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ABSTRACT This paper proposes a fast and accurate solver for implicit Continuous Set Model Predictive
Control for the current control loop of synchronous motor drives with input constraints, allowing for
reaching the maximum voltage feasible set. The related control problem requires an iterative solver to find
the optimal solution. The real-time certification of the algorithm is of paramount importance to move the
technology toward industrial-scale applications. A relevant feature of the proposed solver is that the total
number of operations can be computed in the worst-case scenario. Thus, the maximum computational time
is known a priori. The solver is deeply illustrated, showing its feasibility for real-time applications in the
microseconds range by means of experimental tests. The proposed method outperforms general-purpose
algorithms in terms of computation time, while keeping the same accuracy.

INDEX TERMS Electric Drives, Model Predictive Control (MPC), Permanent Magnet Synchronous Motor
(PMSM), Synchronous Reluctance Motor (SyRM), Quadratic Programming (QP).

I. INTRODUCTION
Model Predictive Control (MPC) is an advanced
optimization-based control strategy that is gaining more
and more popularity in the power electronics frame-
work [1], [2]. Increasing availability of computational
power [3] and enhancement of optimization strategies
have made advanced control schemes, such as MPC and
Digital Twins [4], [5], suitable for fast dynamic systems,
as electric drives.

In this framework, MPC has been mostly implemented
in its Finite Set (FS) form where, in each control interval,
the controller applies one of the basic inverter voltage
vector [6]–[10]. A second type of MPC refers to the
Continuous Set (CS) technique, which requires the mod-
ulator for synthesizing the optimal voltage reference. It
provides a fixed switching frequency of the converter and
it works efficiently with longer sampling intervals [11]
with a significant increase in computational load.

Neglecting unconstrained solutions, which nullify the
advantage in using the MPC strategy, it is important to

mention the attempts to use explicit MPC in the electric
drives field [14], [17], [23]. However, they have shown
not to allow a substantial reduction in computational cost
as the parameter space increases. Instead, we are now
observing a growing interest around implementations
of implicit CS-MPCs due to the recent development of
efficient Quadratic Programming QP solvers, leading to
the establishment of this technique also in industrial con-
texts. Gradient methods [19], [24] and active set methods
[16] are the two most widespread kind of solvers for the
considered application. In Table 1, a set of existing QP
solvers and some of their principal features are reported.
Software packages containing solvers for fast embedded
optimization are available too, e.g., acados [25]. More-
over, solver-libraries designed for MPC problems have
been presented, e.g., MATMPC [26].

The constrained CS-MPC for electric motor drives
has gained interest in electric drives applications, too.
Table 2 resumes some of the most relevant papers related
to this topic. In [14], an active set solver has been
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TABLE 1: Overview of some QP solvers. The acronyms are: IP: Interior point; AS: Active Set; ADMM: Alternating
Method of Multipliers, FGM: Fast Gradient Method. NL: Non Linear; LQP: Linear QP.

Solver References Target Methods Licence

FORCES Pro [12] NL-MPC, very general QPs IP, ADMM, FGM proprietary

HPIPM [13] LQP IP 2-clause BSD

ODYS [14] QP, Embedded MPC AS proprietary

OSQP [15] QP ADMM Apache 2.0 License

qpOASES [16] QP AS 2-clause BSD

TABLE 2: Survey of MPCs for electric drive applications. The acronyms are: LTI: Linear Time Invariant; LPV = Linear
Parameter Variant; E-MPC: Explicit-MPC; IM: Induction Motor; IPM: Interior Permanent Magnet; SPM: Surface
Permanent Magnet;

Constraints
References Year Controlled Variable Model Method

Input Output
Tested Motors Platform

[17] 2009 Speed&Currents LTI E-MPC ✓ ✓ SPM dSPACE 1004

[18] 2012 Speed+Torque/Flux LPV E-MPC ✓ ✓ IM-PMSM Sharc ADSP 21062 + TMS320C6713

[19] 2013 Currents LPV FGM ✓ IPM TMS320F240

[20] 2015 Currents LTI AS ✓ ✓ SPM F28335 Delfino

[21] 2019 Currents LPV AS ✓ IPM dSPACE 1006

[14] 2021 Currents LTI AS ✓ ✓ SPM F28335 Delfino

[22] 2021 Currents NL AS ✓ SyRM dSPACE 1007

successfully implemented on a Texas Instrument Digital
Signal Processor for the CS-MPC torque control of a
PMSM, proving that the technology is mature for in-
dustrial applications. The work was based on the results
of [27], where the same authors provided the exact
complexity certification of the Golfarb-Idnani algorithm
[28]. In these papers, an upper bound of the computation
time in the worst-case scenario has been demonstrated.
Moreover, a nonlinear CS-MPC was presented for the
Synchronous Reluctance Motor (SyRM) in [22]. The
work proved the flexibility of the MPC framework in
tackling the nonlinear flux-current characteristics of such
motors. The adopted QP solver for the specific appli-
cation was a general purpose one, which is effective
at the price of an increased complexity. Nevertheless,
the computational burden is of paramount importance
for embedded applications, and the emerging need from
recent research advances is to design purpose-built algo-
rithms.

In this work, we propose an accurate and fast method
for solving the specific QP problem arising from MPC
implementations for applications where a power con-
verter is adopted. In particular, the algorithm is presented
for the current control of synchronous motors, where
limited computational hardware is usually available.
The MPC implementation adopts a linear time-invariant
(LTI) model of the plant and considers linear input volt-
ages constraints. The motor model is formulated in the
dq rotating reference frame, making the feasible voltage
set rotating synchronously with the rotor position. The
proposed QP solver takes advantage of the specific shape

of the feasible set and the cost function to achieve a com-
putationally efficient formulation. It allows for exploit-
ing the maximum voltage deliverable by the converter,
i.e., a hexagonal region in the stationary reference frame,
centered in the origin. The proposed algorithm adopts the
choice of N = 3 prediction steps and Nu = 1 control
horizon length, which has been assessed as a good trade-
off between accuracy and computational effort [14].

A complete description of the QP solver is presented,
allowing an easier replication of the algorithm. More-
over, the computational burden in the worst-case sce-
nario are assessed both in terms of number of operations
and in experimental conditions. The high accuracy of the
algorithm is then assessed comparing with qpOASES
[16].

The paper is organized as follows: Section II presents
the adopted model of the motor, which has been proved
to be effective for this application [20], [29], [30]. In
Section III, the MPC problem with input constraints is
stated. The novel proposed algorithm is described in
Section IV. Experiments and simulations are provided in
Section V and Section VI, respectively, proving the real-
time feasibility and the effectiveness of the solver on a
SyRM.

II. MATHEMATICAL MODEL
The voltage equations of a synchronous motor in the
rotating dq-reference frame are described as follows (for
simplicity we omit the time-dependence) [29]:

d

dt
idq = Acidq +Bc (udq + wdq) , (1)
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where

Ac =

 −Rs

Ld
ωe

Lq

Ld

−ωe
Ld

Lq
−Rs

Lq

 , Bc =

 1
Ld

0

0 1
Lq

 , (2)

and idq = [id iq]
T, udq = [ud uq]

T, wdq = [wd wq]
T.

The ud, uq , id and iq are the dq-axis voltages and
currents, respectively, Rs is the windings resistance, ωe

the electrical speed, whereas Ld and Lq are the dq-
axis stator inductances. Assuming perfect knowledge
of the parameters and neglecting model inaccuracies,
the vector wdq includes only the Back-Electromotive
Force (B-EMF), i.e., wdq = [0 − ωeλpm]

T, being λpm

the permanent magnet flux linkage. In practice, signif-
icant unmodeled disturbances and nonlinear dynamics
are present [31], due to, e.g., iron saturation, parasitic
effects and harmonic modes introduced by the non-ideal
rotor geometry. Moreover, the matrix Ac was obtained
by linearizing it around the nominal speed, and its speed
dependency was lost. This choice permits to build the
MPC problem offline, thus simplifying the calculations.
If desired, the speed dependence could be included in the
motor modeling, at price of more online computations.
To account for all the disturbances, in real experiments
an observer (e.g. a Kalman filter [32]) is implemented to
obtain an estimate of both idq and wdq , thus improving
the tracking performance of the controller and guaran-
teeing offset free tracking.

Since MPC is a dicreate-time controller, the
continuous-time synchronous motor model (1) is dis-
cretized by the Euler integration with the sampling
period Ts, it yields to the following discrete-time model:

x(k + 1) = Ax(k) +Bu(k) +Bw(k), (3)

where B = TsBc, A = I + TsAc, being I the identity
matrix, and x = idq denotes the system state and the
subscripts on u(k) and w(k) are omitted to ease the
mathematical notation.

III. MODEL PREDICTIVE CONTROL OF PMSM
The LTI model (3) is used as the prediction model in
the MPC problem, whose ultimate goal is to track the
desired currents profiles xref = [irefd irefq ]T. The MPC
optimization problem is solved at each control step k
with respect to the dq voltage increment ∆u(k) =
u(k)−u(k−1). The following quadratic functional cost
is adopted:

J =
N−1∑
j=0

(
||xref (k + j + 1)− x(k + j + 1)||2Q

)
+

+

Nu−1∑
i=0

(
||∆u(k + i)||2R

)
+

+ ||xref (k +N)− x(k +N)||2S ,
(4)

where Q, S and R are weighting matrices. At each time
step k, the optimal control move is obtained by solving
the following optimal control problem:

min
∆u,x

J

s.t. x(k + 1) = Ax(k) +Bu(k) +Bw

∆u(k) = u(k)− u(k − 1)

uαβ(k + j) = T (θe)u(k + j) ∈ Uαβ ,

j = 0, 1, ..., Nu − 1,

(5)

where T (θe) is the Park anti-transformation matrix, be-
ing θe the electric angle, and the term w is assumed to
be constant in the prediction horizon and equal to the
estimate ŵ(k − 1) provided by the Kalman filter at the
previous step. Uαβ represents the feasible voltage region
for uαβ = [uα uβ ]

T , namely, it is the maximum voltage
deliverable by the converter, i.e., a hexagonal region in
the stationary reference frame, centered in the origin.

Hereafter, it is assumed the prediction horizon N = 3
and the control horizon Nu = 1. The value of Nu is
of great importance because it sets the size of the opti-
mization problem (5). A small control horizon allows a
very efficient implementation of the proposed solver. By
introducing the solution vector ∆u = [∆u(k),∆u(k +
1), ...∆u(k+Nu − 1)], the problem (5) can be reformu-
lated as:

min
∆u

J(∆u) :=
1

2
∆uTH∆u+ cT∆+ const,

s.t. F∆u ≤ f (6)

where the size of the matrices are H ∈ R2Nu×2Nu and
c ∈ R2Nu×1. By choosing Nu = 1, i.e., ∆u = ∆u(k),
the voltage constraints matrices in (6) are (see Appendix
A):

F =

 1 1 1 −1 −1 −1
√
3 0 −

√
3 −

√
3 0

√
3

T

T (θe),

f =
2uDC√

3

[
1 0.5 1 1 0.5 1

]T
− Fu(k − 1).

(7)
It is worth noting that the above mentioned constraints
describe an hexagon, which is the rotated and trans-
lated version of Uαβ , according to the transformation
T (θe) and u(k − 1), respectively. Clearly, the region
F∆u(k) ≤ f is composed of six segments lying on six
lines that, hereafter, we denote as ℓi for i = 1, ...6, being
ℓi associated to the constraint F (i, :)∆u(k) ≤ f(i).

Now, let ∆u∗ be the optimal solution of constrained
MPC problem (6), the applied control input at time k is
obtained as:

u∗(k) = u∗(k − 1) + ∆u∗(k).

In the αβ-plane the optimal control input is then
uαβ(k) = T (θe)u

∗(k).
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FIGURE 1: One constraint violation: the solution is
found by adding the penalty function represented by the
red line to the cost function.

IV. ALGORITHM DESCRIPTION
The aim of the proposed method is to solve the con-
strained QP problem (6) with a finite succession of
iterations. First, the optimal solution of problem (6) is
computed in closed form, neglecting the voltage con-
straints:

∆uuc = −H−1c. (8)

Then, the relative position between the unconstrained
optimal solution ∆uuc and the hexagon region identifies
the number of violated constraints. Four different situa-
tions can occur:

0) The solution is optimal and feasible, i.e., the opti-
mal unconstrained solution lies within the feasible
voltage set, and it is applied as voltage reference to
the inverter;

1) one constraint is not satisfied (see Fig. 1);
2) two constraints are not satisfied (see Fig. 2);
3) three constraints are not satisfied (see Fig. 3).

Notice that, in the figures, the unconstrained solution
uuc
αβ and the respective feasible set Uαβ are represented

in the αβ-plane. As mentioned before, a simple roto-
translation allows for mapping the dq-plane into the αβ
one, making the representations equivalent in qualitative
terms. In order to better clarify the last three points,
namely when at least one constraint is not respected, we
propose a deepening on the shape of the function cost (4)
and the relative positioning of the hexagonal constraint.

A. REGIONS OF VIOLATED CONSTRAINTS
In this section, we express the functional cost J in (4)
in terms of uαβ . It turns out that the level set curves are
centered in uuc

αβ , where the eccentricity depends on the
ratio of the dq inductances and the orientation depends
on the electric angle. Fig. 4 shows two examples of
cost function shapes in the αβ-plane, where Fig. 4a
represents the case of an anisotropic motor, while Fig. 4b
shows the case of an isotropic one. In both cases, a
representative hexagonal feasible voltage set in the αβ-
plane described by (7) is reported.

By analyzing the six inequalities defined in (7), it
is possible to relate the relative position of the uncon-
strained optimal solution with respect to the hexagonal
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b Vertex solution.

FIGURE 2: Two constraint violations. Fig. 2a depicts
the cases where the optimal solution lies on an hexagon
side, whereas in Fig. 2b the optimal solution lies on an
external hexagon vertex.
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c Vertex solution (first case).
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FIGURE 3: Three constraint violations. Fig. 3a and
Fig. 3b depict the case where the optimal solution lies on
the hexagon side and it is found in one or two procedure
steps, respectively. In Fig. 3c and Fig. 3d, the optimal
solution lies on a hexagon vertex.

feasible voltage set. Thus, the number of violated con-
straints can be quantified. Fig. 5 shows the partition of
the plane according to the number of constraints, num-
bered from 0 to 3. For each of these cases, in Sec. IV-C
a tailored solution strategy is described.

B. THE FUNDAMENTAL ALGORITHM STEP
Given an unfeasible unconstrained solution, the pro-
posed method solves the problem (6) by considering
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FIGURE 4: Cost function contours in αβ-plane for
anisotropic and isotropic motor. The hexagon represents
the feasible voltage set, while the center of the contours
is the unconstrained solution.

only one violated constraint at a time, named ℓi∗ , regard-
less of the region in which the unconstrained solution
is located. The fundamental routine solves the modified
optimal control problem:

min
∆u(k)

J(∆u(k)) s.t. F (i∗, :)∆u(k) ≤ f(i∗), (9)

where only the ℓi∗ voltage constraint is considered. The
solution is computed by relaxing the constraint in (9),
solving the almost equivalent unconstrained problem:

min
∆u(k)

J(∆u(k)) + λi∗(F (i∗, :)∆u− f(i∗))2, (10)

for λi∗ sufficiently high to guarantee a negligible dis-
tance from the constraint. Basically, the functional cost
J has been augmented with a penalty function in (10),
forcing the solution to stay on the active constraint. It is
worth noting that the problem (10) is unconstrained with
respect to (9), therefore it admits an analytic solution.

C. ALGORITHM STEPS
The proposed algorithm finds the optimal constrained so-
lution of (5) with a two-step procedure. First, it computes
the unconstrained solution ∆uuc, then, all violated con-
straints, if present, are taken into account one by one by
recalling the Fundamental Step described in Sec. IV-B.
In the following, all possible cases are described.

1) One Constraint Violation
If ∆uuc lies within the triangle adjacent to the segment
of the hexagon lying on the line ℓi (see Fig. 5), the con-
strained optimal solution certainly lies on the segment
itself. A representative example is shown in Fig. 1, where
the solutions are plotted, as before, in the αβ-plane.
The optimal solution is then computed according to the
following steps:

1) The solution of the problem (10) is computed con-
sidering as constraint ℓi1, i.e., with i∗ = i, namely
∆uoa;

1To simplify the description of the algorithm we refer to constraint
ℓi as the constraint lying on line ℓi.

FIGURE 5: Portions of αβ-plane identified by the
hexagon lines, highlighting the number of input con-
straints that are overcome simultaneously.

2) a feasibility check is then operated, computing:

hj := F (j, :)∆uoa− f(j) ≤ 0 for j = i− 1, i+1;
(11)

a) if ∆uoa does not violate any constraint, then
∆u∗ = ∆uoa and lies on the segment;

b) if ∆uoa violates the next constraint2 ℓi+1, i.e., if
hi+1 > 0, thus ∆u∗ is the intersection between
ℓi with ℓi+1;

c) if hi−1 > 0, ∆u∗ is the intersection between ℓi
with ℓi−1.

It is worth highlighting that the aim of the feasibility
check is to bound ∆uoa on the feasible hexagon side.

2) Two Constraint Violations
The case where the unbounded solution lies in a region
that crosses two consecutive boundaries of the feasible
set is illustrated in Fig. 2. In this case, the solution
lies on one of two consecutive constraints ℓi, ℓi+1, for
some i in the range [1, 6]. More precisely, depending on
the location of the unconstrained solution and the cost
function shape, three different situations can occur:

• the optimal solution lies within one of the hexagon
segments that lies either on ℓi or on ℓi+1 (see
Fig. 2a);

• the optimal solution lies on the intersection of ℓi
and ℓi+1;

• the optimal solution lies on one of the extreme
vertexes of one of the hexagon segments, i.e., those
that are not originated by the intersection of ℓi and
ℓi+1 (see Fig. 2b).

The optimal solution is then computed according to the
following steps:

2The constraints are cycled through with a counterclockwise di-
rection in a circular buffer fashion, i.e., the subscript i + n =
mod (i−1+n, 6)+1 for any integer n where mod is the modulo
operator.
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1) The solution to the problem (10) is computed con-
sidering as constraint ℓi, i.e., with i∗ = i, namely
∆uoa;

2) a feasibility check is then operated, computing hj

as in (11) for j = i+ 1, i− 1;
a) if ∆uoa does not violate any constraint, then

∆u∗ = ∆uoa;
b) if hi+1 > 0, thus ∆u∗ lies on ℓi+1 itself and the

one constraint violation procedure can be applied
(Fig. 2a);

c) if hi−1 > 0, ∆u∗ is intersection between ℓi with
ℓi−1 (Fig. 2b).

3) Three Constraints Violations

The last possible condition is reported in Fig. 3, where
the unconstrained solution detects three violated bound-
aries in which the optimal feasible solution can lie. With
the same notation adopted in the previous section, the
three consecutive constraints are denoted by ℓi, ℓi+1

and ℓi+2 for some i in the range [1, 6]. Three different
situations can then occur:

• the optimal solution lies within one of the hexagon
segments that lies or on ℓi or on ℓi+1 or on ℓi+2;

• the optimal solution lies on the intersections of ℓi
and ℓi+1 or ℓi+1 and ℓi+2;

• the optimal solution lies on one of the extreme
vertexes of one of the hexagon segments, i.e., those
that are not originated by the intersection of ℓi and
ℓi+1 and ℓi+2.

The optimal solution is then computed according to the
following steps:

1) The solution to the problem (10) is computed con-
sidering as constraint ℓi+i, i.e., with i∗ = i+1 (the
central violated constraint), namely ∆uoa;

2) A feasibility check is then operated, computing hj

as in (11) for j = i+ 2, i;
a) if ∆uoa does not violate any constraint, then

∆u∗ = ∆uoa (Fig. 3a);
b) if hi+2 > 0 (or hi > 0), ∆u∗ certainly

lies on ℓi + 2 (or ℓi respectively) and the one
constraint violation procedure can be applied;
Fig. 3b, Fig. 3c and Fig. 3d summarized the
possible situations, respectively.

V. COMPUTATIONAL ANALYSIS
In the previous section we described an algorithm to
solve the constrained QP (5) that takes into account
the voltage constraints and the cost function shape to
provide a solution in a fixed number of operations. The
procedure results to be accurate and efficient in terms of
computational burden. The computational performance
of the algorithm is hereafter compared with those of the
open-source tool qpOASES.

TABLE 3: Overview of the SyRM motor and control
parameters.

Motor Data Symbol Value

Pole pairs p 2
Phase resistance R 1Ω
d-axis inductance Ld 0.2H
q-axis inductance Lq 0.06H
Nominal current IN 6A
Nominal d current IN,d 3A
Nominal q current IN,q 5.2A
Nominal speed ΩN 700 rpm
Prediction Horizon N 3
Control Horizon Nu 1
Input Weight d-axis rd 0.0001
Input Weight q-axis rq 0.0002
Prediction Error Weight q,s 1

TABLE 4: Averaged time comparison between the pro-
posed method and qpOASES for different number of
steps.

Avg Time (µs)
Proposed Method qpOASES

Case 0 1.6 28.2
Case 1 1.65 30.4
Case 1.5 1.67 30.4
Case 2 1.7 30.0
Case 2.5 1.72 30.0

A. COMPARISON WITH QPOASES

qpOASES is an open-source software, it is very robust
and suitable for medium-small scale problems, and it
can be considered as a very good benchmark in terms of
solution accuracy. The MPC problem is built considering
a SyRM motor, whose parameters are given in Table 3.
The averaged time required by the proposed method
is compared with the one of the open source solver
qpOASES in MATLAB environment. The solvers were
run on a Intel(R) Core(TM) i7-8700 CPU 3.20GHz and
they were tested considering all the possible cases pre-
sented in Section IV. The algorithms were run one mil-
lion times, averaging the time spent for the computation.
The numerical results are presented in Table 4 where the
following values have been chosen to distinguish among
the cases:

• 0 - if the unconstrained solution is feasible;
• 1 - the algorithm performs the one constraint vio-

lation procedure, and the new solution is feasible
(step 2a);

• 1.5 - if the one constraint violation procedure indi-
cates a solution found on the external vertex (step
2b or 2c);

• 2 - refers to the case where two feasibility checks
(10) are evaluated;

• 2.5 - corresponds to the worst-case scenario where,
in the two and three constraint violations cases, the
optimal solution is on a vertex after solving (10)
twice.

As can be noticed, the proposed solver finds the MPC so-
lution with a lower computational burden with respect to
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TABLE 5: Total number of algebraic operation of the
proposed QP method in the worst-case scenario.

PHASE SUM./SUB. PRODUCTS DIVISIONS
1) 7 10 2
2) 15 12 -
3) 15 28 2
4) 15 12 -
5) 15 28 2
6) 15 12 -
7) - - -
TOTAL 82 102 6

qpOASES. It is worth highlighting that in the worst case
scenario, namely, when the solution violates all three
constraints and the optimal one is an hexagon vertex,
the average computation time remains very limited. The
execution time of this case is considered the upper bound
for the control algorithm cost.

B. WORST-CASE COMPUTATIONAL COST
The real-time feasibility certification for algorithms that
aspire to large-scale industrial applications plays a cru-
cial role. To this aim, we propose a worst-case perfor-
mance analysis. Since the computational performances
strongly rely on the specific implementation, the total
number of algebraic operations performed to find the
solution in the worst-case scenario is quantified for the
proposed method. The sequence of operations is listed
below:

1) compute the unconstrained solution (8);
2) feasibility check (11) ⇒ solution unfeasible;
3) find new solution (10);
4) feasibility check (11); ⇒ solution unfeasible;
5) find new solution (10);
6) feasibility check (11); ⇒ solution unfeasible;
7) find the solution among the vertices.

The corresponding number of operations is reported in
Table 5. It is worth noting that step 7) does not require
any additional algebraic operations. In conclusion, the
peculiarities of the proposed method are twofold: the
maximum number of steps are fixed, hence, the total
number of operations can be evaluated and the maximum
run time can be easily determined depending on the
specific hardware. The aforementioned characteristics
make the algorithm well suitable for implementation on
industrial hardware.

VI. EXPERIMENTAL RESULTS
The test bench adopted for the experiments is shown in
Fig. 6. It consists of a master motor directly connected to
the SyRM motor under test, whose parameters are listed
in Table 3. The controllers have been implemented in a
dSPACE MicroLabBox, a compact development system
for laboratory purposes, which has dual-core real-time
processor at 2 GHz and dedicated electric motor control
features. It provides the gate signals for the inverter and
performs current and position acquisitions.

Slave motor

Slave inverter

Master motor

Master inverter dSPACE
MicroLabBox

Master panel

FIGURE 6: Test-bed layout.
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FIGURE 7: Comparison between qpOASES and the
proposed method when an unfeasible working point is
set. The subscript 1 in Fig. 7a refers to qpOASES, while
the other one to the proposed method.

A. SOLUTION ACCURACY

To verify the effectiveness of the proposed method,
a tailored test was designed. A reduced value of the
DC bus was set for the controllers in order to achieve
an unfeasible working point, namely, the unconstrained
solution is outside the voltage hexagon. In this condition,
the solver is pushed to find a solution along the hexagon
edges, where voltage constraints are active. During the
test, qpOASES was used as solver and it was considered
as the benchmark. The recorded data were used to run
the MPC problem offline and the voltage solutions were
computed with the proposed method for each time-step.
The results are shown in Fig. 7. The voltages are plotted
in per unit with respect to the average value of the DC
bus. The solutions, i.e. the voltage references, found by
qpOASES and the presented solver were overlapped,
as confirmed by the voltage reference in Fig. 7a. In
particular, some test points are plotted in Fig. 7b in the
αβ-plane for the selected time snapshots indicated in
Fig. 7a. The solutions of both algorithms are identical,
proving the correctness of the proposed solver.
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a Stator currents. b Turnaround time.

c Solver flag.
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FIGURE 8: Transient test: Comparison between
qpOASES and the proposed method at nominal currents
and speed. In Fig. 8c the flag values are described in Sec-
tion V-A The average time for measurements acquisition
and elaboration is about 8 µs.

B. SOLVER PERFORMANCE

To evaluate the solver performance in terms of compu-
tational cost, we propose a current step transient (see
Fig. 8). The master motor kept the motor under test
at its nominal speed, and the nominal current value
was set as reference. This condition represents one of
the most stressing test for evaluating current controller
performance. Thus, it is expected this represents the
worst-case scenario for the computational cost of the
algorithms. Fig. 8a shows the dq currents transients,
normalized with respect to the nominal peak current
value. The most interesting part of this test can be
observed in Fig. 8b, where the turnaround time of both
algorithms is measured by dSPACE. The time required
by measurements acquisitions and elaborations is about
8 µs. It can be observed that there is a strong agreement
between the computational performance in Table 5 and
the experimental-based ones. The proposed solver shows
a peak at the first instant with 14 µs, while the average
time stabilizes at 12 µs. Fig. 8c shows a flag value which
indicates at which step the proposed solver finds the
optimal solution. Thus, in the worst-case situation, the
proposed solver needs 14 µs at maximum to find the
optimal voltages. The voltage solutions are reported in
Fig. 8d, which confirms that solutions are found on the
voltage hexagon during this transient.

We highlight that the time required by qpOASES is in-
evitably higher, because the generality of the considered
solver increases the required time to solve the problem.

VII. CONCLUSIONS
In this work, a fast and effective method for solving in
real-time the quadratic programming problem related to
the MPC has been proposed. The solver was designed
for the implicit current model predictive control of a syn-
chronous motor drive. The number of steps in the worst-
case scenario is fixed, thus the number of operations can
be assessed in advance. One of the main features of the
proposed method is that the real-time certification can
be achieved. Experimental results have been obtained by
using the open source solver qpOASES as benchmark
for comparing the optimal solution. The proposed solver
has shown an excellent accuracy and, considering the
worst-case scenario, the optimal voltage is found in few
microseconds, making it promising for its implementa-
tion in large-scale real-time industrial applications.

.

APPENDIX A
The system of inequalities in (7) describes an hexagon
centered in the stator reference frame origin. However,
the hexagon is described in the rotating reference frame
with respect to the optimization variable ∆u(k), which is
the solution of the MPC problem. The expression of the
ℓi voltage constraint, namely an hexagon edge, is uβ =
miuα + qi, where mi, qi are real numbers. In matrix
notation the expression becomes:[

−mi 1
] [uα

uβ

]
= qi. (12)

Then, (12) can be expressed with respect to the dq
voltage u as:[

−mi 1
] [cos(θe) − sin(θe)

sin(θe) cos(θe)

] [
ud

uq

]
= qi. (13)

Introducing the optimization variable ∆u(k), it results:

[
−mi 1

] [cos(θe) − sin(θe)
sin(θe) cos(θe)

] [
∆ud(k)
∆uq(k)

]
=

qi−
[
−mi 1

] [cos(θe) − sin(θe)
sin(θe) cos(θe)

] [
ud(k − 1)
uq(k − 1)

]
.

(14)
Each row of the constraint matrices in (7) contains The
coefficients contained in matrix F and f in (7) are the
ones of the six lines of the adopted hexagon. For in-
stance, the first border has m = −

√
3 and q = 2√

3
uDC .

The expression in (14) is used with the inequality re-
lation for all the lines, which requires that the solution
lies within the feasible region identified by the hexagon,
including its boundaries.

REFERENCES
[1] S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. No-

rambuena, “Model predictive control for power converters and
drives: Advances and trends,” IEEE Trans. on Ind. Electron., vol. 64,
no. 2, pp. 935–947, 2017.

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3150283, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[2] F. Wang, S. Li, X. Mei, W. Xie, J. Rodríguez, and R. M. Ken-
nel, “Model-based predictive direct control strategies for electrical
drives: An experimental evaluation of ptc and pcc methods,” IEEE
Trans. on Ind. Informat., vol. 11, no. 3, pp. 671–681, 2015.

[3] W. Tu, G. Luo, Z. Chen, C. Liu, and L. Cui, “Fpga implementation of
predictive cascaded speed and current control of pmsm drives with
two-time-scale optimization,” IEEE Trans. on Ind. Informat., vol. 15,
no. 9, pp. 5276–5288, 2019.

[4] F. Toso, R. Torchio, A. Favato, P. G. Carlet, S. Bolognani, and
P. Alotto, “Digital twins as electric motor soft-sensors in the automo-
tive industry,” in 2021 IEEE International Workshop on Metrology
for Automotive (MetroAutomotive), 2021, pp. 13–18.

[5] A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital twin: Enabling
technologies, challenges and open research,” IEEE Access, vol. 8,
pp. 108 952–108 971, 2020.

[6] M. Siami, D. A. Khaburi, M. Rivera, and J. Rodríguez, “A compu-
tationally efficient lookup table based fcs-mpc for pmsm drives fed
by matrix converters,” IEEE Transactions on Industrial Electronics,
vol. 64, no. 10, pp. 7645–7654, 2017.

[7] A. A. Ahmed, B. K. Koh, and Y. I. Lee, “A comparison of finite
control set and continuous control set model predictive control
schemes for speed control of induction motors,” IEEE Trans. on Ind.
Informat., vol. 14, no. 4, pp. 1334–1346, 2018.

[8] F. Wang, X. Mei, J. Rodriguez, and R. Kennel, “Model predictive
control for electrical drive systems-an overview,” CES Trans. on
Electr. Machines and Systems, vol. 1, no. 3, pp. 219–230, Sep. 2017.

[9] R. P. Aguilera and D. E. Quevedo, “Predictive control of power
converters: Designs with guaranteed performance,” IEEE Trans. on
Ind. Informat., vol. 11, no. 1, pp. 53–63, 2015.

[10] S. A. Davari, V. Nekoukar, C. Garcia, and J. Rodriguez, “Online
weighting factor optimization by simplified simulated annealing
for finite set predictive control,” IEEE Transactions on Industrial
Informatics, vol. 17, no. 1, pp. 31–40, 2021.

[11] A. A. Ahmed, B. K. Koh, and Y. I. Lee, “A comparison of finite
control set and continuous control set model predictive control
schemes for speed control of induction motors,” IEEE Trans. on Ind.
Informat., vol. 14, no. 4, pp. 1334–1346, 2018.

[12] A. Zanelli, A. Domahidi, J. Jerez, and M. Morari, “Forces nlp: an
efficient implementation of interior-point methods for multistage
nonlinear nonconvex programs,” Intern. Journ. of Contr., vol. 93,
no. 1, pp. 13–29, 2020.

[13] G. Frison and M. Diehl, “Hpipm: a high-performance quadratic
programming framework for model predictive control,” 2020.

[14] G. Cimini, D. Bernardini, S. Levijoki, and A. Bemporad, “Embedded
model predictive control with certified real-time optimization for
synchronous motors,” IEEE Trans. Control System Tech., pp. 1–8,
2020.

[15] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd,
“OSQP: an operator splitting solver for quadratic programs,” Math-
ematical Programming Computation, vol. 12, no. 4, pp. 637–672,
2020.

[16] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“qpoases: a parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, vol. 6, no. 1, pp.
327–363, 2014.

[21] S. Hanke, O. Wallscheid, and J. Böcker, “Continuous-control-set
model predictive control with integrated modulator in permanent
magnet synchronous motor applications,” in 2019 IEEE Int. Elect.
Machines Drives Conf. (IEMDC), 2019, pp. 2210–2216.

[17] S. Bolognani, S. Bolognani, L. Peretti, and M. Zigliotto, “Design
and implementation of model predictive control for electrical motor
drives,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1925–1936,
June 2009.

[18] S. Mariethoz, A. Domahidi, and M. Morari, “High-bandwidth ex-
plicit model predictive control of electrical drives,” IEEE Trans. Ind.
Appl., vol. 48, no. 6, pp. 1980–1992, 2012.

[19] M. Preindl, S. Bolognani, and C. Danielson, “Model predictive
torque control with pwm using fast gradient method,” in 2013
Twenty-Eighth Annual IEEE Appl. Power Electron. Conf. and Expo.
(APEC), 2013, pp. 2590–2597.

[20] G. Cimini, D. Bernardini, A. Bemporad, and S. Levijoki, “Online
model predictive torque control for permanent magnet synchronous
motors,” in 2015 IEEE Int. Conf. on Ind. Tech. (ICIT), 2015, pp.
2308–2313.

[22] A. Zanelli, J. Kullick, H. M. Eldeeb, G. Frison, C. M. Hackl, and
M. Diehl, “Continuous control set nonlinear model predictive control
of reluctance synchronous machines,” IEEE Trans. Contr. Systems
Tech., pp. 1–12, 2021.

[23] S. Mariethoz, A. Domahidi, and M. Morari, “Sensorless explicit
model predictive control of permanent magnet synchronous motors,”
in 2009 IEEE Int. Electr. Machines and Drives Conf., May 2009, pp.
1250–1257.

[24] S. Richter, C. N. Jones, and M. Morari, “Computational complexity
certification for real-time mpc with input constraints based on the
fast gradient method,” IEEE Trans. Automat. Contr., vol. 57, no. 6,
pp. 1391–1403, June 2012.

[25] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren,
A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl,
“acados: a modular open-source framework for fast embedded op-
timal control,” arXiv, 2020.

[26] Y. Chen, M. Bruschetta, E. Picotti, and A. Beghi, “Matmpc - a matlab
based toolbox for real-time nonlinear model predictive control,” in
2019 18th Europ. Control Conf. (ECC), 2019, pp. 3365–3370.

[27] G. Cimini and A. Bemporad, “Exact complexity certification of
active-set methods for quadratic programming,” IEEE Trans. on
Autom. Contr., vol. 62, pp. 6094–6109, 2017.

[28] D. Goldfarb and A. Idnani, “A numerically stable dual method
for solving strictly convex quadratic programs,” Math. Program.,
vol. 27, no. 1, p. 1–33, Sep. 1983.

[29] F. Toso, P. G. Carlet, A. Favato, and S. Bolognani, “On-line continu-
ous control set mpc for pmsm drives current loops at high sampling
rate using qpoases,” in 2019 IEEE Energy Conv. Congr. and Expo.
(ECCE), 2019, pp. 6615–6620.

[30] X. Sun, M. Wu, G. Lei, Y. Guo, and J. Zhu, “An improved model
predictive current control for pmsm drives based on current track
circle,” IEEE Trans. on Ind. Electron., vol. 68, no. 5, pp. 3782–3793,
2021.

[31] M. Siami, D. A. Khaburi, and J. Rodríguez, “Torque ripple reduction
of predictive torque control for pmsm drives with parameter mis-
match,” IEEE Trans. on Pow. Electron., vol. 32, no. 9, pp. 7160–
7168, 2017.

[32] A. Favato, P. G. Carlet, F. Toso, R. Torchio, and S. Bolognani,
“Integral model predictive current control for synchronous motor
drives,” IEEE Trans. Power Electron., pp. 1–1, 2021.

VOLUME 4, 2016 9


