The ultimate resolution drift chamber A "traditional" drift chamber, read by recording the drifting of each ionization cluster (for the future Super B and ILC) F. Grancagnolo, INFN - Lecce 10th Topical Seminar - Innovative Particle and Radiation Detectors (IPRDOG) Síena, 1-5 October 2006

KLOE drift chamber performances

Momentum resolution

Start designing a generic drift chamber for a new generation flavor factory. Assume:

Cluster Counting Performances (1)

Spatial resolution

s.w. b A d. i-th In principle, given the time ordered sequence of the drifting clusters, $\{t_i\}_{i=1,\text{Nele}}$ and $\{P(cl)_i\}_{i=1,\text{Nele}}$ each cluster contributes to the impact parameter with an Independent estimate and

 $d_i = \int_{t_0}^{t_i} v(t) dt$ $b_i = \sqrt{\left[d_i^2 - (i \cdot \lambda/2)^2\right]}$

$$\sigma_{b} = \sigma_{bi} / \sqrt{N_{cl}}$$

(saturated by other conributions, like position of the sense wire, time to distance conversion,...) In reality, multiple electron clusters and single electron diffusion tend to confuse the picture.

For $N_{cl} = 12 \text{ cm}^{-1}$ and 60 stereo layers $(\pm \sim 100 \text{ mrad}),$ is reasonable to assume: σ_{xy} ≈ 50 μm σ₇ ≈ 500 μm

Cluster Counting Performances (4)

triggerability

Dríft tíme of last arríving electron corrected for t.o.f. and for transit tíme on the wire. Assumed 10 tracks with 100 hits each.

From t_{max} one gets t_o event by event, avoiding long and complicated calibration procedures.

Moreover, $\sigma(t) \sim 1$ ns idenifies the trigger of the event

Cluster Counting Performances (5)

Particle identification

Assumíng

$$\sigma(dE/dx)/(dE/dx)_{min} = \sigma(N_{cl})/N_{cl,min}$$

A 2.0 m mínímum íonízíng track segment produces, ín average, $N_{cl} = 2400$

$$\sigma(dE/dx) = 2\% (dE/dx)_{min} expected$$

Example from test beam data: π/μ sepration @ 200 MeV/c

G.Cataldí, F.Grancagnolo and S.Spagnolo, INFN-AE-96-07, Mar. 1996, 23p. G.Cataldí, F.Grancagnolo and S.Spagnolo, NIM A386 (1997) 458-469

Cluster Counting Performances (5')

Conclusíons 1

In principle, we should be capable of building a very light, transparent, He based gas, all stereo layers, drift chamber having the following properties:

- 40,000 wires, 12,000 cells (2.5 cm) [100,000 wires, 30,000 cells (1.5 cm)]
 total transparency to the calorimeter: ~ 3% X₀
 spatial resolutions: σ_{xy} ~ 50 μm, σ_z ~ 500 μm
 transv. mom. resolution dominated by m. s. up to 7.3 (60.) GeV/c
 trigger capability
- dífferentíal energy loss as good as ~ 2%

Conclusíons 2

The concept of cluster counting is being applied to a traditional drift chamber.

A detailed MC is under study to simulate all relevant processes and to compare results with test data
 A VLSI chip (amplifier, digitizer, storage, I/O) is being developed for the r-o by INFN.

- Conting algorithms are being optimized to extract the most complete information from data.
- Physics simulation and analysis programs within a modular ROOT framework to optimize the working parameters of the chamber are at an advances state.