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Abstract. The bifurcations of a class of mappings including the beam—-beam map are examined.
These maps are asymptotically linear at infinity where they exhibit invariant curves and elliptic
periodic points. The dynamical behaviour is radically different with respect to #rehtlike
polynomial maps whose stability boundary (dynamic aperture) is at a finite distance. Rather
than the period-doubling bifurcations exhibited by thendn-like maps, we observe a systematic
appearance of tangent bifurcations and in phase space one observes the disappearance of chains of
islands born from the origin and coming from infinity. This behaviour has relevant consequences

on the transport process.

1. Introduction

Area-preserving maps have been extensively investigated since they capture the generic
properties of the Poincamrmap of a Hamiltonian system with two degrees of freedom. The
standard map describes the magnetic field lines of a plasma and is obtained by perturbing an
anisochronous integrable system. Thenldn map [1], defined as the quadratic perturbation of

a linear map, is the simplest model of a particle accelerator [2]. Denetagjthe horizontal
coordinate and as the conjugate momentum, thértbn map, to which any other quadratic

map is reducible after a linear transformation, reads

(%) =rem(,7,): @

This map gives the consequences, on the Painsaction, of the orbit followed by a charged
particle moving in a linear lattice with a thin sextupole. The fixed point corresponds to the
closed orbit andk, y are the normalized Courant—Sneyder coordinates scalgt¥By We
recall thatg'/? is the amplitude of the beam for unit emittance, define4as ! times the
area of the phase-space ellipse filled by the particles.

The quadratic nonlinearity determines the usual pattern of invariant curves, chains of
islands and chaotic layers in the neighbourhood of the fixed point and the existence of a finite-
stability basin, whose border is known as tiymamic apertureln the inner part of the stability
region the map has a quasi-integrable behaviour and its orbits can be interpolated by the level
lines of Hamiltonians obtained via normal forms [2, 3].

The maps where the quadratic nonlinearity is replaced by a bounded nonlinearity,
vanishing quadratically at the origin, exhibit a different dynamical behaviour. Inthe normalized
coordinates the map is given by (1), whefés replaced by3'/2 f (8Y/?x). Unlike the quadratic
map, theg factor cannot be scaled. In this paper we investigate the dynamical behaviour and
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Figure 1. (a) Sketch of the bifurcation diagrams in thex plane for the resonanc%& ‘—1‘, % of

Hénon-like maps.k) Bifurcation diagram for the resonanée)f the beam—beam map. Continuous
and dashed curves denote stable and unstable periodic points, respectively.

the bifurcation pattern in the linear frequencyby choosings = 1. The dependence g¢hin
the beam—beam map corresponding to a Gaussian nonlinearity is briefly outlined.

The dynamical properties and the bifurcation patterns have been investigated for other
quadratic maps [4, 5] depending on a paramgteiThese maps can be transformed into (1)
with a translation and/or a similarity transformation (see the appendix). In bothicasifs %]
is a smooth invertible function gf, but the similarity transformation is singular at= 0.

The characteristic diagram of (1) in the linear frequendas been recently investigated [6].

It was shown that all the resonance curves in ithe plane, issued from the main family

x = 0 at any rationab = p/q, undergo a sequence of period-doubling bifurcations at

v = v,, satisfying the Feigenbaum scaling laws, with a ratio of two subsequent interval
lengthss, = (V1 — vi)/ (v, — v,—1) @pproaching the same universal value found in other
conservative systems [7]. For each family the stable branches approach a finite value of
in the frequency range [(%], whereas the unstable branches always seem to approach the
end pointv = % asymptotically whenx — oo (see the sketch in figure d)j. This result

is found since the distance of the chains of islands remains bounded whereas the hyperbolic
points migrate to infinity, as confirmed by inspection of the hyperbolic manifolds which extend
further and further away before returning to undergo homoclinic and heteroclinic intersections.
Higher-order bifurcations having similar features are observed starting from any of the daughter
families, which now play the role of the main family and the story repeats self-simdalrly
infinitum The resonanc%has adifferent behaviour since the unstable branch born at the origin
extends fon < % until a tangent bifurcation occurs (see figura)}(the stable branch bends
back to reach = % at a finite distance from the origin, where it undergoes a period-doubling
bifurcation with the unstable branches tending to infinitwas> % (see [6] and references
therein). This anomalous behaviour occurs since in a small interval bei@vé the rotation
number increases with the distance from the origin.

The bounded maps, having invariant curves near the origin and at infinity present new
bifurcation scenarios and an increase of chaoticity in the intermediate region, which can be
explained by the behaviour of the asymptotic curves.



Bifurcations of beam—-beam like maps 1057
2. Bounded maps

A new scenario emerges when the phase space is not compact but the origin and infinity are
surrounded by invariant curves. This occurs when the quadratic nonlinearity ofétienH

map is replaced by an algebraic or transcendental function which vanishes quadratically at the
origin and has a constant limit at infinity. A model with such features is the beam—-beam map,
which describes the interaction of a particle of a dilute beam with the charge of an intense
beam having a Gaussian distribution in the absence of lattice nonlinearities [8]

(;) = R(27v) (y i1 e_xz) @)

whereR(«) denotes the rotation matrix of angle The distribution of the fixed points for
area preserving maps with bounded nonlinearities has been previously investigated [9], but the
linear transformation which brings these maps to the standard form (1) is singular @gnd
the nonlinearity has a dependencevavhich cannot be scaled out. The numerical investigation
of the bifurcation pattern of the map (2) wheiis varied continuously is new and physically
relevant since it allows one to understand the dynamics of the beam—-beam-like maps. When
we move to infinity along any straight line different from thexis, the map approaches the
linear map given bR(27 v) composed of the unit translation along thaxis. Suchamapisa
rotation about the fixed point = %Cot(nv), y = % Itis, therefore, not surprising to observe
invariant curves by approaching the origin and also at large distances from it. In this case
period-doubling bifurcations are not observed (up to a resonangewith ¢ < 10), whereas
tangent bifurcations appear systematically. The behaviour of odd and even resonances (up to
the order we have examined) is different, the latter being much simpler. All the resonances are
born at the origin and appear simultaneously at infinity and their stable and unstable branches
collide via tangent bifurcations. In this case the phase space where two or more islands of
the same resonant ordefq are present, cannot be described by an autonomous interpolating
Hamiltonian. In spite of the fact that maps (1) and (2) agree up to quadratic terms approaching
the origin the same daughter families may exhibit different behaviour (see the discussion of
resonances belonging to the Farey trég %] in [5]). The scenario described with two or
more tangent bifurcations is not a peculiarity of the beam—beam map but seems to be typical
of maps bounded at infinity and approaching tfebin map at the origin.

The one-turn map of a particle moving in a linear lattice with a localized nonlinear force
f(x), vanishing as? for x — 0, is given by

EN_ (. ¢
<$/)_L<é+f(é)> ®)

whereé is the horizontal coordinate arfd= dg/ds is its derivative with respect to the arc
length. Assuming the orbit to be closed we havé & 2 cog2xv) and the unimodular matrix
L is conjugated to a rotation
1/2 0
L = VR2rv)v ! v=( F7 b > 4
(2mv) <—a,3 v2 g2 (4)

The new coordinates, y are obtained with the linear transformatiént, and the scaling®?
and the one-turn map becomes

X\ X x\ _ _1(§
i) ()-rvi) o

For a quadratic nonlinearity (x) = x2, the map becomes exactly th&kbn map. Iff(x)
is any nonlinear function th dependence does not scale out. We have also examined the
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Table 1. Tangent bifurcation values for resonancefleft) and g (right).

v_1 0.19987
vo 0.25000 o 0.200 00
v1 025249 1 0.206 42
v 0.26708 v, 0.21094
V3 0.21333
2 0.21502

dependence of of the beam—beam map, wheféx) = 1 — e, and for an algebraic map
where f(x) = x?/(1 +x?) has the same behaviour at the origin and approaches the same
constant value at infinity. The maps we have considered explicitly read

(;i,) = R(2rv) (y +ﬂ2(1x_ e_xz/ﬁz)> (6a)

x’ X
()-reeo( e

and both exhibit the Einon bifurcation scenarios for large valuesgoind the beam—beam

map (2) bifurcation scenarios fg¢ < 2 (notice thatin the limi — 0 the region of nonlinear

orbits in phase space shrinks to zero since the linear map is recovered). Forintermediate values
of B more complex structures appear.

3. Numerical investigation

Having obtained numerical evidence that the beam-beam bifurcation patterns are not a
peculiarity of this map but are typical of maps approaching tié&dh map at the origin
and a linear map at infinity, it is worthwhile describing them in more detail by inspecting
the characteristics diagram and some phase portraits. These diagrams are usually constructed
by drawing the characteristic curve corresponding to a single fixed point of a resonance. In
the present case, the standard procedure cannot be used because of the complexity of the
patterns. As a consequence, we draw as many curves as we need to resolve it. The numerical
investigation was carried out by using two graphically interactive codes: DYNAMICS [10]
and GIOTTO [11].

In order to illustrate higher-order resonances we denotg, ity the stable and unstable
families of fixed points, respectively.

The resonanc% has a stable branch (Sal) issued at the origia O forv = %, which
extends to higher values of until a tangent bifurcation occurs & (see table 1) and the
unstable branch (Ub1) bends and asymptotically rearzhesl—l1 at infinite distance from the
origin (see figure Z)). A similar pattern is observed for the unstable branch issued from the
origin (Ual), which becomes stable (Sb1) after a tangent bifurcation occurring-atv;.
The stability indexx(v) = %Tr |M’'| (whereM’(x, y) denotes the tangent map evaluated at
the fixed pointr = x(v), y = y(v)) of each family, is not monotonic, as for theéehbbn map,
and has a unique minimum (see figur®)2( As a consequence, the second-order resonances
correspond to the same Farey tree, a necessary condition for the creation of bubbles [11-13].
In order to have a better understanding of the topological changes occurringwhens in
figure 3 we show the phase portraits of the map whepproaches the tangent bifurcation
values. Infigure 3{) correspondingto = 0.251 < v; two chains of four islands are observed.
The hyperbolic and elliptic points of the inner chain are close to merge and disappear through
a tangent bifurcation as shown in figurdB¢orresponding to = 0.253 > v;. In figure 3¢€),
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Figure 2. (a) Characteristic diagram in the x plane for thev = 1 resonance. b Stability
diagram in thev, « plane where @ is the modulus of the trace of the tangent map. The dotted
vertical lines correspond to the valuesuadit which the phase plots are shown in figure 3.
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Figure 3. Phase portraits of the beam—beam map for the valueselected in figure 2 to illustrate
the bifurcations of the resonan%e (& v =0.251, p) v = 0.253, €) v = 0.266, @) v = 0.268.
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Figure 4. The same as figure 2 for the resonarglz:eThe two extra trajectories drawn for the
periodic points coming from infinity are denoted with the number 2. The dotted vertical lines
correspond to the values ofat which the phase plots are shown in figure 5.

corresponding t@ = 0.266 < v,, the elliptic and hyperbolic points of the surviving chain
have come close to each other and disappear via a hew tangent bifurcaticasathown in
figure 3@), corresponding te = 0.268 > v, (See table 1).

The resonance}, 1 have the same behaviour fs

Concerning the odd resonances, we first discuss the behavioutcé‘. The resonance
%, born at the origin fon = % is unstable. This unstable branch extends in a finite interval,
at the ends of which two tangent bifurcations occur and the emerging stable branches reach
v = % again from above and below asymptotically at infinite distance from the origin (see
figure 10)).

The higher-order odd resonances have a similar behaviour and we diseu$ We
follow three of the ten characteristic curves born from the originat%: one stable (Sal) and
two unstable (Ual, Ua2). The branch (Sal) becomes unstable (Udl(sae table 1) after a
tangent bifurcation and again interchanges its stability becoming (Sb1) at avéuweer than
vz, and remains stable up to infinity (see figure 4). The two unstable branches (Ual), (Ua2)
become stable (Scl), (Sc2) after a tangent bifurcatiop at vs. These branches interchange
their stability at a value; < v,. These unstable branches (Ubl), (Ub2) persist until a value
vy < 3—; then interchange stability becoming (8} (SB2) after a tangent bifurcation and
tend tov = % from below at infinite distance from the origin. At the valuesandv,, where
the stability interchange occurs a new family (Uc) is born. Since the stability indexaatd
v is equal to +1, the new family (Uc) has the same multiplicity of five as its mother family. As
for even resonances, the cureg®) representing the stability index in the regien< 1 have
minima at different values of, and the same considerations hold concerning the corresponding
Farey trees.

For some values of, marked with dotted curves in figurea)( the phase portraits are
shown infigure 5, to illustrate the changes occurring in the topology of the orbits. Starting from
v = 0.199 98 we have a chain of five islands shown in figueg 5sv — % the elliptic points
move to infinity, while the hyperbolic points remain at a finite distance.Fer0.206 > 1,
the hyperbolic points (Ub) are still present and elliptic points (Sb) appear from infinity to form
the exterior chain of islands shown in figurdh(where an inner chain of islands ((Sa), (Ua))
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born from the origin ab = % is present. The unstable point (Ubl) becomes stable (Scl)
and two hyperbolic points (Ucl), (Uc2) appear in figure)®prresponding te = 0.208; the
inner chain and the outer elliptic points (Sb) remain. Two of these hyperbolic points (Uc2),
(Uc3) collide with the outer elliptic point (Sb1) generating a new hyperbolic point (Ud1) and
in figure 5@) we show the orbits for = 0.2115 after the collision. In figure &(only one
chain of islands consisting of previous outer elliptic points (Sc) and inner hyperbolic points
(Ua) remains.

The same behaviour was found for the following resonanges; 2, 2, 1, 2 2 and also
for the even resonan

To conclude the present analysis we summarize the results on the parametricainap (6
For small values oB the resonances close to the origin undergo period-doubling bifurcations,
as inthe H:non map, without being affected by the presence of the other distant families. When
B increases the &hon chain interacts with the families coming from infinity and complicated
bifurcations appear. At the same time a couple of periodic points move from infinity on
a straight line towards the origin until they are annihilated by a tangent bifurcation. This
scenario can be easily verified for resonarﬁcer other even resonances. For the rational
map (&) resonances = % %, %3 follow the scenario found in the parametric beam—beam
map (G).

Conclusions

We have proposed a new family of non-polynomial maps with a linear behaviour at infinity
and approaching the éhon map at the origin. These maps have a different dynamical
behaviour which clearly emerges from the numerical bifurcation analysis. The analytical
description would require at least two different interpolating Hamiltonians to obtain an
integrable approximation of the orbits in the neighbourhood of the origin and infinity. For
the Henon map a single interpolation of the orbits in the stability basin is sufficient, while for
the present case the interpolation in the neighbourhood of infinity remains an open problem
just as the application of the KAM theory to prove the existence of invariant curves at very
large distance from the origin.

The present analysis is certainly not exhaustive but sheds some light on the basic
mechanisms occurring in this class, which is not only relevant in beam dynamics but more
generally, for Hamiltonian systems. The main feature emerging from this analysis is the
systematic appearance of tangent bifurcations [13, 14] and it is well known that they are
connected with the disappearance or appearance of periodic orbits. We found that the odd
resonances appear for values lower thap= p/g at which they are born from the main
family, a phenomenon that is only observed for the reson%rfm Hénon-like maps. The
characteristic o% intersects the characteristic of the main family obliquely [15, 16] but all
other resonances bifurcate directly. In the present case the tangent bifurcations occur above
and belowp/q, whereas for the Bnon map it occurs at a valwe< %

Whenyg is even the tangent bifurcations only occur fox p/q. It is worthwhile noting
that up to ordey = 10 no period-doubling bifurcations are observed. In this respect the
map is quite different from the &hon map where the period-doubling bifurcations appear
systematically.

The curves corresponding to the stability index of both even and odd resonances have
minima below +1, a condition allowing the presence of bubbles.

We expect that the intersection of the homoclinic tangles issued from the manifolds of the
unstable periodic points which forms heteroclinic tangles is completely different with respect
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Figure 5. Phase portraits of the beam—-beam map for the values s#lected in figure 4 to
illustrate the bifurcations of the resonanée (@ v = 0.19998, p) v = 0.206, €) v = 0.208,
(d) v = 0.2115, ) v = 0.2145.

to the Henon-like map. Indeed, for map (1) the lobes get further and further away from the
origin in agreement with the existence of hyperbolic points whose characteristics extend to
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infinity, whereas for map (2) these tangles are confined in a bounded region delimited by
invariant curves. On the other hand, the dynamical behaviour of the homoclinic tangles is
different, depending on whether the phase space is compact or not [17], and thus the transport
mechanisms will be different. A more detailed investigation of these chaotic regions would
allow the study of the diffusion, whereas an extension to 4D maps would be desirable.

Appendix

Bountis map
The quadratic map considered in [5] is given by

/=1_ + 2
;“/:x Y (A1)

and its fixed points are; = (%, %) andz, = (f, ag). The first one is elliptic as long as
—3 < a < 1, and the eigenvalues aré'@"”, where co®rw) = 1 — (1 — a)¥2. After a

translation, which brings; into the origin, the linear patt is transformed into a rotation by
a similarity unimodular transformation

L= (2c0%2mv) —1) _\ponyvt
1 0 (A2)
v sin"Y2(2zv) 0
B s?n?%fgz‘r)\))) Sin1/2(27'[v) .
The transformation is singular at= 0.
Gumoski's maps
The maps considered in [4,9] are
xX'=y+F(x) _ _
y/ = —x + F(x/) } F(x) - I‘Lx + (1 M)f(x) (AS)

Where f(x) = x2, x2e~@*=D/4 x2/(1 +x?). The fixed points are given by = f(x) and
the origin is elliptic if || < 1. Settingu = cog2rv) the eigenvalues are"8™ and the
conjugation of the linear pattinto a rotation is given by

_ w 1\ ) _(sinY22rv) 0
o <M2 -1 u) = VR@mv V= ( 0 Sin1/2(2rrv)> ' (A4)

Setting, for brevitys = sin(2zv), ¢ = cog2xv), the map written in the coordinatesxs*/2x,
y = s¥/2y after the transformatiow ! reads

X X 12 £ (yg—1/2
<y’> =R <y> *d-o (CS‘l/Zf(Xj‘l/{)(:fl/z)f(x’s—l/z)) ' (%)

The transformation is singular even in this case, and the nonlinear part is affected by
dependent factors. The structure of this map is similar to maps obtained by writing the

contribution of the nonlinear term = (|, 7 ) and of the one-turn map &8/?LN*/?, whereas

map (2) corresponds 1N, and we have sét/? = (y+;(x)).
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