2. Sequence-averaged potentiation levels

To calculate the sequence-averaged potentiation levels, equations (7)–(9), we simply have
to replaceJij in these equations by its sequence-averagegij given by equation (15). In this
way, we obtain the sequence-averaged potentiation level in the network,

g = 1

N(N − 1)

∑
i 6=j

q+Pij
q+Pij + q−Dij

(16)

and the sequence-averaged ICP for a generic classµ:

gµ = 1

fN(fN − 1)

∑
i 6=j

q+Pij
q+Pij + q−Dij

η
µ

i η
µ

j . (17)

The sum on the RHS of equation (16) can be replaced by a sum over all possible values ofPij
andDij weighted by their joint probability distributionψ(5,1) = Pr(Pij = 5,Dij = 1);
in these termsg becomes

g =
p∑

5,1=0

ψ(5,1)
q+5

q+5+ q−1. (18)
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Equation (17) can be rewritten in a similar way as a sum over all possible values ofPij and
Dij weighted by the joint probability distribution conditional on the synapse experiencing
coincident activation of presynaptic and postsynaptic neurons when a generic prototypeµ

is presented,ψ+(5,1) = Pr(Pij = 1+ 5,Dij = 1|ηµi ηµj = 1). The average intra-class
potentiation level is thus

g+ =
p−1∑
5=0

p∑
1=0

ψ+(5,1)
q+(1+5)

q+(1+5)+ q−1. (19)

Notice that since all classes have the same probability of being shown at any time step,
g+ does not depend onµ. The joint distributionsψ(5,1) andψ+(5,1) depend on the
parameters defining the stimuli, i.e.f and p, and on the particular learning dynamics,
defined by the Boolean functionsp andd.

4.3. Variability from sequence to sequence

The asymptotic variability in the potentiation level is defined by

1g2 = 1

N2(N − 1)2
∑

i 6=j,k 6=l
〈1Gij1Gkl〉 (20)

where1Gij = Gij − 〈Gij 〉. The variability in the ICP is defined in a similar way:

1g2
µ =

1

f 2N2(fN − 1)2
∑

i 6=j,k 6=l
〈1Gij1Gkl〉ηµi ηµj ηµk ηµl . (21)

When the transition probabilitiesq+ ∼ q, q− ∼ χq andq go to zero, both variabilities
go to zero withq as (see appendix B for details):

1g2 = q 1

N2(N − 1)2
∑

i 6=j,k 6=l
Iijkl 1g2

µ = q
1

f 2N2(fN − 1)2
∑

i 6=j,k 6=l
Iijklη

µ

i η
µ

j η
µ

k η
µ

l (22)

where Iijkl , given in appendix B, goes to a finite quantity whenq → 0. If q is small
enough, the variability from sequence to sequence becomes negligible with respect to
the corresponding averages, which remain finite in this limit, and the calculation of the
sequence-averaged quantities gives a good estimate of the corresponding quantity after a
typical sequence has been shown. In the following, we shall focus on sequence-average
quantities only.

4.4. Speed of learning and forgetting

If at time t = 0 the synaptic distribution isGij (T = 0) = G0 for all (i, j), the distribution
at timeT > 0 is given by equation (10), i.e.

Gij (T ) = G0

T∏
s=1

λsij +
T∑
t=1

atij

T∏
s=t+1

λsij . (23)

The first term on the RHS describes the decay of the initial conditionG0, or the forgetting
of whatever was learned beforet = 0, while the second term describes learning aftert = 0.
If one waits for a sufficiently long time, all memory of the past will be erased and one
arrives at the asymptotic expression, equation (10).

Taking once more the average over sequences we obtain

gij (T ) = 〈aij 〉
〈aij + bij 〉 + 〈λij 〉

T

(
G0− 〈aij 〉

〈aij + bij 〉
)
. (24)
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The first term in equation (24) corresponds to the asymptotic distribution, equation (12).
The second term is the product of the ‘decay’ term〈λij 〉T by the difference between the
initial distribution and the asymptotic one. This second term describes the response of the
system when there is a change in the statistics of the input. Each synapse has an associated
decay time constantτij = −1/ log〈λij 〉. To describe the population-averaged behaviour in
response to such changes it is useful to define a ‘forgetting’ and a ‘learning’ function.

The forgetting function describes the evolution of the intra-class potentiation of a
prototype which is perfectly learned (i.e. the intra-class connectivity has reached its
asymptotic valueg+) at time T = 0 and is not shown any more forT > 0, assuming
that it is uncorrelated with stimuli that are presented forT > 0,

φ(T ) = g + 1

N(N − 1)

∑
i 6=j
〈λij 〉T

(
g+ − 〈aij 〉

〈aij + bij 〉
)
. (25)

This function is such thatφ(t = 0) = g+ andφ(t →∞) = g.
The ‘learning’ function of prototypeµ describes how a prototype, uncorrelated with the

initial synaptic distributionGij (0), is learned as a function of time (i.e. the evolution of its
ICP), assuming that the initial distribution of intra-class synapses is equal to the asymptotic
connectivity,G0 = g

φµ(T ) = g+ + 1

fN(fN − 1)

∑
i 6=j
〈λij 〉T

(
g − 〈aij 〉
〈aij + bij 〉

)
η
µ

i η
µ

j . (26)

It is defined such thatφ+(T = 0) = g andφ+(T →∞) = g+.
We can again express these functions in terms of the joint probabilities ofPij andDij .

In these terms, the forgetting function is

φ(T ) = g +
p∑

5,1=0

ψ(5,1)

(
g+ − q+5

q+5+ q−1
)(

1− 1

p
(q+5+ q−1)

)T
(27)

and the learning function is

φ+(T ) = g++
p−1∑
5=0

p∑
1=0

ψ+(5,1)
(
g− q+(1+5)

q+(1+5)+ q−1
)(

1− 1

p
(q+(1+5)+ q−1)

)T
.

(28)

4.5. An example: SLM, random sequence of prototypes only

In the SLM described in section 2.3, if we present, in a random way the class prototypes
only, the joint probability distributionψ(5,1) is

ψ(5,1) = p!

5!1!(p −5−1)! 21f 25+1(1− f )2(p−5)−1.

Similarly, ψ+ is given by

ψ+(5,1) = (p − 1)!

5!1!(p − 1−5−1)! 21f 25+1(1− f )2(p−1−5)−1

for 06 5+1 6 p − 1.
Equations (18), (19), (27) and (28) then determine the statistical properties of the

synaptic matrix, in both stationary and non-stationary environments, as a function of the
transition probabilitiesq+ andq−, and of the parameters characterizing the flow of stimuli,
f andp.
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For anyf > 0 and finitep, g+ > g. In the limit p → ∞, g+ → g, i.e. the synaptic
matrix becomes uncorrelated with the shown prototypes when their number grows to infinity.
Imposing a finite degree of correlation between the synaptic matrix and class prototypes,
g+ − g > 1gc, implies a finite upper bound on the maximal number of classes that can be
learned.

On the other hand, in the next section it is shown that the maximal number of learnable
prototypes grows to infinity when the sparsenessf goes to zero.

5. Study of the SLM in the sparse coding limit

Visual memory experiments in performing monkeys indicate that neuronal patterns of
activity sustained in IT cortex during the delay period of such experiments involve a low
fraction of neurons (see e.g. Miyashita 1988), and lead to the conclusion that coding levels in
this area are of the order of 1–2% (Brunel 1994). This suggests that one should focus on the
limit of a low coding level (sparse coding limit). Previous studies, both with fixed synapses
(see e.g. Meunier and Nadal 1995 and references therein) and with dynamic synapses in the
case of one-shot learning of uncorrelated stimuli (Amit and Fusi 1994), have shown that
the information capacity of the system increases sharply whenf decreases.

In the limit f → 0, to leading order inf , the variables5 and1 become independent
and

ψ(5,1) = ψp(5)ψd(1)+O(f )

(see appendix C), in whichψp (ψd) is the distribution of the number of prototypes that tend
to potentiate (depress) the synapse. Furthermore, ifp goes to infinity asf goes to zero,
the distributionsψ+ andψ become more and more similar, and we have

ψ+(5,1) = ψp(5)ψd(1)+O(f ).

In this limit, ψp andψd become Poisson distributions,

ψp(5) = (pf 2)5
exp(−pf 2)

5!
ψd(1) = (2pf )1 exp(−2pf )

1!
. (29)

The behaviour ofψp andψd depends on how the number of classesp scales withf .

• If p � 1/f the probability of seeing (at least) one potentiating (depressing) prototype
is of the order ofpf 2 (pf ). Thus, most synapses never see either a potentiating or
depressing prototype.

• If p ∼ 1/f the probability of seeing a potentiating prototype is of the order off , but
now any synapse will typically see a few depressing prototypes, as given by the Poisson
distribution, equation (29).

• If 1/f � p � 1/f 2 the probability of seeing a potentiating prototype is still very small,
but on the other hand the distribution of the number of depressing prototypes becomes
Gaussian with meanpf and variancepf .

• If p ∼ 1/f 2 a synapse typically experiences a finite number of potentiating prototypes,
as given by the Poisson distribution, equation (29).

• If p � 1/f 2 both distributions become Gaussian. Synapses see a large number of
potentiating and depressing prototypes.

Thus, we have two crossover regimes,p ∼ 1/f (hereafter called low-loading regime) and
p ∼ 1/f 2 (high-loading regime). Forf ∼ 0.01, the low-loading regime corresponds to a
number of classesp of the order of 100, while the high-loading regime corresponds top

of the order of 10 000.
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In the followingq+ is low but stays finite whenf → 0, q− is of the order off , so that
the number of potentiations and depressions is of the same order. We denote

q+ = q q− = ρf q. (30)

This scaling ofq−/q+ with f is optimal in terms of the number of classes the system is able
to memorize. Ifq− stays finite asf goes to zero, the system is able to store and recall up to
p ∼ 1/f classes, because ifp � 1/f most synapses, including the ‘intra-class’ synapses,
will see a very large number of depressing prototypes and will be depressed. Ifq− ∼ f
the system can store up top ∼ 1/f 2 classes. Ifq− � f the system becomes useless as
a memory device since most synapses will become potentiated, as in the Willshaw model
above its critical capacity (Willshawet al 1969). In the following we shall only mention
the results in the text. The details of the calculations can be found in appendix D.

5.1. Learning pure prototypes

5.1.1. Low loading. We takep = α/f , whereα is a finite parameter, andf → 0. The
average potentiation level is simply

g = g0 exp(−2α)

whereg0 is the initial potentiation level. In this case, the synaptic matrix keeps a memory
of the initial condition. This memory decreases asα increases. This means that showing a
low number,p � 1/f , of prototypes for an arbitrary long time will not erase the memory
of whatever was learned before, simply because most synapses will not make transitions.
This is true only for pure prototypes. As soon as class members differ from the prototype,
no memory of the initial conditions will persist, as we show in the following. Whenα

becomes large (butαf � 1), g goes to zero.
The average IC potentiation level isg+ = 1− O(f ). In this regime all classes are

perfectly learned in the sparse coding limit.
The forgetting function

φ(T ) = exp

[
−2α

(
1− exp

[
−qf

2ρT

α

])]
for T small compared withα/(qρf 2), satisfies

φ(T ) ∼ exp(−2qf 2ρT ).

Thus, forgetting occurs with a time constant∼ 1/(2qρf 2). This is simply the time constant
of LTD in the network, i.e. the inverse of the probability that a synapse is depressed when
a random pattern is shown.

The learning function is

φ+(T ) = 1+ (g − 1) exp

(
−qf T

α

)
.

Learning occurs with a time constant∼ α/(qf ). This is simply the product of the number
of prototypesp multiplied by the LTP rate (i.e. 1/q) for an intra-class synapse. There is
a factor 1/f between learning and forgetting timescales and thus whenf → 0 learning is
much faster than forgetting.
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High loading. We consider now the casep = α/f 2. The average potentiation level is now
given by equation (D6). It increases fromg = 0 whenα = 0 to

g = 1

1+ 2ρ

whenα goes to infinity. This is the value it would have if a flow of uncorrelated stimuli
had been presented to it.

The average IC potentiation level, equation (D7) is simply related tog by the expression

g+ = 1− 2ρg.

It decreases from 1 atα = 0 to 1/(1+ 2ρ) when α goes to infinity. Thus, in this limit
g+ → g and the synaptic matrix becomes uncorrelated with the shown prototypes. If the
neuronal dynamics is such that the criterion for memory retrieval isg+ − g > 1gc = 0.5,
as in the model studied in (Amit and Brunel 1995), we obtain that the maximal number of
classes that can be learned, forρ = 1, is p ∼ 0.3/f 2. Taking againf ∼ 0.01 we find that
up to about 3000 classes can be learned in the synaptic matrix.

The forgetting and learning functions are given by equations (D8) and (D9). From these
expressions we can calculate the number of presentations needed to learn a new prototype
or to forget an old one. The timeτ+ to learn a new prototype is given by imposing

φ+(τ+) = g +1gc.

The timeτ to forget an old prototype is given by:

φ(τ) = g +1gc.

To obtain a quantitative idea about the learning and forgetting timescales suppose that
f = 0.01, ρ = 1, andq = 0.002. If the environment consists of 1000 classes, it follows
that to learn a newly presented class we must wait aboutτ+ = 400 000 presentations (400
per class), while to forget a class which is not presented any more we must wait about 106

presentations. On the other hand, if the environment is composed of 100 classes, we need
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Figure 1. Average levels of potentiation (g) and of intraclass potentiation (g+) as a function of
the number of prototypesp in the sparse coding limit. Left: low loading (p ∼ 1/f ), g0 = 0.5.
Right: high loading (p ∼ 1/f 2). The quality of learning of the shown classes degrades aspf 2

increases.
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Figure 2. Number of presentations for learning (τ+, dashed lines) and forgetting (τ , solid
lines), as a function of the number of prototypesp (shown on top) and the rescaled number of
prototypesα = pf 2 (bottom), for q = 0.002, f = 0.01, andρ = 1. Left: total number of
presentations; Right: number of presentations per prototype.

about 35 000 presentations (350 per class) to learn a new class, while one still has to wait
a large number of presentations (about 1.6× 106) to forget it.

Figure 1 shows the behaviour ofg andg+ as a function ofp, in both low- and high-
loading regimes. Figure 2 shows the number of presentations needed to learn/forget as a
function ofp (shown on top) andα (bottom). The left-hand figure shows the total number of
presentations while the right-hand one shows the number of presentations per class. When
the number of classes is small learning is much faster than forgetting. Asp increases,
learning becomes slower and forgetting faster, so that atp ∼ 1500 learning becomes slower
than forgetting. This is due to the fact the ICPg+ becomes closer to its ‘critical’ value
g+1gc, so that as soon as the prototypes are not shown any more, its ICP decreases to its
critical value in a short time. In fact, the forgetting time goes to 0 as we come close to the
storage capacity.

5.2. Learning prototypes from class members

The results of the previous section are now generalized to the case of classes with finite
extent (x > 0). At each presentation a member is extracted from a class chosen at random.

5.2.1. Low loading. We setp = α/f , where α is a finite parameter. The average
potentiation level is now given by equation (D14). Unlike in the case of pure prototypes,
for any x > 0 no memory of the initial conditions survives, since the dependence on the
initial distribution g0 has disappeared.g varies fromg = x/(2ρ + x) when α goes to
zero tog = x(2− x)/(2ρ + x(2− x)) when α goes to infinity. For anyα, the average
potentiation level gradually increases with the class extentx, from g = 0 whenx goes to
zero tog = 1/(1+ 2ρ) at x = 1. This is due to the fact that synapses which are not
‘intra-class’ synapses (the overwhelming majority of synapses when loading is low) have
a finite probability of seeing both pre- and postsynaptic neurons active. This probability
increases with the class extentx.
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The average IC potentiation level is in the limitf → 0, for any 0< x < 1,

g+ = 1.

At x = 1 there is an abrupt transition andg+ becomes equal tog. This discontinuity ing+
is obtained only whenf → 0. Thus, in this limit any positive correlation between class
members and their prototype will lead to perfect learning of the prototype. The crossover
between perfect learning (g+ = 1) and no learning (g+ = g) occurs forx ∼ 1−O(f ).

High loading. We consider now the casep = α/f 2. The average potentiation level is now
given by equation (D15).g increases with the rescaled number of classesα from

g = x(2− x)
2ρ + x(2− x)

at α = 0 to

g = 1

1+ 2ρ

whenα goes to infinity.
The average IC potentiation level is given by equation (D16).g+ decreases again from

g+ = 1 atα = 0 to

g+ = 1

1+ 2ρ

whenα goes to infinity. The decrease is more abrupt whenx increases. Whenx = 1 we
haveg+ = g = 1/(1+ 2ρ) as in the low-loading case.

These results are illustrated in figure 3 in which we show howg and g+ vary as a
function of the number of classesp, at different class extentsx. As expected, the IC
potentiation level decreases significantly when the class extentx increases. For example,
applying again the criteriong+ − g > 0.5 for prototype retrieval, and takingf = 0.01 and
ρ = 1, we find that the maximal number of stored classes drops from about 3000 atx = 0
to about 400 atx = 0.5.
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Figure 3. g+ and g as a function of the number of classesp, at different levels of the class
extentx: x = 0 (full lines); x = 0.1 (long dashed lines);x = 0.5 (short dashed lines);x = 0.9
(dotted lines). Left: low loading. Right: high loading.
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5.3. Comparison between different types of LTD

We consider now the influence of varying the relative strength of homosynaptic and
heterosynaptic LTD using the depression function of equation (6) instead of equation (5).
We find that in the high-loading case the potentiation level is given by

g =
∑
5

5

5+ αρ(u+ v)
α5 exp(−α)

5!
.

Analogously, the ICP and the corresponding expressions in the case of classes of finite extent
can be obtained by replacingρ by ρ(u+ v)/2. Thus, the final expressions depend only on
the average depression probability, which is proportional toρ(u + v), and homosynaptic
and heterosynaptic depression or a combination of both types turn out to be completely
equivalent. In the case of low loading, the potentiation level depends on the precise type
of LTD, but the variation ofg on u andv, at parity ofu+ v, is of the order of 0.001 and
therefore smaller by several orders of magnitude than the difference betweeng+ andg.

5.4. Prototypes versus class members

Next we ask whether the synaptic matrix is more correlated with the class prototypes or
with the class members which have been shown to the network. To calculate more precisely
the value ofq at which the network is more correlated with classes than with prototypes,
we return to equation (10) giving the probability distribution of a generic synaptic efficacy
Jij for an arbitrary sequence. Instead of averaging over all realizations of the sequence of
presentations, we average over all realizations of sequencesthat contain one specific instance
µν shownt presentations ago in the past. After some algebra similar to that described in
section 4, we find

〈Gij 〉 = 〈aij 〉
〈aij + bij 〉 + 〈λij 〉

t

(
aij (t)− 〈aij 〉aij (t)+ bij (t)〈aij + bij 〉

)
(31)

in which aij (t) andbij (t) are the terms due to presentation of instanceµν.
We proceed now by considering the different types of synapse involved (to simplify

things we considert = 0, i.e. we look at the last shown instance, which is also the most
correlated with the synaptic matrix).

• Synapses for whichηµi η
µ

j = 1, ηµνi η
µν

j = 1 (both ‘intra-class’ and ‘intra-example’
synapses): for these synapses

〈aij 〉
〈aij + bij 〉 = g+ aij (0) = q bij (0) = 0

and thus

〈Gij 〉 = g+ + q(1− g+). (32)

• Synapses for whichηµi η
µ

j = 1 but ηµνi η
µν

j = 0 (‘intra-class’ but not ‘intra-example’):
for these synapses

〈aij 〉
〈aij + bij 〉 = g+ aij (0) = 0 bij (0) = O(f )

and

〈Gij 〉 = g+ +O(f ). (33)
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• Synapses for whichηµi η
µ

j = 0, ηµνi η
µν

j = 1 (‘intra-example’ but not ‘intra-class’):

〈aij 〉
〈aij + bij 〉 = g aij (0) = q bij (0) = 0

and

〈Gij 〉 = g + q(1− g). (34)

To determine whether the network is more correlated with the class prototype or with
the last shown example we have to compare equations (33) and (34). If ‘intra-class but not
intra-example’ synapses are on average stronger than ‘intra-example but not intra-class’, i.e.
if

q <
g+ − g
1− g (35)

the correlation with the prototype will be stronger than the correlation with any example,
otherwise the last example has been learned better than the class prototype. To determine
how many of the last examples shown are more correlated than the prototype we should
turn back to thet-dependent expression. Equation (35), in the low-loading case, simplifies
to q < 1; thus, in this case, the synaptic matrix is necessarily more correlated with the
prototype than with any example shown. In the high-loading regime, for any finiteα and
x, if q is low enough, as determined by the condition (35), in whichg+ andg are given by
equations (D6) and (D7), the synaptic matrix will always be more correlated with prototypes
of the classes, than with any of the examples it has seen.

Thus, in a situation of slow learning, the synaptic matrix is necessarily more correlated
with the prototypes than with the class examples. The network categorizes input stimuli.
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Figure 4. ‘Critical’ q below which class prototypes are learned better than shown examples, for
different class extents:x = 0 (full lines); x = 0.1 (long dashed lines);x = 0.5 (short dashed
lines).

These results are summarized in figure 4. This figure shows the regions inq–α plane
in which prototypes or instances are learned. Note that asα or x become larger, the
critical transition probabilityq for which prototypes are learned better than shown examples
becomes lower. A similar result had been obtained in (Fusi 1995) in the case of a single
class shown together with random stimuli.
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6. Simulations

The learning dynamics used in the simulations is defined in section 2.3. We takeρ = 1,
so thatq+ = q andq− = f q. The probability that a synapse is in its high state when the
simulation starts is always set to zero.

6.1. Variability from sequence to sequence as a function of transition probability

We have shown in section 4.3 and appendix B that the variability of both potentiation
level and intra-class potentiation level goes to zero asq tends to zero. In order to test
the quantitative predictions of the theory we simulated the behaviour of a fully connected
network ofN = 1000 neurons. We generatedP = 15 prototypes. The class amplitude
x was set to zero. The network was presentedS randomly chosen sequences. The length
of these sequences was such that the network could reach the asymptotic regime, i.e. the
number of presentations was chosen to be much larger than the forgetting time constants.
At the end of each sequence we calculated the global connectivity (G) and the ICP (Gµ) for
each of the 15 classes:

Gs = 1

N(N − 1)

∑
i 6=j

J sij Gµs =
1

N
µ
+(N

µ
+ − 1)

∑
i 6=j

J sij ξ
µ

i ξ
µ

j

whereNµ
+ is the number of active neurons in theµth prototype ands is the index of the

sequence.
At the end of the simulation we computed:

1G2 = 1

S − 1

S∑
s=1

(Gs − 〈G〉)2 (1Gµ)2 = 1

S − 1

S∑
s=1

(Gµs − 〈Gµ〉)2

where 〈G〉 = (1/S)
∑S

s=1Gs and 〈Gµ〉 = (1/S)
∑S

s=1G
µ
s . In figure 5 we compare the

results of the simulations and the theoretical predictions at different values of the transition
probability q. It shows that whenq is small the theory is in good agreement with the
simulation results.
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Figure 5. Variability of the global potentiation level (left) and of the ICP (right). Theoretical
predictions (solid lines) and simulation results (+). The variability of the ICP is averaged over
the 15 classes. The parameters are:N = 1000,P = 15, f = 0.2, S = 50.
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Figure 6. Learning and forgetting. Left: ICP of a prototype presented to the network to
be learned versus the number of presentations. Right: ICP of the same prototype when it is
not presented any more to the network (forgetting). Each diamond represents the mean over
16 simulations (error bars: standard deviation). Long dashed lines: theoretical prediction,
equations (27) and (28), with the parameters of the simulations:N = 3000,p = 50, f = 0.02,
q = 0.1. Short dashed lines: theoretical prediction in the sparse coding limit, equations (D3)
and (D4). Note that for this value off there is a small difference between the two theoretical
predictions.

6.2. Learning and forgetting rate

6.2.1. Learning and forgetting pure prototypes.The behaviour of the ICP of a stimulus
that is added or removed from the environment is described by the learning and forgetting
functions defined in section 4.4.

A network of N = 3000 neurons was simulated, with a set ofP = 50 uncorrelated
prototypes withf = 0.02 (corresponding toα = 1 in the low-loading regime, see
section 5.1), andx = 0. The transition probability was set toq = 0.1. The network
was presented a sequence of stimuli, long enough to forget the initial state of the synapses.
Then, at the presentation labelled 0 on the horizontal axis of each plot in figure 6, one of
the stimuli is removed from the set and a new one is added. The network is shown the
sequence of stimuli randomly extracted from the new set. After each presentation we record
the ICP of the prototype that has been removed and the ICP of the one that has been added.

The results of simulations are plotted in figure 6. It shows that the theoretical predictions
for g, g+, φ(t) andφµ(t) derived in section 4 are in good agreement with the simulation
results.

6.2.2. Learning and forgetting classes with finite extent.Class amplitude was then set to
x = 0.3. At the beginning of the simulation we generated 50 uncorrelated patterns that
will be used as the prototypes of 50 classes. During the first part of the simulation we
randomly extract one of the prototypes at each time step and generate a pattern belonging
to its class using the procedure of section 2.2. At presentation 0 in the plots of figure 7
one of the prototypes of the set is replaced by a new one. Then the new set is presented
to the network and the two ICPs of the new prototype (learning curve) and of the old one
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Figure 7. Learning (left) and forgetting (right) curves for classes of stimuli. The parameters
used in the simulations are:N = 3000,P = 50, f = 0.02, q = 0.1, x = 0.3. Long dashed
line: theory at finitef , equations (27) and (28). Short dashed line: theory in the limitf = 0,
equations (D3) and (D4). The agreement with the theoretical predictions is even better than the
case of pure prototypes. See the discussion in the text.

(forgetting curve) are estimated at each time step.
The results of simulations and the theoretical predictions are compared in figure 7. Note

that in the case of the forgetting curve the introduction of classes reduces the variability of
the ICP from simulation to simulation with respect to the pure prototype case. This can be
explained by observing that the effect of showing a class is less dependent on the particular
choice of prototypes. Thus, the quantities describing the behaviour of a network that learns
classes of stimuli are better approximated by the population-averaged values.

7. Discussion

In this paper we have discussed a simple and biologically motivated learning dynamics,
when classes of stimuli are shown repeatedly to the network. We have shown that in a slow
learning scenario, the statistical properties of the synaptic matrix are essentially independent
of the particular sequence of presentation. The learning dynamics we have considered in
detail was motivated by experimental data on both LTP and LTD (Bliss and Collingridge
1993, Christieet al 1994). There is still some controversy about which patterns of activity
provoke LTD. One interesting conclusion from the simple model presented in this paper is
that with sparsely coded patterns and in the high-loading regime, the degree of correlation
between the synaptic matrix and class prototypes shown to the network is independent on
the precise form of LTD, provided the balance between LTP and LTD is kept fixed, i.e.
globally the modifications induced by LTP and LTD are of the same order.

Simulations have shown that a neural network with analogue neurons, represented by
a current-to-rate transduction function, is able to stabilize attractors correlated with shown
prototypes, as soon as the correlation between these prototypes and the synaptic matrix is
high enough (Amit and Brunel 1995). This is usually the critical parameter determining
whether the network can function as an autoassociative memory (e.g. Willshawet al 1969,
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Nadal and Toulouse 1990). A detailed study of the neuronal dynamics and how it is
influenced by synaptic dynamics, for various neuronal models will be presented in a separate
publication.

In the stochastic learning formalism the speed of learning is mainly controlled by the
LTP transition probabilityq. Different values ofq will yield quite different behaviours:
if q is high the network will learn in a single presentation individual examples that are
shown to it, but will forget them, if they are not shown again, after a relatively short time.
If insteadq is low the network will need many presentations before it learns something,
but conversely it will be able to ‘extract’ class prototypes from class members. To forget
a class a large-scale change in the input statistics will be necessary. One might speculate
that different areas in the brain might use these two different strategies. For example, it
has been hypothesized that hippocampus serves as a short-, or intermediate-term memory
storage (e.g. Marr 1971, Rolls 1990). In this case, it would be useful to have a strong
probability of potentiation there, in order to learn new events in one shot. On the other
hand, other areas, for example in neocortex, might need many repetitions of correlated
stimuli before a prototype is extracted and stored in a longer-term memory, as experiments
in IT cortex seem to suggest (Miyashita 1993). A learning process with a low potentiation
transition probability, such as the one considered in this paper, would be ideally suited for
that.
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at the beginning of this work. The work was supported in part by a Human Mobility grant
from the EC.

Appendix A. Synaptic distribution as a function of the sequence of stimuli

The probabilities of the synapseij being in the excited state (Gij (T ) ≡ Pr(Jij = 1, T )) or
background state (1−Gij (T ) ≡ Pr(Jij = 0, T )) at timeT can be written as a function of
the transition matricesMij (t) with 0< t 6 T as

(Gij (T ), 1−Gij (T )) = (Gij (0), 1−Gij (0))Mij (1)Mij (2) . . . Mij (T )

= (Gij (0), 1−Gij (0))Mij (T ) (A1)

whereMij (T ) is the transition matrix corresponding to the presentation of theT stimuli.
We denote the product of the lastτ matrices byMij (τ ):

Mij (τ ) =
(

1− Bτij Bτij
Aτij 1− Aτij

)
= Mij (T − τ + 1)Mij (T − τ + 2) . . . Mij (T ).

The explicit expression forA andB can be deduced by solving the following recurrence
relations:

Aτ+1
ij = Aτij + aT−τ (1− Aτij − Bτij ) (A2)

Bτ+1
ij = Bτij + bT−τ (1− Aτij − Bτij ). (A3)
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First we compute the total probability that some transition is provoked by the lastτ

presentations,Cτij = Aτij + Bτij , by summing the two relations:

Cτij = 1−
τ−1∏
r=0

λT−rij = 1−
T∏

s=T−τ+1

λsij

whereλtij = 1− atij − btij . If we substituteCτij in equations (A2) and (A3) we find

ATij =
T∑
t=1

atij

T∏
s=t+1

λsij BTij =
T∑
t=1

btij

T∏
s=t+1

λsij

and using these relations together with equation (A1) we obtain:

P(Jij = 1, T ) = Gij (T ) =
T∑
t=1

atij

T∏
s=t+1

λsij +Gij (0)
T∏
s=1

λsij .

Appendix B. Sequence variability of potentiation levels

The sequence to sequence variability of the asymptotic potentiation level is:

1g2 = 1

N2(N − 1)2
∑

i 6=j,h6=l
〈1Gij1Ghl〉. (B1)

We first calculate〈GijGhl〉 for a single pair of synapses. In order to simplify the notation
we writea = aij , b = bij , λ = λij to represent the variables of the synapseij andα = ahl ,
β = bhl , η = λhl for the synapsehl. Using equation (10) this average becomes :

〈GijGhl〉 =
〈

T∑
t,k=−∞

atαk
T∏

s=t+1

T∏
r=k+1

λsηr

〉
= 〈A2+ B +D〉

where the three terms of the RHS are:

A2 =
∑
t<T

atαt
T∏

s=t+1

λsηs B =
∑
t,k<t

atαk
T∏

s=t+1

T∏
r=k+1

λsηr

D =
∑
k,t<k

atαk
T∏

s=t+1

T∏
r=k+1

λsηr .

Averaging over sequences we find:

〈A2〉 = 〈aα〉
∑
t<T

〈λη〉T−t = 〈aα〉
1− 〈λη〉

〈B〉 =
〈∑
t,k<t

atηtαk
t−1∏
r=k+1

ηr
T∏

s=t+1

λsηs

〉
= 〈α〉〈aη〉

∑
t,k<t

〈η〉t−k〈λη〉T−t = 〈α〉〈aη〉
(1− 〈η〉)(1− 〈λη〉)

〈D〉 = 〈a〉〈αλ〉
(1− 〈λ〉)(1− 〈λη〉)

and

〈GijGhl〉 = 1

1− 〈λη〉
(
〈aα〉 + 〈α〉〈aη〉

1− 〈η〉 +
〈a〉〈αλ〉
1− 〈λ〉

)
. (B2)

Using equation (12), we obtain:

〈1Gij1Ghl〉 = 〈aα〉〈b〉〈β〉 + 〈bβ〉〈a〉〈α〉 − 〈aβ〉〈α〉〈b〉 − 〈αb〉〈a〉〈β〉〈a + b〉〈α + β〉(〈a + b + α + β〉 − 〈(a + b)(α + β)〉) . (B3)
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The terms of the sum in expression (B1) can be divided into three classes: terms that have
two pairs of equal indexes (e.g.i = h, j = l), 〈1Gij1Ghl〉 = 〈1G2

ij 〉; terms with one pair
of equal indexes (e.g.i = l, j 6= h), 〈1Gij1Ghl〉 = 〈1Gij1Gih〉; and finally the class in
which all the four indices are different. The expression (B1) becomes:

1g2 = 1

N2(N − 1)2

[
2
∑
i 6=j
〈1G2

ij 〉 + 4
∑
i 6=j 6=h
〈1Gij1Gih〉 +

∑
i 6=j 6=h6=k

〈1Gij1Ghk〉
]
. (B4)

The variability ofgµ has the same form as the variability ofg, the only difference being that
the synapses of expression (8) see at least one potentiating prototype (theµth prototype).
Thus, the average over populations must be calculated forP − 1 random prototypes and a
potentiating one.

With the given dynamics equation (B3) can be written in the form

〈1Gij1Ghl〉 ≡ qIijhl = q cijhl

dijhl − qeijhl
where:

cijhl = χ2
(〈pijphl〉〈dij 〉〈dhl〉 + 〈dij dhl〉〈pij 〉〈phl〉 − 〈pijdhl〉〈phl〉〈dij 〉 − 〈phldij 〉〈pij 〉〈dhl〉)

dijhl = 〈pij + χdij 〉〈phl + χdhl〉〈pij + χdij + phl + χdhl〉
eijhl = 〈pij + χdij 〉〈phl + χdhl〉〈(pij + χdij )(phl + χdhl)〉
in which c, d ande are independent ofq ande < d. The expression forpij , dij is given by
equations (4) and (5). Thus,〈1Gij1Ghl〉 = O(q) whenq goes to zero, and consequently
the fluctuations of bothg andgµ go to zero asq.

Appendix C. Potentiating and depressing distributions in the sparse coding limit

The joint distribution of the numbers of potentiating and depressing prototypes is

Pr(5,1) = p!

5!1!(p −5−1)! f
25(2f (1− f ))1(1− f )2(p−5−1)

= 1

5!1!
f 25(2f (1− f ))1A

where

A = p!

(p −5−1)! (1− f )
2(p−5−1).

In the limit p→∞ we can apply Stirling’s formula and obtain

A = exp

[
2(p −5−1) ln(1− f )− p +

(
p + 1

2

)
lnp

+p −5−1−
(
p −5−1− 1

2

)
ln(p −5−1)

]
.

We define new variablesx, y andz by5 = pf 2x,1 = 2p(1−f )fy, z = f 2x+2f (1−f )y,
and obtain

A = p5+1 exp

[
2p ln(1− f )(1− z)− pz− p(1− z) ln(1− z)− 1

2
ln(1− z)

]
A = p5+1B.
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Now we take the limit asf → 0, neglecting all terms of orderz,pz3 andpf 3,

B = exp

[
−2pf + 2pf z− pf 2− 1

2
pz2

]
= exp

[−2pf + pf 2− 2pf 2(1− y)2] .
Putting everything together we obtain

Pr(5,1) = (pf 2)5

5!
exp(−pf 2)

(2f (1− f ))1
1!

exp(−2pf (1− f ))

× exp

[
−2pf 2

(
1− 1

2pf (1− f )
)2
]

plus terms of orderf or pf 3. Thus, the joint distribution for5 and1 decouples and
becomes the product of a Poisson distribution with meanpf 2 for 5, multiplied by a
distribution for1 which is slightly different from a Poisson distribution. However, the
last term gives a negligible contribution in both cases,p ∼ 1/f andp ∼ 1/f 2, since in the
latter case the variable1/[2pf (1−f )] has mean 1 and variance of order 1/pf ∼ f . Thus,
in both cases the distribution of1 is Poisson with mean 2pf (1− f ). The ‘intra-class’
distribution can be calculated in the same way. The leading-order term is again the product
of the two Poisson distributions.

Appendix D. Results in the sparse coding limit

Results are summarized in table 1.

Appendix D.1. Pure prototypes

We first study the case in which only class prototypes are shown, and transitions occur as
defined by equations (4) and (5). Substituting (30) in (15), we can rewrite the sequence-
averaged probability that synapseJij is potentiated,gij , as

gij = Pij

Pij + fρDij

and〈λij 〉, as

〈λij 〉 = 1− q

p

(
Pij + fρDij

)
.

Thus, from equations (18), (19), (27) and (28) we deduce the average potentiation level,

g =
∑
5,1

ψp(5)ψd(1)
5

5+ fρ1 (D1)

the ‘intra-class’ potentiation level,

g+ =
∑
5,1

ψp(5)ψd(1)
1+5

1+5+ fρ1 (D2)

the forgetting function,

φ(T ) = g +
∑
5,1

ψp(5)ψd(1)

(
g+ − 5

5+ fρ1
)(

1− q

p
(5+ fρ1)

)T
(D3)
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Table A1. Summary of results in the sparse coding limit.

Pure prototypes (x = 0), low loading

g = g0 exp(−2α)
g+ = 1

φ(T ) = exp

[
−2α

(
1− exp

[
−qf

2ρT

α

])]
φ+(T ) = 1+ (g − 1) exp

(
−qf T

α

)
Pure prototypes (x = 0), high loading

g =
∑
5

5

5+ 2αρ

α5 exp(−α)
5!

g+ =
∑
5=0

ψp(5)
5+ 1

5+ 1+ 2αρ

φ(T ) = g + exp
(
−2ρqf 2T

)∑
5

(
g+ − 5

5+ 2αρ

)
exp

(
−qf

25T

α

)
ψp(5)

φ+(T ) = exp

[
−
(

2ρ + 1

α

)
qf 2T

]∑
5

(
5+ 1

5+ 1+ 2αρ
− g

)
exp

(
−qf

25T

α

)
ψp(5)

Classes of extentx > 0, low loading

g =
∑
1

ψd(1)
x(1− x)1+ αx2

x(1− x)1+ ρ(1− x)1+ αx(x + 2ρ)

g+ = 1

Classes of extentx > 0, high loading

g =
∑
5

(1− x)25+ αx(2− x)
(1− x)25+ α(2ρ + x(2− x))

α5 exp(−α)
5!

g+ =
∑
5

(1− x)2(5+ 1)+ αx(2− x)
(1− x)2(5+ 1)+ α(2ρ + x(2− x))

α5 exp(−α)
5!

and the learning function

φ+(T ) = g+ +
∑
5,1

ψp(5)ψd(1)

(
g − 1+5

1+5+ fρ1
)(

1− q

p
(1+5+ fρ1)

)T
. (D4)

In the low-loading case,p = α/f , whereα is a finite parameter, andf → 0. To
calculate the average potentiation level we first note that in the limitf → 0,ψp(5 > 0) = 0.
A fractionψd(1 = 0) = exp(−2α) of synapses sees no depressing prototype and therefore
never experiences transitions; these synapses stay at their initial value. The remaining
synapsesψd(1 > 0) = 1−exp(−2α) see at least one depressing prototype and consequently
will eventually be in their low state. Thus, the average potentiation level is simply

g = g0 exp(−2α)

whereg0 is the initial potentiation level.
To calculate the average IC potentiation level, we have to consider synapses that

see at least one potentiating event (the one corresponding to the considered class). The
probability of seeing another potentiating prototype is negligible in the limitf → 0, and
thus equation (D2) becomes

g+ =
∑
1

1

1+ fρ1ψd(1) (D5)
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whereψd is the Poisson distribution with mean 2α, equation (29). In this case,1 is finite
in the terms that contribute to the sum in the RHS of equation (D5), so thatg+ = 1−O(f ).

To calculate the forgetting function, we insert equation (29) in equation (D3), and obtain:

φ(T ) = exp

[
−2α

(
1− exp

[
−qf

2ρT

α

])]
.

For T small compared withα/(qρf 2) we have

φ(T ) ∼ exp(−2qf 2ρT ).

With a similar calculation it is easy to derive the learning function from equation (D4)

φ+(T ) = 1+ (g − 1) exp

(
−qf T

α

)
.

We now consider the high-loading case,p = α/f 2. In this case each synapse typically
sees a few potentiating events, as described by the Poisson distribution, equation (29), and
a very large number of depressing events, of the order of 1/f . The distribution off1
becomes sharply peaked around 2α, with a variance of the order of

√
f . Thus, in the limit

f → 0 we can replacef1 by its mean 2α.
Using equations (29) and (D1), we find that the average potentiation level is now given

by

g =
∑
5

5

5+ 2αρ

α5 exp(−α)
5!

. (D6)

Whenα goes to infinity,g goes to

g = 1

1+ 2ρ
.

The average IC potentiation level is

g+ =
∑
5=0

ψp(5)
5+ 1

5+ 1+ 2αρ
(D7)

and after some algebra we find that it is simply related tog by the expression

g+ = 1− 2ρg.

To calculate the forgetting function we use equation (D3), replacef1 by its mean 2α
and insertψp of equation (29), and finally obtain

φ(T ) = g + exp
(−2ρqf 2T

)∑
5

(
g+ − 5

5+ 2αρ

)
exp

(
−qf

25T

α

)
ψp(5). (D8)

The learning function can be obtained in a similar way from equation (D4)

φ+(T ) = exp

[
−
(

2ρ + 1

α

)
qf 2T

]∑
5

(
5+ 1

5+ 1+ 2αρ
− g

)
exp

(
−qf

25T

α

)
ψp(5).

(D9)
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Appendix D.2. Learning prototypes from class members

To calculate the statistical properties of the synaptic matrix we have to come back to
equation (12). In this equation to perform the average over sequences we use equations (2)
and (3) defining the distribution of examples: we find that the sequence-averaged probability
for synapseij to be in its high state is

gij = P̃ij

P̃ij + fρD̃ij

where

P̃ij = [1− x(1− f )]2Pij + f x[1− x(1− f )]Dij + (f x)2(1− Pij −Dij ) (D10)

D̃ij = 2(1− f )x[1− x(1− f )]Pij + [1− x + 2f (1− f )x2]Dij

+2f x(1− f x)(1− Pij −Dij ) (D11)

in whichPij (Dij ) are the usual numbers of potentiating (depressing) prototypes, as defined
in equation (14).

When x = 1, i.e. class members are uncorrelated with the class prototypes, we have
Pij = f 2 andDij = 2f (1− f ), and thus the synaptic distribution becomes independent of
the prototypes, as expected.

In the sparse coding limit we can again calculate the average potentiation levels, as a
function of x. Using equations (D10) and (D11) and keeping only the dominant terms in
the limit f → 0, we find

g =
∑
5,1

ψp(5)ψd(1)
(1− x)25+ f x(1− x)1+ f 2x2

(1− x)25+ f (1− x)(x + ρ)1+ f 2x(x + 2ρ)
(D12)

g+ =
∑
5,1

ψp(5)ψd(1)
(1− x)2(1+5)+ f x(1− x)1+ f 2x2

(1− x)2(1+5)+ f (1− x)(x + ρ)1+ f 2x(x + 2ρ)
. (D13)

We first setp = α/f , wereα is a finite parameter. As in the case of pure prototypes,
the potentiation levels can be obtained by setting5 = 0 in equations (D12) and (D13). The
average potentiation level is now

g =
∑
1

ψd(1)
x(1− x)1+ αx2

x(1− x)1+ ρ(1− x)1+ αx(x + 2ρ)
. (D14)

The average IC potentiation level is obtained using equations (29) and (D13), and we
find that in the limitf → 0, for any 0< x < 1,

g+ = 1.

We now consider the casep = α/f 2. We again use equations (D12) and (D13), in
which we set1 = 2α, as in the case forx = 0. The average potentiation level is now

g =
∑
5

(1− x)25+ αx(2− x)
(1− x)25+ α(2ρ + x(2− x))

α5 exp(−α)
5!

. (D15)

The average IC potentiation level is

g+ =
∑
5

(1− x)2(5+ 1)+ αx(2− x)
(1− x)2(5+ 1)+ α(2ρ + x(2− x))

α5 exp(−α)
5!

. (D16)
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