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1. INTRODUCTION

This work considers discrete-time stochastic linear
systems described by equations of the type:
x(k + 1)=A(¹)x(k)+B(¹)u(k)+F (¹)N(k);

y(k)=C(¹)x(k)+D(¹)u(k)+G(¹)N(k);
(1)

k 2 IZ+, where x(k) 2 IRn is the state, u(k) 2 IRp
is the known input, y(k) 2 IRq is the measured
output,N(k) 2 IRb is the “noise”, a sequence of zero-
mean independent random vectors, not necessarily
Gaussian. All system matrices in (1) depend on an
unknown parameter ¹ taking values on a finite set
W . Without loss of generality, we assume here that

1 Work partially supported by MIUR (Italian Ministry for Educa-
tion and Research), INFN and by EU project HYBRIDGE.

¹ takes values on the set of the first m integers,
i.e. W =

©
1; : : : ;m

ª
. Stated in other words, the

system is characterized by m linear working modes.
The problem considered in this paper is to estimate
both the system state and the current working mode.

A great deal of literature treats the state estimation
problem for systems of the type (1) when the pa-
rameter ¹ undergoes Markov transitions (Germani et
al., 2003; Costa, 1994; Blom and Bar-Shalom, 1988).
In this work the unknown parameter is assumed con-
stant (at least over “long” time intervals). A minimum
variance polynomial filter is presented here to solve
both the parameter and state estimation problems.
The polynomial approach has led to important results
in the field of suboptimal filtering of non Gaussian
linear (Carravetta et al., 1996) and bilinear systems
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(Carravetta et al., 1997). Recently, polynomial filters
have also been studied in the framework of descriptor
(Germani et al., 2004) and Markov switching systems
(Germani et al., 2003). The key-point in this paper
is the construction of an extended system, whose
state contains a suitable parameterization of the un-
known variable ¹ and its Kronecker products with
the Kronecker powers of the original state, up to a
chosen degree º. The extended system has the struc-
ture of a bilinear model, i.e. a linear system driven
by multiplicative noise. The output of the extended
system is made of the original output vector and of its
Kronecker powers up to the chosen degree º. The best
polynomial filter for the original system is derived
through the computation of the best linear filter for
the extended system. Although the polynomial filter
is derived here specifically for systems with unknown
and constant working mode, simulation results show
the good performances of the filter also when the
system undergoes rare switching.

2. A MODEL FOR THE UNCERTAIN SYSTEM

This section presents an alternative representation for
the uncertain system (1). For the model derivation it is
useful to regard the constant parameter ¹ as governed
by the trivial difference equation

¹(k + 1) = ¹(k); ¹(0) = ¹0: (2)
Consider the natural basis in IRm, denoted Em =©
e1; e2; ¢ ¢ ¢ ; em

ª
. Defining the matrixeA = £A(1) A(2) ¢ ¢ ¢ A(m)¤ (3)

the following identities hold
A(i) = eA¡ei − In¢; i = 1; : : : ;m; (4)

as it is easy verified from

eA¡ei − In¢=£A(1) ¢ ¢ ¢A(i) ¢ ¢ ¢A(m)¤
24O(i¡1)n£nIn
O(m¡i)n£n

35 ;
(5)

where the symbol − denotes the standard matrix
Kronecker product. Throughout the paper superscripts
in square brackets denote Kronecker powers, defined
for a given matrix H by:

H [0] = 1; H [i] = H −H [i¡1]; i ¸ 1: (6)
(see (Bellman, 1970) for more details, see (Carravetta
et al., 1997) for a quick survey on the Kronecker
product and its properties).

Instead of the integer ¹ 2 W a vector # 2 Em can
be used to parameterize the m working modes of
system (1), suitably exploiting the bijection Em $W.
Defining # = e¹, all matrices in equation (1) can be
written as follows
A(¹) = eA¡#− In¢; B(¹) = eB¡#− Ip¢;
C(¹) = eC¡#− In¢; D(¹) = eD¡#− Ip¢;
F (¹) = eF¡#− Ib¢; G(¹) = eG¡#− Ib¢; (7)

where all matrices eB; eC; eD; eF; eG are defined as eA in
(3). From (2), the sequence #(k) = e¹(k) is governed
by equations

#(k + 1) = #(k); #(0) = #0: (8)

Since #(k) 2 Em, it follows that

#[2](k) = E2#(k); with E2=
£
e
[2]
1 ¢ ¢ ¢ e[2]m

¤
: (9)

Proposition 1. System (1) admits the representation:

x(k + 1) = eA¡#(k)− x(k)¢+B(k)#(k)
+ eF¡#(k)−N(k)¢;

#(k + 1) = #(k);

y(k) = eC¡#(k)− x(k)¢+D(k)#(k)
+ eG¡#(k)−N(k)¢;

(10)

where the time-varying matrices B(k), D(k) depend
on the known input u(k) as follows:

B(k) = eB¡Im − u(k)¢; D(k) = eD¡Im − u(k)¢:
(11)

PROOF. Using identities (7) the state and output
equations of system (1) can be put in the form:

x(k + 1) = eA¡#(k)− In¢x(k) + eB¡#(k)− Ip¢u(k)
+ eF¡#(k)− Ib¢N(k);

y(k) = eC¡#(k)− In¢x(k) + eD¡#(k)− Ip¢u(k)
+ eG¡#(k)− Ib¢N(k):

(12)

According to the Kronecker product properties:¡
#(k)− In

¢
x(k) =

¡
#(k)− In

¢
¢
¡
1− x(k)

¢
=
¡
#(k) ¢ 1

¢
−
¡
In ¢ x(k)

¢
= #(k)− x(k);¡

#(k)− Ip
¢
u(k) =

¡
#(k)− Ip

¢
¢
¡
1− u(k)

¢
= #(k)− u(k) =

¡
Im ¢ #(k)

¢
−
¡
u(k) ¢ 1

¢
=
¡
Im−u(k)

¢
¢
¡
#(k)−1)=

¡
Im−u(k)

¢
#(k);

(13)

so that (10) and (11) are easily obtained.

3. THE POLYNOMIAL FILTER

It is well known that the optimal solution to the
minimum variance filtering problem is given by the
expectation of the state conditioned to all the measure-
ments up to the current time, that is the projection
of the state onto the linear space of all the Borel
functions of the measurements:

x̂(k) = IE
£
x(k)j¾

¡
Yk
¢¤
= ¦

£
x(k)jB(Yk)

¤
; (14)

where Yk =
£
yT (0) ¢ ¢ ¢ yT (k)

¤T . In the Gaussian
case the conditional expectation is a linear transforma-
tion of the measurements, recursively implemented by
the Kalman filter. In the non Gaussian case, when the

580



conditional expectation is difficult to compute, a sub-
optimal estimation approach can be followed. By def-
inition, suboptimal polynomial estimates are optimal
in the Hilbert space of all polynomial transformations
of measurements (Carravetta et al., 1996; Carravetta
et al., 1997). Choosing an integer º and assuming
that, for all h 2 IZ+,

IE
£
ky[i](h)k2

¤
<1; i = 1; : : : ; 2º; (15)

the Hilbert space of º-degree polynomial transforma-
tions of the output sequence can be defined as follows:

L(Y ºk ) = span
©
1; Y º(0); ¢ ¢ ¢ ; Y º(k)

ª
; (16)

with Y ºk =

264Y
º(0)
...

Y º(k)

375; Y º(h) =
264 y(h)

...
y[º](h)

375: (17)
The optimal (min. error variance) state and parameter
estimates in L(Y ºk ) are given by the projections:

x̂º(k) = ¦
£
x(k)jL(Y ºk )

¤
;

#̂º(k) = ¦
£
#(k)jL(Y ºk )

¤
:

(18)

In order to ensure that all the moments in (15) are
finite, the following assumptions are needed:
1) the noise variable N(k) has finite moments up to
degree 2º

IE
£
N [j](k)

¤
= »j <1; 1 · j · 2º; (19)

(note that, being N(k) white, it is »1 = 0).
2) The initial state x(0) = x0, independent of the
noise sequence, has finite moments up to degree 2º:

IE
£
x
[j]
0

¤
= ³j <1; 1 · j · 2º: (20)

Assumptions 1) and 2) guarantee that the polynomial
extended output sequence Y º(k), defined in (17),
has bounded mean and covariance. Consider now the
extended state sequence Xº(k) defined as

Xº(k) =

264X0(k)...
Xº(k)

375; Xi(k) = #(k)− x[i](k);

(21)

(note that X0(k) = #(k)). In the following it will
be shown that Xº(k) and Y º(k) admit a stochastic
bilinear generation model of the type

Xº(k + 1) = Aº(k)Xº(k) +Fº(N(k);Xº(k));

Y º(k) = Cº(k)Xº(k) +Gº(N(k);Xº(k));

(22)

where Aº and Cº are suitably defined deterministic
matrices, whileFº(N(k);Xº(k)) andGº(N(k);Xº(k))
are terms in which noise terms multiplies the ex-
tended state. The structure of matrices Aº and Cº
and the properties of the noise sequences F(k) =
Fº(N(k);Xº(k)) and G(k) = Gº(N(k);Xº(k))
will be presented in lemmas 5, 6 and 8.

The best linear estimate of Xº(k) is the projectionbXº(k) = ¦
£
Xº(k)jL(Y ºk )

¤
. Since F(k) and G(k)

are sequences of zero-mean, uncorrelated random
vectors, bXº(k) can be recursively computed using
the Kalman filter applied to system (22).

Theorem 2. The optimal º-degree polynomial esti-
mate of the state x(k) of system (1) and of the
unknown vector #(k) are given by:

x̂º(k) =Mn
bXº(k) =Mn¦

£
Xº(k)jL(Y ºk )

¤
;

#̂º(k) = Tn bXº(k) = Tn¦
£
Xº(k)jL(Y ºk )

¤
;

(23)

where:
Mn =

£
On£m M On£m(n2+¢¢¢+nº)

¤
;

Tn =
£
Im Om£m(n+¢¢¢+nº)

¤
;

(24)

withM =
£
In ¢ ¢ ¢ In

¤
2 IRn£mn.

PROOF. The proof is easily obtained noting that
x(k) and #(k) are both linear transformations of the
extended state Xº(k):

x(k) =M
¡
#(k)− x(k)

¢
=MX1(k) =MnX

º(k)

#(k) = TnXº(k);

(25)

so that the polynomial minimum variance state esti-
mates in (23) are:

x̂º(k) = ¦
£
x(k)jL(Y ºk )

¤
= ¦

£
MnX

º(k)jL(Y ºk )
¤

=Mn¦
£
Xº(k)jL(Y ºk )

¤
=Mn

bXº(k);

#̂º(k) = ¦
£
#(k)jL(Y ºk )

¤
= ¦

£
TnXº(k)jL(Y ºk )

¤
= Tn¦

£
Xº(k)jL(Y ºk )

¤
= Tn bXº(k):

(26)

Remark 3. The covariance of the estimation error
x(k)¡ x̂º(k) can be extracted from the covariance of
the estimation error of the extended state as follows:

Cov
¡
x(k)¡x̂º(k)

¢
=MnCov

¡
Xº(k)¡ bXº(k)

¢
MT

n :
(27)

Remark 4. Since in general bµº(k) 62 Em, a strategy
for the estimation of the mode ¹(k) is to choose
among the elements of Em the closest one to the
estimate bµº(k), according to the L1-norm:
¹̂(k) : ke¹̂(k) ¡ bµº(k)k1 · kej ¡ bµº(k)k1; (28)
for j = 1; : : : ;m. The motivation for this strategy
is that the choice (28), when applied to the condi-
tional expectation of #(k), provides the Maximum
Likelihood Estimate of ¹(k). This happens because
the components of b#(k) = IEf#(k)j¾(Yk)g coincide
with the conditional distribution of #(k).

The following lemmas give some insights into the
structure and properties of the model (22). All the
results presented exploit the fact that, according to
definition (21) and to identity (9), 8i; j; h 2 IZ+:

X
[h]
j = £h;jn Xjh; Xi −Xj = ¥i;jXi+j ; (29)
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where £h;jn and ¥i;j are the matrices defined by:

£h+1;jn =
¡
£h;jn − Imnj

¢¡
Im − CTmnj ;njh

¢
¢
¡
E2 − Inj(h+1)

¢
;

£0;jn = [1 ¢ ¢ ¢ 1] 2 IR1£m;
¥i;j =

¡
Im − CTmnj ;ni)(E2 − Ini+j );

(30)

with Ca;b suitably dimensioned commutation matrices
for the Kronecker product (Carravetta et al., 1997),
and E2 as in (9) (see (Germani et al., 2003) for more
details).

Lemma 5. The iterative equation of the component
Xj(k) defined in (21) is:

Xj(k + 1) =

jX
t1=0

Aj;t1(k)Xt1(k) + Fj(k);

Fj(k) =
jX

t1=0

Sjt1(k)Xt1(k);

(31)

where Aj;t1(k), S
j
t1(k) are the following sequences

of deterministic and random matrices:

Aj;t1(k) =
¡
Im − Jjt1(k)

¢
¥0;t1 ; (32)

Sjt1(k) =
¡
Im − Ljt1(k)

¢
¥0;t1 ; (33)

with:

Jjt1(k) =

t2RjX
t2;t3

Ljt(k)
³
Imnt1 − »t3(k)

´
; (34)

Ljt1(k) =
t2RjX
t2;t3

Ljt(k)
³
Imnt1−

¡
N [t3](k)¡ »t3(k)

¢́
;

(35)

Ljt(k) =M
j
t

³ eA[t1] −B[t2](k)− eF [t3]´Kj
t ; (36)

Kj
t =

¡
£t1;1n −£t2;0n −£t3;1b

¢¡
Imnt1−E2−Ibt3

¢
:

(37)

M j
t in (36) are the matrix coefficients for the Kro-

necker power expansion (Carravetta et al., 1997),
t =

¡
t1; t2; t3

¢T is a multi-index in (IZ+)3 and
Rj =

©
t 2 (IZ+)3 : t1 + t2 + t3 = j

ª
. Moreover

F(k) =
£
F0(k)T ¢ ¢ ¢ Fº(k)T

¤T is a sequence of
zero-mean uncorrelated random vectors, whose co-
variance matrices ªFj;i(k) = IE

£
Fj(k)Fi(k)T

¤
are

given by:

ªFj;i(k) =

jX
j1=0

iX
i1=0

st¡1
mnj1 ;mni1

µ
©S;i;jr1;t1(k)

¢ ¥r1;t1IE
£
Xr1+t1(k)

¤¶
;

(38)

with st¡1 the inverse of the stack operator (Carravetta
et al., 1997) and:

©S;i;jr1;t1(k) = IE
£
Sir1(k)− S

j
t1(k)

¤
=
¡
Im − CTmnj ;ni

¢¡
Im2 − ©L;j;it1;r1(k)

¢
¢
¡
Im − Cm2nt1 ;mnr1

¢¡
¥0;r1 − ¥0;t1

¢
;

(39)

where:

©L;j;it1;r1(k) = IE
£
Ljt1(k)− L

i
r1(k)

¤
=

t2RjX
t2;t3

r2RiX
r2;r3

¡
Ljt(k)−Lir(k)

¢¡
Imnt1−CTmnr1br3 ;bt3

¢
¢
³
Im2nt1+r1 −

¡
»r3+t3(k)¡ »r3(k)− »t3(k)

¢´
¢
¡
Imnt1 − Cmnr1 ;1

¢
:

(40)

PROOF. The proof is a straightforward consequence
of Lemma 3.2 in (Germani et al., 2003). In that frame-
work system (1) is a switching system, and ¹(k) is a
Markov chain with known transition probability ma-
trix. The iterative equation (31) easily comes by tak-
ing into account that in the present case, the unknown
parameter does not switch so that, by consequence, the
transition probability matrix is necessarily the identity
matrix. The fact that the extended noise

©
F(k)

ª
is a

sequence of zero-mean uncorrelated random vectors,
comes taking into account that Sjt1(k) and S

i
s1(h) are

zero-mean and uncorrelated for any j; i; t1; s1 and for
any k 6= h and, moreover, Sjt1(k) is independent of
Xs1(k).

Lemma 6. The equations for the Kronecker powers
of the measurements defined in (17) are:

y[j](k) =

jX
t1=0

Cj;t1(k)Xt1(k) + Gj(k);

Gj(k) =
jX

t1=0

T jt1(k)Xt1(k);
(41)

where Cj;t1(k), T
j
t1(k) are the following sequences

of deterministic and random matrices:

Cj;t1(k) =

t2RjX
t2;t3

T jt (k)
³
Imnt1 − »t3(k)

´
; (42)

T jt1(k) =
t2RjX
t2;t3

T jt (k)
³
Imnt1−

¡
N [t3](k)¡ »t3(k)

¢´
;

(43)

T jt (k) =M
j
t

³ eC[t1] −D[t2]
(k)− eG[t3]´Kj

t ;

(44)

and Kj
t as in (37). G(k) =

£
G1(k)T : : : Gº(k)T

¤T
is a sequence of zero-mean uncorrelated random
vectors, whose covariance matrices ªGj;i(k) =

IE
£
Gj(k)Gi(k)T

¤
are given by:

ªGj;i(k) =

jX
t1=0

iX
r1=0

st¡1qj ;qi

µ
©T ;i;jr1;t1 (k)

¢ ¥r1;t1IE
£
Xr1+t1(k)

¤¶
;
(45)

with:
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©T ;i;jr1;t1 (k) = IE
£
T ir1(k)− T

j
t1(k)

¤
=

r2RiX
r2;r3

t2RjX
t2;t3

¡
T ir(k)−T

j
t (k)

¢¡
Imnr1−CTmnt1bt3 ;br3

¢
¢
³
Im2nr1+t1 −

¡
»t3+r3(k)¡ »t3(k)− »r3(k)

¢´
¢
¡
Imnr1 − Cmnt1 ;1

¢
:

(46)

PROOF. The proof is a straightforward consequence
of Lemma 3.3 in (Germani et al., 2003), according to
the same remarks considered in the proof of Lemma
5.

Remark 7. It has to be stressed that, according to
Lemmas 5 and 6, system (22) provides an exact
generation model for the sequencesXº(k) and Y º(k)
(i.e. no approximation has been introduced).

Lemma 8. The noise sequences
©
F(k)

ª
and

©
G(k)

ª
are such that, for 1 · i; j · º and 8k; h 2 IZ+:

IE
£
Fj(k)GTi (h)

¤
=0; 8k6= h

IE
£
Fj(k)GTi (k)

¤
=Qj;i(k):

(47)

with:

Qj;i(k) =

jX
t1=0

iX
r1=0

st¡1mnj ;qi
³
Qi;jr1;t1(k)¥r1;t1

¢ IE
£
Xr1+t1(k)

¤´
;

(48)

where Qi;jr1;t1(k) = IE
£
T ir1(k)− S

j
t1(k)

¤
.

PROOF. The proof is a straightforward consequence
of Lemma 3.4 in (Germani et al., 2003), according to
the same remarks considered in the proof of Lemma
5.

According to Lemma 8, the extended noises F(k)
and G(k) are correlated at the same instant k, so
that the Kalman Filter equations for correlated noises
have been adopted for the computation of bXº(k), i.e.
the best linear filter for system (22) (Balakhrishnan,
1984); the straightforward algorithm is the following:

bXº(0j ¡ 1) = IE
£
Xº(0)

¤
;bXº(k) = bXº(kjk ¡ 1) +K(k)

¢
¡
Y º(k)¡Cº(k) bXº(kjk ¡ 1)

¢
;bXº(k + 1jk) = Aº(k) bXº(k) +Z(k)

¢
¡
Y º(k)¡Cº(k) bXº(kjk ¡ 1)

¢
:

(49)

The gain matrices K(k) and Z(k) are recursively
computed through the following Riccati equations:

PP (0) = Cov
¡
Xº(0)

¢
;

Z(k) = Q(k)
¡
Cº(k)PP (k)C

ºT (k) + ªG(k)
¢y
;

K(k) = PP (k)CºT (k)
¢
¡
Cº(k)PP (k)C

ºT (k) + ªG(k)
¢y
;

P (k) = PP (k)¡K(k)Cº(k)PP (k);
PP (k + 1) = A

º(k)P (k)AºT (k) + ªF(k)

¡Z(k)QT (k)¡Aº(k)K(k)QT (k)
¡Q(k)KT (k)AºT (k);

(50)

where in (50) the Moore-Penrose pseudoinverse has
been used.

Remark 9. The algorithm initialization (i.e. bXº(0j ¡
1) and PP (0)) requires the knowledge of the initial
state statistics up to 2º degree, which are finite and
available according to (20).

Remark 10. Note that the recursive computation of
ªF(k), ªG(k) and Q(k) requires the computation
of the expectations IE

£
Xi(k)

¤
, i = 1; : : : ; 2º (see

(38), (45) and (48)). These are the components of
IE
£
Xº(k)

¤
, and are recursively computed as

IE
£
Xº(k + 1)

¤
= A2º(k)IE

£
Xº(k)

¤
: (51)

4. SIMULATION RESULTS

This section reports simulation results referred to a
system of the type (1), characterized by the following
data:

² x(k)2IR3, u(k)2IR, y(k)2IR2, W=
©
1; 2
ª
;

² A1=

24 0:5 0 0:2
¡1:75 0:5 0
0 0 0:1

35, A2=

24 0:3 0:25 0:1
¡1:75 0:5 0
0 1:2 1

35;
² B1 =

24 0¡1
1

35, C1 =

·
1 ¡1 0
2 0 1

¸
, D1 =

·
1
2

¸
,

B2 =

2412
0

35, C2 =

·
¡1 0 1
0 0 1

¸
, D2 =

·
0:5
¡0:2

¸
;

² F1 =

240:1 0 0
0:1 0 0
0 0:3 0

35, F2 =

24 0 0:1 0
0:1 0:1 0
¡0:1 0 0

35;
² G1 =

·
0 0 0:1
0 0 ¡0:3

¸
, G2 =

·
0 0 0:2
0 0 0:1

¸
;

² the noise N(k) 2 IR3 has independent components,
with distributions:

P
¡
N1(k) =¡1=2

¢
= 0:8; P

¡
N2(k) =¡1=3

¢
= 0:9

P
¡
N1(k) =2

¢
= 0:2; P

¡
N2(k) = 3

¢
= 0:1;

(52)

The distribution of N3 is identical to that of N1.
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Fig. 1. True and estimated x1(k).

Fig. 2. True and estimated state x2(k).

Fig. 3. True and estimated state x3(k).

In the simulation presented u(k) ´ 1; k ¸ 0. The
initialization of the state estimate is made considering
x0 a gaussian variable, while the initial estimate of
#0 is the mean of the components of the base vectors
(m = 2).

As announced in the introduction, although the
derivation of the polynomial filter has been made
under the assumption of a constant parameter ¹,
the simulations here reported consider one switch of
the parameter (i.e. a change of the system working
mode) during the system evolution. In particular, the
numerical data here reported refer to a simulation over
a 1.000 steps interval, in which one switch of the
parameter occurrs at time k = 500.

The figures report components of the true state and of
the state estimates obtained with a first order (º = 1)
and a second order (º = 2) filter. The sampling

variances of the estimation errors of the linear and
quadratic filters before and after the switching instant
are reported below. The 500 steps before the switching
(¹(k) = 1) give the following error variances of the
3 state components:
¾21jº=1 = 1:46 ¢ 10¡4; ¾21jº=2 = 8:01 ¢ 10¡5;
¾22jº=1 = 8:54 ¢ 10¡4; ¾22jº=2 = 6:67 ¢ 10¡4;
¾23jº=1 = 9:80 ¢ 10¡4; ¾23jº=2 = 3:94 ¢ 10¡4:
The 500 steps after the switching (¹(k) = 2) give:
¾21jº=1 = 1:94 ¢ 10¡4; ¾21jº=2 = 1:13 ¢ 10¡4;
¾22jº=1 = 6:57 ¢ 10¡4; ¾22jº=2 = 6:16 ¢ 10¡4;
¾23jº=1 = 8:25 ¢ 10¡4; ¾23jº=2 = 2:61 ¢ 10¡4:
The improvement of the quadratic filter over the
linear one is evident: for some state components the
reduction of the error variance is about 60%.

5. CONCLUSIONS

The problem of the simultaneous state and parameters
estimation for a class of uncertain stochastic systems
has been investigated in this paper, and the equations
of the best polynomial filter are derived. Simulation
results show the improvement of the second order
filter with respect to the first order one.
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