

Available online at www.sciencedirect.com



PHYSICS LETTERS B

Physics Letters B 624 (2005) 181-185

www.elsevier.com/locate/physletb

# Electron screening in <sup>7</sup>Li( $p, \alpha$ ) $\alpha$ and <sup>6</sup>Li( $p, \alpha$ )<sup>3</sup>He for different environments $\stackrel{\text{\tiny $\&$}}{\Rightarrow}$

LUNA Collaboration

J. Cruz<sup>a</sup>, Z. Fülöp<sup>b</sup>, G. Gyürky<sup>b</sup>, F. Raiola<sup>c</sup>, A. Di Leva<sup>c</sup>, B. Limata<sup>d</sup>, M. Fonseca<sup>a</sup>, H. Luis<sup>a</sup>, D. Schürmann<sup>c</sup>, M. Aliotta<sup>e</sup>, H.W. Becker<sup>c</sup>, A.P. Jesus<sup>a</sup>, K.U. Kettner<sup>f</sup>, J.P. Ribeiro<sup>a</sup>, C. Rolfs<sup>c</sup>, M. Romano<sup>d</sup>, E. Somorjai<sup>b</sup>, F. Strieder<sup>c</sup>

<sup>a</sup> Centro de Fisica Nuclear, Universidade de Lisboa, Portugal
 <sup>b</sup> Atomki, Debrecen, Hungary
 <sup>c</sup> Institut für Physik mit Ionenstrahlen, Ruhr-Universität Bochum, Germany
 <sup>d</sup> Dipartimento di Scienze Fisiche, Universita Federico II and INFN, Napoli, Italy
 <sup>e</sup> School of Physics, University of Edinburgh, UK
 <sup>f</sup> Fachhochschule Bielefeld, Germany

Received 6 July 2005; received in revised form 12 July 2005; accepted 10 August 2005

Available online 22 August 2005

Editor: V. Metag

#### Abstract

The electron screening in the  ${}^{7}\text{Li}(p,\alpha)\alpha$  reaction has been studied at  $E_p = 30$  to 100 keV for different environments: Li<sub>2</sub>WO<sub>4</sub> insulator, Li metal, and PdLi alloys. For the insulator a screening potential energy of  $U_e = 185 \pm 150$  eV was observed, consistent with previous work and the atomic adiabatic limit. However, for the Li metal and the PdLi alloys we find large values of  $U_e = 1280 \pm 60$  and  $3790 \pm 330$  eV, respectively: the values can be explained by the plasma model of Debye applied to the quasi-free metallic electrons in these samples. Similar results have been found for the  ${}^{6}\text{Li}(p,\alpha)^{3}\text{He}$  reaction supporting the hypothesis of the isotopic independence of the electron screening effect. The data together with previous studies of d(d, p)t and  ${}^{9}\text{Be}(p,\alpha)^{6}\text{Li}$  in metals verify the Debye model scaling  $U_e \propto Z_t$  (charge number of target). © 2005 Elsevier B.V. All rights reserved.

## 1. Introduction

E-mail address: rolfs@ep3.ruhr-uni-bochum.de (C. Rolfs).

<sup>&</sup>lt;sup>±</sup> Supported by BMBF (05CL1PC1), DFG (Ro429/31, 436Ung113), AvH (V-8100/B, ITA10066680), OTKA (T42733, T34259), Portugal (POCTI-FNU/45092/2002).

The cross section of a charged-particle-induced nuclear reaction is enhanced at sub-Coulomb energies by the electron clouds surrounding the interacting nu-

 $<sup>0370\</sup>mathchar`line 0370\mathchar`line 2005$  Elsevier B.V. All rights reserved. doi:10.1016/j.physletb.2005.08.036

clides, with an enhancement factor [1,2]

$$f_{\text{lab}}(E) = E(E + U_e)^{-1} \\ \times \exp(-2\pi\eta(E + U_e) + 2\pi\eta(E)), \quad (1)$$

where *E* is the center-of-mass energy,  $\eta(E)$  the Sommerfeld parameter, and  $U_e$  the screening potential energy. The electron screening in d(d, p)t was studied previously for deuterated metals, insulators, and semiconductors, i.e., 58 samples in total [3–5]. As compared to measurements performed with a gaseous  $D_2$  target ( $U_e = 25 \text{ eV}$  [6]), a large screening was observed in all metals (of order  $U_e = 300 \text{ eV}$ ), while a small (gaseous) screening was found for the insulators and semiconductors. An explanation of the large screening was suggested [4] calculating the screening according to the Debye plasma model applied to the quasi-free metallic electrons. The electron Debye radius around the deuterons in the lattice is given by

$$R_D = \left(\varepsilon_o k T / e^2 n_{\rm eff} \rho_a\right)^{1/2} = 69 (T / n_{\rm eff} \rho_a)^{1/2} \,[\text{m}] \quad (2)$$

with the temperature *T* of the free electrons in units of K,  $n_{\text{eff}}$  the number of valence electrons per metallic atom, and the atomic density  $\rho_a$  in units of atoms/m<sup>3</sup>. With the Coulomb energy of the Debye electron cloud and a deuteron projectile at  $R_D$  set equal to  $U_e \equiv U_D$ , one obtains

$$U_D = (4\pi\varepsilon_o)^{-1} e^2 / R_D$$
  
= 2.09 × 10<sup>-11</sup> (*n*<sub>eff</sub>  $\rho_a / T$ )<sup>1/2</sup> [eV]. (3)

A comparison of the calculated and observed  $U_e$  values led to  $n_{\text{eff}}$ , which was for most metals of the order of one. The acceleration mechanism of the incident positive ions leading to the high observed  $U_e$  values is thus the Debye electron cloud at the small radius  $R_D$ , about one tenth of the Bohr radius. The  $n_{\text{eff}}$  values were compared with those deduced from the known Hall coefficient [7]: within 2 standard deviations the two quantities agreed for all metals. A critical test of the Debye model is the predicted temperature dependence  $U_D \propto T^{-1/2}$ , which was verified experimentally [5].

The electron screening in the <sup>7</sup>Li( $p, \alpha$ ) $\alpha$  reaction has been studied previously using a gaseous H<sub>2</sub> target (inverse kinematics) leading to an atomic screening potential energy  $U_A = 300 \pm 160$  eV [8] consistent with the adiabatic limit (175 eV [1]). The Debye radius scales inversely with the nuclear charge  $Z_t$  of the target atoms [2],  $R_D \propto (Z_t(Z_t+1))^{-1/2}$ , and thus  $U_D \propto (Z_t(Z_t+1))^{1/2}$ . For the <sup>7</sup>Li(p,  $\alpha$ ) $\alpha$ reaction with  $n_{\rm eff}({\rm Li}) = 0.8 \pm 0.2$  [7] at  $T = 20 \,^{\circ}{\rm C}$ one expects  $U_D = 820 \pm 100$  eV for a Li metal and therefore  $U_e = U_A + U_D = 1120 \pm 260$  eV assuming a linear addition of both acceleration mechanisms. If an alloy such as  $PdLi_x$  is used with a few percent Li admixture x (maintaining essentially the metallic character of Pd), one has  $n_{\rm eff}(\rm Pd) = 6.3 \pm 1.2$  [4] and thus  $U_D = 2800 \pm 280$  eV leading to the prediction  $U_e = U_A + U_D = 3100 \pm 440$  eV. Kasagi et al. [9] performed studies in a PdLi<sub>x</sub> alloy (x = 5-7%) finding  $U_e = 1500 \pm 310$  eV, but no explanation of this observation was given. We report on experimental <sup>7</sup>Li( $p, \alpha$ ) $\alpha$  studies testing the predictions for the different environments: a Li<sub>2</sub>WO<sub>4</sub> insulator, a Li metal, and two  $PdLi_x$  alloys. We report also on the results of the electron screening in the  ${}^{6}\text{Li}(p, \alpha){}^{3}\text{He}$  reaction for these environments. Details not contained here can be found in [10].

#### 2. Equipment and procedures

The equipment, procedures, and data analyses have been described elsewhere [3,4]. Briefly, we used infinitely thick Li targets of natural isotopic content (92.58% <sup>7</sup>Li, 7.42% <sup>6</sup>Li), which allowed us to study concurrently both <sup>7</sup>Li( $p, \alpha$ ) $\alpha$  and <sup>6</sup>Li( $p, \alpha$ )<sup>3</sup>He reactions. The Li<sub>2</sub>WO<sub>4</sub> samples (360  $\mu$ g/cm<sup>2</sup> thickness,  $\Phi = 40$  mm) were fabricated by vacuum-evaporation on a steel backing. The surface of the Li metal sheet (2 mm thick,  $\phi = 40$  mm) was cleaned mechanically in Ar gas to a silvery color and transferred also in Ar gas into the target chamber. Finally, the  $PdLi_x$  alloy (0.2 mm thick,  $\Phi = 30$  mm, silvery color) was produced by plasma discharge techniques and annealed in vacuum at 850 °C for one hour. NRA studies using the  $E_{\alpha} = 953$  keV resonance in <sup>7</sup>Li( $\alpha, \gamma$ )<sup>11</sup>B demonstrated that the Li content in the  $PdLi_x$  alloys started at the surface with a homogeneous depth distribution.

The observed thick-target yield curve was differentiated to arrive at a thin-target yield curve, which was fitted using 2 free parameters [3]: the absolute yield provided information on the absolute cross section and the energy dependence of the data gave the screening potential energy  $U_e$ . For a given sample, we carried out several runs (up to 13) between  $E_p = 30$  and 100 keV, where all targets remained stable in yield to better than 10% at the reference energy  $E_p = 100$  keV. Inspection of the samples after the irradiations revealed no change in color or resistance. The exception was the Li metal, which showed a dark color at the beam spot area indicating a beam hydration: a hydrogen solubility of 8.6% was observed via NRA using the  $E_N = 8.40$  MeV resonance in <sup>1</sup>H(<sup>15</sup>N,  $\alpha\gamma$ )<sup>12</sup>C, which was taken into account in the analysis.

The beam direction and spot on target (beam diameter  $\Phi = 10$  mm) were defined by 2 apertures, one of  $\Phi = 6$  mm at a distance d = 62 cm from the target and the other of  $\Phi = 10$  mm at d = 280 cm. An electric quadrupole triplet placed between the 2 apertures was used to focus the beam. The beam current on target was kept below 20  $\mu$ A.

# 3. Results for <sup>7</sup>Li(p, $\alpha$ ) $\alpha$

At the effective energy [2] E = 83.3 keV we find a cross section  $\sigma = 57 \pm 3$  and  $44 \pm 3 \,\mu b$  for the Li<sub>2</sub>WO<sub>4</sub> and Li targets, respectively, where the quoted errors arise from the quadratic addition of uncertainties in

180

thin-target yields (2%), current (2%), solid angle (2%), and stopping power (5%), where the stopping power was calculated using SRIM (see [10]). The weighted average  $\sigma = 51 \pm 6 \,\mu$ b is in good agreement with previous work [8],  $56 \pm 6 \,\mu$ b: we adopted  $\sigma = 54 \pm 4 \,\mu$ b as a standard. A comparison of the observed yield for the two PdLi<sub>x</sub> alloys with that for the Li metal led to a <sup>7</sup>Li atomic content x = 0.01% and 1%. For the bare S(E) factor we adopted the expression

$$S_b(E) = 0.055 + 0.21E - 0.31E^2 \text{ [MeV b]}$$
 (4)

(*E* in MeV) as derived from data of the Trojan horse method [11].

The results of the 3 samples are shown in Fig. 1 in form of the S(E) factor (for numerical values, see [10]) leading to  $U_e = 185 \pm 150, 1280 \pm 60$ , and 3790  $\pm$  330 eV for Li<sub>2</sub>WO<sub>4</sub>, Li, and PdLi<sub>1%</sub>, respectively. For the alloy PdLi<sub>0.01%</sub> we find  $U_e =$  $4100 \pm 650$  eV (not shown), consistent with the above value for PdLi<sub>1%</sub>. The results indicate that the metallic character of Pd remained essentially unchanged by the small Li content: weighted average  $U_e = 3860 \pm$ 290 eV. The  $U_e$  value of the insulator is in agreement with previous work [8] and the atomic adiabatic limit.



Fig. 1. Astrophysical S(E) factor of <sup>7</sup>Li( $p, \alpha$ ) $\alpha$  for different environments: Li<sub>2</sub>WO<sub>4</sub> insulator, Li metal, and PdLi<sub>1%</sub> alloy. The solid curves through the data points include the bare S(E) factor (dotted curve) and the electron screening with the  $U_e$  values given in the text.



Fig. 2. Astrophysical S(E) factor of  ${}^{6}\text{Li}(p,\alpha)^{3}\text{He}$  for different environments: Li<sub>2</sub>WO<sub>4</sub> insulator, Li metal, and PdLi<sub>1%</sub> alloy. The solid curves through the data points include the bare S(E) factor (dotted curve) and the electron screening with the  $U_{e}$  values given in the text.

The observed value for the Li metal gives a Debye enhancement  $U_D = U_e - U_A = 1095 \pm 160$  eV and thus  $n_{\rm eff}({\rm Li}) = 1.4 \pm 0.4$ , in fair agreement with the value from the Hall coefficient. Similarly, the results for the two PdLi<sub>x</sub> alloys give  $U_D = 3675 \pm 330$  eV with  $n_{\rm eff}({\rm Pd}) = 11 \pm 2$ , consistent with the value quoted in [4].

## 4. Results for ${}^{6}\text{Li}(p, \alpha)^{3}\text{He}$

At the effective energy E = 81.6 keV we find a cross section  $\sigma = 2.5 \pm 0.2$  and  $1.8 \pm 0.1$  mb for the Li<sub>2</sub>WO<sub>4</sub> and Li targets, respectively. The weighted average  $\sigma = 2.1 \pm 0.4$  mb is in agreement with previous work [8],  $2.2 \pm 0.2$  mb: we adopted  $\sigma = 2.2 \pm 0.2$  mb as a standard. For the bare S(E) factor we adopted the expression

$$S_b(E) = 3.00 - 3.02E + 1.93E^2 \text{ [MeV b]}$$
 (5)

(*E* in MeV) as derived from data of the Trojan horse method [12].

The results of the 3 samples are shown in Fig. 2 in form of the S(E) factor (for numerical values,

see [10]) leading to  $U_e = 320 \pm 110$ ,  $1320 \pm 70$ , and  $3760 \pm 260$  eV for Li<sub>2</sub>WO<sub>4</sub>, Li, and PdLi<sub>1%</sub>, respectively. The result for the insulator is in agreement with previous work [8],  $U_e = 440 \pm 150$  eV. The observed value for the Li metal yields a Debye enhancement  $U_D = U_e - U_A = 1000 \pm 130$  eV, which gives in turn  $n_{\text{eff}}(\text{Li}) = 1.2 \pm 0.3$ . Similarly, the result for the PdLi<sub>1%</sub> alloy gives  $U_D = 3440 \pm 280$  eV with  $n_{\text{eff}}(\text{Pd}) = 9.5 \pm 1.5$ , consistent with the value quoted in [4].

#### 5. Discussion

Since the reported absolute cross section for both reactions [8] has been confirmed by the present work, the astrophysical consequences [2,8,11], e.g., for primordial nucleosynthesis, remain essentially unchanged.

The present data for the electron screening in the <sup>7</sup>Li( $p, \alpha$ ) $\alpha$  and <sup>6</sup>Li( $p, \alpha$ )<sup>3</sup>He reactions for different environments give a consistent picture: (i) as suggested previously [8] the present data demonstrate clearly the isotopic independence of the electron

Acknowledgements

screening effect, i.e., the same  $U_e$  value for <sup>7</sup>Li and <sup>6</sup>Li nuclides, particularly in the cases of the Li metal and PdLi<sub>x</sub> alloys; (ii) for the Li<sub>2</sub>WO<sub>4</sub> insulator the atomic electron cloud leads to one acceleration mechanism, while the Li metal and the PdLi<sub>x</sub> alloys exhibit an additional acceleration mechanism due to the quasi-free metallic electrons at the Debye radius. In comparison to the data in the d(d, p)t reaction for metals [3–5], the screening potential energy scales with the charge  $Z_t$  of the target nucleus, as expected from the Debye model.

Previous studies of the reactions  ${}^{9}\text{Be}(p, \alpha){}^{6}\text{Li}$  and  ${}^{9}\text{Be}(p, d){}^{8}\text{Be}$  using a metallic Be target led to a high screening potential energy  $U_e = 900 \pm 50$  eV [13], which was not understood at the time, i.e., in 1997. With  $n_{\text{eff}}(\text{Be}) = 0.21 \pm 0.04$  from the Hall coefficient [4,7], T = 20 °C, and scaling  $U_D$  with  $Z_t$  (here  $Z_t = 4$ ) one finds  $U_D = 870 \pm 80$  eV; assuming  $U_A = 240$  eV [1] one arrives at  $U_e = U_D + U_A = 1110 \pm 80$  eV consistent with the above observation and supporting again the  $Z_t$  scaling of the Debye model. Clearly, an improved theory is highly desirable to explain why the simple Debye model appears to work so well. Without such a theory, one may consider the Debye model as a powerful parametrization of the data.

# The authors thank E. Storms (Lattice Energy, LLC) for the provision of the $PdLi_x$ alloys, M. Burchard (Bochum) for the annealing of the $PdLi_x$ alloys, H. Baumeister (Münster) for the production of the $Li_2WO_4$ targets, and B.A. Green (BYU) for other help.

#### References

- [1] H.J. Assenbaum, K. Langanke, C. Rolfs, Z. Phys. A 327 (1987) 461.
- [2] C. Rolfs, W.S. Rodney, Cauldrons in the Cosmos, University of Chicago Press, Chicago, 1989.
- [3] F. Raiola, et al., Eur. Phys. J. A 13 (2002) 377.
- [4] F. Raiola, et al., Eur. Phys. J. A 19 (2004) 283.
- [5] F. Raiola, et al., Eur. Phys. J. A 31 (2005) 1.
- [6] U. Greife, et al., Z. Phys. A 351 (1995) 107.
- [7] C.M. Hurd, The Hall Effect in Metals and Alloys, Plenum, New York, 1972.
- [8] S. Engstler, et al., Z. Phys. A 342 (1992) 471.
- J. Kasagi, et al., J. Phys. Soc. Jpn. 71 (2002) 2881;
  J. Kasagi, et al., J. Phys. Soc. Jpn. 73 (2004) 608.
- [10] J. Cruz, Thesis, New University of Lisboa, 2006.
- [11] M. Lattuada, et al., Astron. J. 562 (2001) 1076.
- [12] A. Tumino, et al., Phys. Rev. C 67 (2003) 065803.
- [13] D. Zahnow, et al., Z. Phys. A 359 (1997) 211.