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We present an application of the multifractal formalism able to predict the whole shape of the
probability density function �pdf� of the dissipative scale, �. We discuss both intense velocity
fluctuations, leading to dissipative scales smaller than the Kolmogorov scale, where the formalism
gives a pdf decaying as a superposition of stretched exponential, and smooth velocity fluctuations,
where the formalism predicts a power-law decay. Both trends are found to be in good agreement
with recent direct numerical simulations �J. Schumacher, “Sub-Kolmogorov-scale fluctuations in
fluid turbulence,” Europhys. Lett. 80, 54001 �2007��. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2898658�

Turbulence is characterized by non-Gaussian velocity
fluctuations on a wide range of scales and frequencies.1

Much attention has been devoted in the past to the so-called
inertial range, i.e., for scales much smaller than the stirring
length and much larger than the typical dissipative scale,
��r�L. It is known and expected that inertial range statis-
tics in isotropic and homogeneous turbulence is character-
ized by an anomalous power-law scaling, typically measured
in terms of structure functions �SFs�:

S�p��r� = ��v�x + r� − v�x��p� = ���rv�p� � 	 r

L

��p�

, �1�

where, assuming isotropy, we can assume that all compo-
nents of the velocity increments has the same statistics �pos-
sible different scalings between longitudinal and transverse
increments are not addressed here, see conclusions�.

The signature of an anomalous power law is in the de-
viations of the scaling exponents from the dimensional,
Kolmogorov-like, prediction �K41�p�= p /3. Unfortunately,
there are no rigorous results about anomalous scaling in
three-dimensional Navier–Stokes �NS� equations. A power-
ful and simple phenomenological way to understand inter-
mittency was proposed by “Parisi and Frisch,”2 the so-called
multifractal formalism �MF�. According to the MF model,
Eulerian velocity increments at inertial scales can be charac-
terized by a local Hölder exponent h, i.e., �rv��r /L�h,
whose probability is Ph�r���r /L�3−D�h�, the function D�h�
being the fractal dimension of the set where h is observed. In
terms of this description, anomalous scaling is easily recov-
ered by a saddle-point estimate in the limit r /L→0 �but
keeping ��r�:

S�p��r� �� dh	 r

L

ph+3−D�h�

� r��p�, �2�

where ��p�=minh�ph+3−D�h��. The ultimate goal would be
to derive the D�h� spectrum from the NS equations, a task
which is still far from being achieved �see Ref. 3 for a recent
attempt�. Besides SF scaling, the MF formalism proved to be
able to also reproduce multiscale correlation functions4–7 and

probability density functions �pdfs� of velocity differences
and velocity gradients for both Eulerian and Lagrangian
statistics.8–12 Much attention has also been put on the “ideal”
shape of the D�h� spectrum which fits the experimental and
numerical data better, many possibilities having been pro-
posed �random beta model, p model, log-normal, log-
Poisson, etc.�.13–17 From first principle, because we lack a
derivation from NS equations, they are all on the same foot-
ing, except for log-normal models that are known to be af-
fected by some shortcomings.1 It is an open question whether
there exists one preferable D�h� functional form among those
cited before: given the statistical limitations, they are all
equivalently successful in fitting the measurable ��p� expo-
nents. We are not interested in this problem here. For the
sake of simplicity, when needed, we will specify the calcu-
lations using the log-Poisson as proposed in Refs. 17 and 18.

The goal of this letter is to use a simple argument, based
on the same MF phenomenology, to predict the pdf of the
dissipative scale. The idea is based on the well known as-
sumption that dissipative scale is itself a fluctuating quantity,
defined by the requirement that the local Reynolds number is
of order 1:19–23

��v�

�
� 1, �3�

where ��v=�rv, calculated at the dissipative scale. Such re-
lation has been used in the past to predict the so-called
intermediate-dissipative range21 and the Reynolds depen-
dence of both moments and pdfs of the velocity gradients.8,20

Recently, using a different formulation based on the Mellin
transform of the SF and the assumption that the velocity
statistics is Gaussian at large scale, a prediction for the shape
of the dissipative scale, ���� has been proposed.22 Properly
taking into account the fluctuations of the dissipative scale is
important to control the effects of on lack of resolution of
direct numerical simulations �DNSs� and the effects of filter-
ing in an experimental apparatus not resolving the high fre-
quency spectrum. Recent, highly resolved numerical
simulations24,25 have indeed shown the existence of non-
trivial � fluctuations, which may locally become a fraction of
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the usual mean-field estimate, �K41= ��3 /��1/4. Here, we
show how one can predict the whole shape of the viscous
dissipation pdf ���� by using the MF ansatz.

The argument is as follows. Suppose you have a large-
scale Gaussian velocity field with d components, v0, with
order 1 variance, vrms=1. Its amplitude must have the fol-
lowing pdf:

P�v0�dv0 = v0
d−1 exp�− v0

2/2�dv0,

where we have neglected unessential order unity prefactors.
Now, let us define the fluctuating dissipative scale by the
Paladin–Vulpiani19 argument �requiring O�1� local Reynolds
number�,

��h,v0����v�
�

� 1; �4�

using the multifractal scaling,

���v� = v0	�

L

h

�5�

and plugging it in Eq. �4�, we get for the expression which
connects � to v0

v0 = Re−1	�

L

−�1+h�

, �6�

where the Reynolds number is defined as Re=L /�, the typi-
cal amplitude of v0 being vrms=1.

Let us also introduce a dimensionless dissipative scale,

�̃ =
�

�K
,

where the Kolmogorov scale is defined as �K41=LRe−3/4. In
terms of a dimensionless variable, we have that relation �6�
becomes

v0 = Re�3h−1�/4 �̃−�1+h�. �7�

Now, conservation of probability implies �for each given h
exponent�

���̃�h� = P�v0��dv0/d�̃� . �8�

Consider also the fluctuations of h and that the probability to
measure an h exponent at scale �̃ is given by the multifractal
rule Ph���= �� /L�3−D�h�. We have �plugging all together and
considering relation �7�� that

���̃� �� dhPh������̃�h�

=� dh Rey�h� �̃z�h�

	exp�− 0.5 Re�3h−1�/2�̃−2�1+h�� , �9�

where we have defined y�h�= ��3h−1�d−3�3−D�h��� /4, and
z�h�=−d�1+h�−1+ �3−D�h��. Notice that for K41 scaling
�i.e., the whole h support limited to h= 1

3 , with D� 1
3

�=3�, we
recover that the pdf of a dimensional dissipative scale does
not depend on Reynolds �K41 does not have any dependency
on Reynolds for dimensionless variables�.

This is the multifractal prediction, just like the one that
worked well for gradients8 and acceleration,9 considering
in the latter case the proper translation from Eulerian to
Lagrangian domain.26,27

The requirement to have an order unity local Reynolds
can be further relaxed by taking into account that velocity
fluctuations are not an exact pure power law from the large
scale down to the local dissipative scale. In other words, one
can introduce a smooth transition between the inertial range
behavior and the dissipative behavior �for each h exponent�.
This can be done using a generalization of the Batchelor
parametrization:12,28,29

�rv = v0
r/L

��r/L�2 + c��/L�2��1−h�/2 , �10�

where c is an O�1� free parameter defining the matching
between the two regimes. Relation �10� together with the
corresponding generalization for the probability to observe a
given h exponent: Ph�r�� ��r /L�3−D�h�+c�� /L�3−D�h��, leads
to a consistent, simultaneous description of both inertial and
dissipative range physics. Notice that the above receipt is
also consistent with the requirement limRe→
���v�2��Re, as
requested by the existence of the dissipative anomaly.1,8,20

By taking into account this extra degree of freedom, one gets
a slightly modified version of Eq. �9� when using definition
�10�:

���̃� =� dhPh������̃�h�

=� dhAx�h� Rey�h� �̃z�h�

	exp�− A2�1−h� Re�3h−1�/2 �̃−2�1+h�� , �11�

where A= �1+c�1/2 and x�h�=d�1−h�+3−D�h�. In Fig. 1, we
show the log-log plot of the pdf of �̃ as obtained from the
above prediction compared with the data from a DNS.25 The
agreement is very good, with small deviations only for the
very small viscous scales, where the DNS can have troubles
in correctly resolving the flow. In the same figure �inset�, we
also show the multifractal prediction at changing Reynolds
and at changing the free parameter c. We also superpose the
result one gets for K41. The D�h� spectrum used here is the
one known to fit well the Eulerian SFs.17 The range of h
exponents is always h� �hmin,hmax� where hmin= 1

9 for the
particular choice17 and hmax�0.38 is defined as the exponent
where the D�h� attains its maximum D�hmax=3�. Notice that
the inclusion of also the exponent lying in the right side, with
respect to the maximum, of the D�h� spectrum would not
lead to any important change in the pdf shape �not shown�.

Exploring a value of h larger then hmax is not under
control because we do not have experimental or numerical
results of SFs of negative order. Let us notice also that other
functional curves for D�h� which would reproduce the mea-
sured scaling exponents, ��p�, would give indistinguishable
results. As one can notice, the interesting part of the curve is
the left side with respect to the peak, the one corresponding
to wild local intense fluctuations of ��v, i.e., to local dissi-
pative scales smaller then �K41. The left part is weakly sen-
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sitive to Reynolds, as also demonstrated by the small devia-
tions from the K41 nonintermittent shape �which is non-
Gaussian�, so it may be extremely difficult to have a
quantitative benchmark of this prediction. Nevertheless, by
comparing this result with the numerical measurements pub-
lished in Ref. 25 one can notice a clear qualitative agree-
ment.

The right part of the pdf is completely dominated by the
power-law prefactor in Eq. �11�. Therefore, it is strongly de-
pendent on the dimensionality d, i.e., on the number of com-
ponents used to define ���v� when applying the O�1� Rey-
nolds requirement for the definition of the local dissipative
scale, see Fig. 2. Moreover, it strongly depends on the shape
of the velocity fluctuations around the peak, i.e., for very
small velocity increments, where the local turbulent intensity
is negligible.

Interestingly enough, the obvious bound ��L �i.e.,
�̃�Re3/4� does not allow the exponent of �̃ in the power-law
prefactor of Eq. �11� to reach the saddle-point limit z�hmin�
which would maximize the integrand in the limit �̃→

�the z�h� function is monotonically decreasing in the range
h� �hmin,hmax�
. As a consequence, the integrand turns out to
be dominated by a superposition of all h exponents. The
power-law decay for large �̃ is important for the normaliza-
tion of the pdf if we want to compare curves with integral
normalized to unity; there is a dependency on the maximum
allowed �̃ value, which must be chosen to be of the order of
�̃max�Re3/4. Such constraint in the normalization has no
physical important consequences; it also exists in real data.
Indeed, any cascade phenomenology is based on the assump-
tion that the local Reynolds number is large, i.e., it cannot
describe laminar regions where the velocity fluctuations are
very small. Such laminar fluctuations are at the origin of the
far tail in the power-law decay for large �̃, and are therefore
out of interest here. It would be interesting to see if this

sensitivity to the infrared cutoff is also shared by other cas-
cade models such as the one proposed in Ref. 15.

In conclusion, we have presented a simple generalization
of the MF formalism that is able to predict the fluctuations of
the local dissipative scale defined using the Paladin–Vulpiani
relation �4�. The relation can be considered as a prediction
for the local dissipative scaling as defined via Eq. �4� once
given the spectrum of Eulerian Hölder exponent D�h�. The
existence of a free parameter, c, is unavoidable in all ap-
proaches based on dimensional matching between inertial
and viscous terms for the definition of the dissipative scale.30

The same freedom is also present in the approach presented
in Ref. 22, as discussed in Ref. 25. The large-scale velocity
field is supposed to be Gaussian, as observed in all experi-
ments and simulations of isotropic turbulence. We have dis-
cussed results for both intense velocity fluctuations, leading
to small viscous scales, where the MF formalism predicts the
pdf of � to decay as a superposition of stretched exponential
�left tail of Eq. �11��, and for smooth velocity fluctuations,
where the MF formalism predicts a superposition of power-
law decay. Both trends are well reproduced in DNS.25 Fur-
ther simple refinements would be needed if one is interested
in distinguishing between local dissipative scales of longitu-
dinal or transverse fluctuations. There are claims that longi-
tudinal or transverse SFs may have different scaling proper-
ties in isotropic turbulence31 at the available Reynolds
numbers �see also Ref. 32 for a critical review on a possible
theoretical implication of this fact�. In the latter case, differ-
ent D�h� functions fitting the two statistics would be neces-
sary to describe the local dissipative scales. Recently, an at-
tempt to refine the Batchelor parametrization �10� such as to
match the Karman–Howarth relation has been proposed in
Ref. 12. To do that, one has to pay the price of introducing
further functions tracking the skewed part of the velocity
statistics. Let us stress that the intermittency signature in the
whole pdf shape is very weak: curves at different Reynolds
are almost undistinguishable from the K41 prediction in Fig.
1 for the left tail. In order to enhance such intermittency
trends, one should measure negative moments of the local
dissipative scale, such as to have a more sensitive probe of
the small differences seen in Fig. 1 for � /�K41�1.

The approach presented here can be easily generalized to
treat the case of hyperviscosity, i.e., of NS evolution with a
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FIG. 1. �Solid line� The prediction for the dissipative scale from Eq. �11�
compared with the measurement of the same quantity in a DNS ��, data
from Ref. 25�; both data have the same Reynolds numbers. The multifractal
prediction is obtained with A=8. For the sake of convenience, we have used
a log-Poisson expression for the D�h� as proposed in Refs. 17 and 18:
D�h�=3�h−h0� / log ��log�3�h0−h� /d0 log ��−1�+3−d0, with �= 2

3 , h0= 1
9 ,

and d0=2. Inset: �Dashed lines� Dependency of the MF prediction �11� as a
function of the Reynolds numbers �Re=2.5	103 ,104 ,2.5	105, from right
to left�, with the free parameter A=6 and d=1. Notice the small dependence
on Re for the left tail. The right tails are calculated up to the maximum
reachable scale for that given Reynolds number, �̃max�Re3/4. �Solid line�
The K41 nonintermittent prediction.
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FIG. 2. log-log plot of the dissipative scale pdf for Re=104 at changing the
dimensionality d=1,2 ,3. The right tail is given by a superposition of power-
law decay. The asymptotic, saddle-point limit of the prefactor in front of the
exponential term in Eq. �11� is never reached when ��L.
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dissipative term ��
�v, with ��1. It is easy to realize, for
example, that the exponent in the stretched exponential su-
perposition in Eq. �9� now becomes �̃−2�1+h�−2��−1�. It would
be interesting to test this relation against hyperviscous DNS.
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