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Abstract. The bifurcations of a class of mappings including the beam–beam map are examined.
These maps are asymptotically linear at infinity where they exhibit invariant curves and elliptic
periodic points. The dynamical behaviour is radically different with respect to the Hénon-like
polynomial maps whose stability boundary (dynamic aperture) is at a finite distance. Rather
than the period-doubling bifurcations exhibited by the Hénon-like maps, we observe a systematic
appearance of tangent bifurcations and in phase space one observes the disappearance of chains of
islands born from the origin and coming from infinity. This behaviour has relevant consequences
on the transport process.

1. Introduction

Area-preserving maps have been extensively investigated since they capture the generic
properties of the Poincaré map of a Hamiltonian system with two degrees of freedom. The
standard map describes the magnetic field lines of a plasma and is obtained by perturbing an
anisochronous integrable system. The Hénon map [1], defined as the quadratic perturbation of
a linear map, is the simplest model of a particle accelerator [2]. Denotingx as the horizontal
coordinate andy as the conjugate momentum, the Hénon map, to which any other quadratic
map is reducible after a linear transformation, reads(

x ′

y ′

)
= R(2πν)

(
x

y + x2

)
. (1)

This map gives the consequences, on the Poincaré section, of the orbit followed by a charged
particle moving in a linear lattice with a thin sextupole. The fixed point corresponds to the
closed orbit andx, y are the normalized Courant–Sneyder coordinates scaled byβ3/2. We
recall thatβ1/2 is the amplitude of the beam for unit emittance, defined as(4π)−1 times the
area of the phase-space ellipse filled by the particles.

The quadratic nonlinearity determines the usual pattern of invariant curves, chains of
islands and chaotic layers in the neighbourhood of the fixed point and the existence of a finite-
stability basin, whose border is known as thedynamic aperture. In the inner part of the stability
region the map has a quasi-integrable behaviour and its orbits can be interpolated by the level
lines of Hamiltonians obtained via normal forms [2,3].

The maps where the quadratic nonlinearity is replaced by a bounded nonlinearity,
vanishing quadratically at the origin, exhibit a different dynamical behaviour. In the normalized
coordinates the map is given by (1), wherex2 is replaced byβ1/2f (β1/2x). Unlike the quadratic
map, theβ factor cannot be scaled. In this paper we investigate the dynamical behaviour and
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Figure 1. (a) Sketch of the bifurcation diagrams in theν, x plane for the resonances15, 1
4 , 1

3 of

Hénon-like maps. (b) Bifurcation diagram for the resonance1
3 of the beam–beam map. Continuous

and dashed curves denote stable and unstable periodic points, respectively.

the bifurcation pattern in the linear frequencyν, by choosingβ = 1. The dependence onβ in
the beam–beam map corresponding to a Gaussian nonlinearity is briefly outlined.

The dynamical properties and the bifurcation patterns have been investigated for other
quadratic maps [4, 5] depending on a parameterµ. These maps can be transformed into (1)
with a translation and/or a similarity transformation (see the appendix). In both casesν ∈ [0, 1

2]
is a smooth invertible function ofµ, but the similarity transformation is singular atν = 0.
The characteristic diagram of (1) in the linear frequencyν has been recently investigated [6].
It was shown that all the resonance curves in theν, x plane, issued from the main family
x = 0 at any rationalν = p/q, undergo a sequence of period-doubling bifurcations at
ν = νn, satisfying the Feigenbaum scaling laws, with a ratio of two subsequent interval
lengthsδn = (νn+1 − νn)/(νn − νn−1) approaching the same universal value found in other
conservative systems [7]. For each family the stable branches approach a finite value ofν

in the frequency range [0, 1
2], whereas the unstable branches always seem to approach the

end pointν = 1
2 asymptotically whenx → ∞ (see the sketch in figure 1(a)). This result

is found since the distance of the chains of islands remains bounded whereas the hyperbolic
points migrate to infinity, as confirmed by inspection of the hyperbolic manifolds which extend
further and further away before returning to undergo homoclinic and heteroclinic intersections.
Higher-order bifurcations having similar features are observed starting from any of the daughter
families, which now play the role of the main family and the story repeats self-similarlyad
infinitum. The resonance13 has a different behaviour since the unstable branch born at the origin
extends forν < 1

3 until a tangent bifurcation occurs (see figure 1(a)); the stable branch bends
back to reachν = 1

3 at a finite distance from the origin, where it undergoes a period-doubling
bifurcation with the unstable branches tending to infinity asν → 1

2 (see [6] and references
therein). This anomalous behaviour occurs since in a small interval belowν = 1

3 the rotation
number increases with the distance from the origin.

The bounded maps, having invariant curves near the origin and at infinity present new
bifurcation scenarios and an increase of chaoticity in the intermediate region, which can be
explained by the behaviour of the asymptotic curves.



Bifurcations of beam–beam like maps 1057

2. Bounded maps

A new scenario emerges when the phase space is not compact but the origin and infinity are
surrounded by invariant curves. This occurs when the quadratic nonlinearity of the Hénon
map is replaced by an algebraic or transcendental function which vanishes quadratically at the
origin and has a constant limit at infinity. A model with such features is the beam–beam map,
which describes the interaction of a particle of a dilute beam with the charge of an intense
beam having a Gaussian distribution in the absence of lattice nonlinearities [8](

x ′

y ′

)
= R(2πν)

(
x

y + 1− e−x
2

)
(2)

whereR(α) denotes the rotation matrix of angleα. The distribution of the fixed points for
area preserving maps with bounded nonlinearities has been previously investigated [9], but the
linear transformation which brings these maps to the standard form (1) is singular atν = 0 and
the nonlinearity has a dependence onν which cannot be scaled out. The numerical investigation
of the bifurcation pattern of the map (2) whenν is varied continuously is new and physically
relevant since it allows one to understand the dynamics of the beam–beam-like maps. When
we move to infinity along any straight line different from they-axis, the map approaches the
linear map given byR(2πν) composed of the unit translation along they-axis. Such a map is a
rotation about the fixed pointx = 1

2 cot(πν), y = 1
2. It is, therefore, not surprising to observe

invariant curves by approaching the origin and also at large distances from it. In this case
period-doubling bifurcations are not observed (up to a resonancep/q, with q 6 10), whereas
tangent bifurcations appear systematically. The behaviour of odd and even resonances (up to
the order we have examined) is different, the latter being much simpler. All the resonances are
born at the origin and appear simultaneously at infinity and their stable and unstable branches
collide via tangent bifurcations. In this case the phase space where two or more islands of
the same resonant orderp/q are present, cannot be described by an autonomous interpolating
Hamiltonian. In spite of the fact that maps (1) and (2) agree up to quadratic terms approaching
the origin the same daughter families may exhibit different behaviour (see the discussion of
resonances belonging to the Farey tree [4

13,
7
22] in [5]). The scenario described with two or

more tangent bifurcations is not a peculiarity of the beam–beam map but seems to be typical
of maps bounded at infinity and approaching the Hénon map at the origin.

The one-turn map of a particle moving in a linear lattice with a localized nonlinear force
f (x), vanishing asx2 for x → 0, is given by(

ξ ′

ξ̇ ′

)
= L

(
ξ

ξ̇ + f (ξ)

)
(3)

whereξ is the horizontal coordinate anḋξ ≡ dξ/ds is its derivative with respect to the arc
length. Assuming the orbit to be closed we have TrL = 2 cos(2πν) and the unimodular matrix
L is conjugated to a rotation

L = VR(2πν)V−1 V =
(

β1/2 0
−αβ−1/2 β−1/2

)
. (4)

The new coordinatesx, y are obtained with the linear transformationV−1, and the scalingβ3/2

and the one-turn map becomes(
x ′

y ′

)
= R(2πν)

(
x

y + β2f
(
x
β

)) (
x

y

)
= β3/2V−1

(
ξ

ξ̇

)
. (5)

For a quadratic nonlinearityf (x) = x2, the map becomes exactly the Hénon map. Iff (x)
is any nonlinear function theβ dependence does not scale out. We have also examined the
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Table 1. Tangent bifurcation values for resonances1
4 (left) and 1

5 (right).

ν−1 0.199 87
ν0 0.250 00 ν0 0.200 00
ν1 0.252 49 ν1 0.206 42
ν2 0.267 08 ν2 0.210 94

ν3 0.213 33
ν4 0.215 02

dependence onβ of the beam–beam map, wheref (x) = 1− e−x
2
, and for an algebraic map

wheref (x) = x2/(1 + x2) has the same behaviour at the origin and approaches the same
constant value at infinity. The maps we have considered explicitly read(

x ′

y ′

)
= R(2πν)

(
x

y + β2(1− e−x
2/β2

)

)
(6a)(

x ′

y ′

)
= R(2πν)

(
x

y + x2

1+x2/β2

)
(6b)

and both exhibit the H́enon bifurcation scenarios for large values ofβ and the beam–beam
map (2) bifurcation scenarios forβ2 < 2 (notice that in the limitβ → 0 the region of nonlinear
orbits in phase space shrinks to zero since the linear map is recovered). For intermediate values
of β more complex structures appear.

3. Numerical investigation

Having obtained numerical evidence that the beam–beam bifurcation patterns are not a
peculiarity of this map but are typical of maps approaching the Hénon map at the origin
and a linear map at infinity, it is worthwhile describing them in more detail by inspecting
the characteristics diagram and some phase portraits. These diagrams are usually constructed
by drawing the characteristic curve corresponding to a single fixed point of a resonance. In
the present case, the standard procedure cannot be used because of the complexity of the
patterns. As a consequence, we draw as many curves as we need to resolve it. The numerical
investigation was carried out by using two graphically interactive codes: DYNAMICS [10]
and GIOTTO [11].

In order to illustrate higher-order resonances we denote byS, U the stable and unstable
families of fixed points, respectively.

The resonance14 has a stable branch (Sa1) issued at the originx = 0 for ν = 1
4, which

extends to higher values ofν until a tangent bifurcation occurs atν1 (see table 1) and the
unstable branch (Ub1) bends and asymptotically reachesν = 1

4 at infinite distance from the
origin (see figure 2(a)). A similar pattern is observed for the unstable branch issued from the
origin (Ua1), which becomes stable (Sb1) after a tangent bifurcation occurring atν2 > ν1.
The stability indexα(ν) = 1

2 Tr |M ′| (whereM ′(x, y) denotes the tangent map evaluated at
the fixed pointx = x(ν), y = y(ν)) of each family, is not monotonic, as for the Hénon map,
and has a unique minimum (see figure 2(b)). As a consequence, the second-order resonances
correspond to the same Farey tree, a necessary condition for the creation of bubbles [11–13].
In order to have a better understanding of the topological changes occurring whenν varies in
figure 3 we show the phase portraits of the map whenν approaches the tangent bifurcation
values. In figure 3(a) corresponding toν = 0.251< ν1 two chains of four islands are observed.
The hyperbolic and elliptic points of the inner chain are close to merge and disappear through
a tangent bifurcation as shown in figure 3(b) corresponding toν = 0.253> ν1. In figure 3(c),
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Figure 2. (a) Characteristic diagram in theν, x plane for theν = 1
4 resonance. (b) Stability

diagram in theν, α plane where 2α is the modulus of the trace of the tangent map. The dotted
vertical lines correspond to the values ofν at which the phase plots are shown in figure 3.
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Figure 3. Phase portraits of the beam–beam map for the values ofν selected in figure 2 to illustrate
the bifurcations of the resonance1

4 : (a) ν = 0.251, (b) ν = 0.253, (c) ν = 0.266, (d) ν = 0.268.
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Figure 4. The same as figure 2 for the resonance1
5. The two extra trajectories drawn for the

periodic points coming from infinity are denoted with the number 2. The dotted vertical lines
correspond to the values ofν at which the phase plots are shown in figure 5.

corresponding toν = 0.266< ν2, the elliptic and hyperbolic points of the surviving chain
have come close to each other and disappear via a new tangent bifurcation atν2 as shown in
figure 3(d), corresponding toν = 0.268> ν2 (see table 1).

The resonances16, 1
8 have the same behaviour as1

4.
Concerning the odd resonances, we first discuss the behaviour ofν = 1

3. The resonance
1
3, born at the origin forν = 1

3, is unstable. This unstable branch extends in a finite interval,
at the ends of which two tangent bifurcations occur and the emerging stable branches reach
ν = 1

3, again from above and below asymptotically at infinite distance from the origin (see
figure 1(b)).

The higher-order odd resonances have a similar behaviour and we discussν = 1
5. We

follow three of the ten characteristic curves born from the origin atν = 1
5: one stable (Sa1) and

two unstable (Ua1, Ua2). The branch (Sa1) becomes unstable (Ud1) atν3 (see table 1) after a
tangent bifurcation and again interchanges its stability becoming (Sb1) at a valueν2 lower than
ν3, and remains stable up to infinity (see figure 4). The two unstable branches (Ua1), (Ua2)
become stable (Sc1), (Sc2) after a tangent bifurcation atν4 > ν3. These branches interchange
their stability at a valueν1 < ν2. These unstable branches (Ub1), (Ub2) persist until a value
ν−1 <

1
5, then interchange stability becoming (Sb′1), (Sb′2) after a tangent bifurcation and

tend toν = 1
5 from below at infinite distance from the origin. At the values,ν2 andν1, where

the stability interchange occurs a new family (Uc) is born. Since the stability index atν2 and
ν1 is equal to +1, the new family (Uc) has the same multiplicity of five as its mother family. As
for even resonances, the curvesα(ν) representing the stability index in the regionα < 1 have
minima at different values ofν, and the same considerations hold concerning the corresponding
Farey trees.

For some values ofν, marked with dotted curves in figure 4(a), the phase portraits are
shown in figure 5, to illustrate the changes occurring in the topology of the orbits. Starting from
ν = 0.199 98 we have a chain of five islands shown in figure 5(a). Asν → 1

5, the elliptic points
move to infinity, while the hyperbolic points remain at a finite distance. Forν = 0.206> 1

5,
the hyperbolic points (Ub) are still present and elliptic points (Sb) appear from infinity to form
the exterior chain of islands shown in figure 5(b), where an inner chain of islands ((Sa), (Ua))
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born from the origin atν = 1
5, is present. The unstable point (Ub1) becomes stable (Sc1)

and two hyperbolic points (Uc1), (Uc2) appear in figure 5(c) corresponding toν = 0.208; the
inner chain and the outer elliptic points (Sb) remain. Two of these hyperbolic points (Uc2),
(Uc3) collide with the outer elliptic point (Sb1) generating a new hyperbolic point (Ud1) and
in figure 5(d) we show the orbits forν = 0.2115 after the collision. In figure 5(e) only one
chain of islands consisting of previous outer elliptic points (Sc) and inner hyperbolic points
(Ua) remains.

The same behaviour was found for the following resonances:2
5, 1

7, 2
7, 3

7, 1
9, 2

9, 4
9, and also

for the even resonance38.
To conclude the present analysis we summarize the results on the parametric map (6a).

For small values ofβ the resonances close to the origin undergo period-doubling bifurcations,
as in the H́enon map, without being affected by the presence of the other distant families. When
β increases the H́enon chain interacts with the families coming from infinity and complicated
bifurcations appear. At the same time a couple of periodic points move from infinity on
a straight line towards the origin until they are annihilated by a tangent bifurcation. This
scenario can be easily verified for resonance1

4 or other even resonances. For the rational
map (6b) resonancesν = 1

3, 1
4, 1

6 follow the scenario found in the parametric beam–beam
map (6a).

Conclusions

We have proposed a new family of non-polynomial maps with a linear behaviour at infinity
and approaching the H́enon map at the origin. These maps have a different dynamical
behaviour which clearly emerges from the numerical bifurcation analysis. The analytical
description would require at least two different interpolating Hamiltonians to obtain an
integrable approximation of the orbits in the neighbourhood of the origin and infinity. For
the H́enon map a single interpolation of the orbits in the stability basin is sufficient, while for
the present case the interpolation in the neighbourhood of infinity remains an open problem
just as the application of the KAM theory to prove the existence of invariant curves at very
large distance from the origin.

The present analysis is certainly not exhaustive but sheds some light on the basic
mechanisms occurring in this class, which is not only relevant in beam dynamics but more
generally, for Hamiltonian systems. The main feature emerging from this analysis is the
systematic appearance of tangent bifurcations [13, 14] and it is well known that they are
connected with the disappearance or appearance of periodic orbits. We found that the odd
resonances appear for values lower thanν = p/q at which they are born from the main
family, a phenomenon that is only observed for the resonance1

3 for Hénon-like maps. The
characteristic of13 intersects the characteristic of the main family obliquely [15, 16] but all
other resonances bifurcate directly. In the present case the tangent bifurcations occur above
and belowp/q, whereas for the H́enon map it occurs at a valueν < 1

3.
Whenq is even the tangent bifurcations only occur forν > p/q. It is worthwhile noting

that up to orderq = 10 no period-doubling bifurcations are observed. In this respect the
map is quite different from the H́enon map where the period-doubling bifurcations appear
systematically.

The curves corresponding to the stability index of both even and odd resonances have
minima below +1, a condition allowing the presence of bubbles.

We expect that the intersection of the homoclinic tangles issued from the manifolds of the
unstable periodic points which forms heteroclinic tangles is completely different with respect
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Figure 5. Phase portraits of the beam–beam map for the values ofν selected in figure 4 to
illustrate the bifurcations of the resonance1

5. (a) ν = 0.199 98, (b) ν = 0.206, (c) ν = 0.208,
(d) ν = 0.2115, (e) ν = 0.2145.

to the H́enon-like map. Indeed, for map (1) the lobes get further and further away from the
origin in agreement with the existence of hyperbolic points whose characteristics extend to
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infinity, whereas for map (2) these tangles are confined in a bounded region delimited by
invariant curves. On the other hand, the dynamical behaviour of the homoclinic tangles is
different, depending on whether the phase space is compact or not [17], and thus the transport
mechanisms will be different. A more detailed investigation of these chaotic regions would
allow the study of the diffusion, whereas an extension to 4D maps would be desirable.

Appendix

Bountis map

The quadratic map considered in [5] is given by

x ′ = 1− y + ax2

y ′ = x (A1)

and its fixed points arex1 = ( 1
2,

1
2) andx2 = ( 2

a
, 2
a
). The first one is elliptic as long as

−3 6 a 6 1, and the eigenvalues are e±i2πν , where cos(2πω) = 1− (1− a)1/2. After a
translation, which bringsx1 into the origin, the linear partL is transformed into a rotation by
a similarity unimodular transformation

L ≡
(

2 cos(2πν) −1
1 0

)
= VR(2πν)V−1

V =
(

sin−1/2(2πν) 0
cos(2πν)

sin1/2(2πν)
sin1/2(2πν)

)
.

(A2)

The transformation is singular atν = 0.

Gumoski’s maps

The maps considered in [4,9] are

x ′ = y + F(x)
y ′ = −x + F(x ′)

}
F(x) = µx + (1− µ)f (x). (A3)

Wheref (x) = x2, x2e−(x
2−1)/4, x2/(1 + x2). The fixed points are given byx = f (x) and

the origin is elliptic if |µ| 6 1. Settingµ = cos(2πν) the eigenvalues are e±i2πν and the
conjugation of the linear partL into a rotation is given by

L =
(

µ 1
µ2 − 1 µ

)
= VR(2πν)V−1 V =

(
sin−1/2(2πν) 0

0 sin1/2(2πν)

)
. (A4)

Setting, for brevity,s = sin(2πν), c = cos(2πν), the map written in the coordinates x= s1/2x,
y = s1/2y after the transformationV−1 reads(

x′

y′

)
= R(2πν)

(
x
y

)
+ (1− c)

(
s1/2f (xs−1/2)

cs−1/2f (xs−1/2) + s−1/2f (x′s−1/2)

)
. (A5)

The transformation is singular even in this case, and the nonlinear part is affected byν-
dependent factors. The structure of this map is similar to maps obtained by writing the
contribution of the nonlinear termN = ( x

y+f (x)

)
and of the one-turn map asN1/2LN1/2, whereas

map (2) corresponds toLN, and we have setN1/2 = ( x

y+f (x)

)
.
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