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Abstract—Muscle synergy analysis is a useful tool for the 

evaluation of the motor control strategies and for the quantification 

of motor performance. Among the parameters that can be extracted, 

most of the information is included in the rank of the modular 

control model (i.e. the number of muscle synergies that can be used 

to describe the overall muscle coordination). Even though different 

criteria have been proposed in literature, an objective criterion for 

the model order selection is needed to improve reliability and 

repeatability of MSA results. In this paper, we propose an Akaike 

Information Criterion (AIC)-based method for model order 

selection when extracting muscle synergies via the original Gaussian 

Non-Negative Matrix Factorization algorithm. The traditional AIC 

definition has been modified based on a correction of the likelihood 

term, which includes signal dependent noise on the neural 

commands, and a Discrete Wavelet decomposition method for the 

proper estimation of the number of degrees of freedom of the model, 

reduced on a synergy-by-synergy and event-by-event basis. We 

tested the performance of our method in comparison with the most 

widespread ones, proving that our criterion is able to yield good and 

stable performance in selecting the correct model order in simulated 

EMG data. We further evaluated the performance of our AIC-based 

technique on two distinct experimental datasets confirming the 

results obtained with the synthetic signals, with performances that 

are stable and independent from the nature of the analysed task, 

from the signal quality and from the subjective EMG pre-processing 

steps. 

 
Index Terms— Muscle Synergies, Non-negative Matrix 

Factorization, Akaike Information Criterion 

 

I. INTRODUCTION 

USCLE synergy analysis (MSA) is a powerful framework 

for characterizing the human motor control strategies. 

MSA works by hypothesizing that the central nervous 

system controls in a modular fashion all the muscles involved 

in a particular motor task [1]-[3].  
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Even if in literature several models have been proposed to 

describe such modularity [4]-[5], the synchronous synergy 

model is the most used and popular one [6]-[9].  

In this representation, each motor module (muscle synergy) is 

described by a spatial component (synergy vector, W), 

containing the weighted contribution of each muscle to each 

synergy, and a set of time- varying activation coefficient (C), 

describing the coordinated recruitment of each group of 

muscles encoded in W. 

Some papers have shown that the level of motor impairment 

in pathological conditions [10]-[12] and the evolution of 

functional recovery [13]-[16] are related to the number of 

synergies describing the motor control structure. Thus, the 

objective and accurate assessment of such a number is 

mandatory to guarantee the repeatability of the results and the 

applicability of the approach to a clinical environment. 

 From a methodological standpoint, muscle synergies can be 

extracted by applying a Non-Negative Matrix Factorization 

algorithm (NNMF) on the matrix containing the multi-muscle 

envelopes of the surface electromyography (sEMG) signal. The 

most used implementation of NNMF is the original gaussian 

one [17]-[18] that factorizes the matrix M (containing NM 

envelopes constituted by NS time points) by using the matrices 

W (NM x k – encoded group muscles) and C (k x NS – time 

varying activation coefficients) and a realization of a white and 

gaussian noise: 

 

ˆM CM W + == +           (1) 

  

 

The parameter k, which is the number of muscle synergies, is 

generally determined on the basis of some quality parameters 

such as the Variance Accounted For (VAF) or coefficients of 

determination R2: a number of synergies going from 1 to the 

number of recorded muscles are extracted, and the minimum 

number of synergies able to exceed some kind of threshold in 

the quality measure is taken as the correct rank of the low-

dimensional approximation. Also, some statistical thresholding 

based on the low-rank approximation obtained from surrogate 

data have been published [9]. 

Recently the Akaike Information Criterion (AIC) has been 

proposed as an objective, information-based method for the 

accurate selection of the number of synergies [18]-[20]; 

although this method is theoretically independent from any pre-

processing choice and it is very promising in standardizing 

MSA, neither a complete quantitative assessment nor an 

analysis to compare the performance with other approaches 
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have been presented in literature. In addition, for the classical 

Gaussian implementation of NNMF for MSA, the standard AIC 

method has been proved to yield wrong number of synergies in 

most cases [18][21], often leading to a systematic 

underestimation of the correct rank of the model; considering 

that the original version of NNMF is still the most used for 

MSA, an objective criterion for the model selection that could 

reinforce NNMF is of critical importance. 

In this work, we want to overcome the main drawback of the 

AIC method applied to NNMF for MSA. Aiming at this some 

important methodological modifications have been applied to 

the traditional AIC criterion, mainly consisting of a 

modification of the log-likelihood function used for gaussian 

NNMF and of a wavelet-based approach for the evaluation of 

the correct number of free parameters. 

The innovation applied to the criterion guarantees an 

accurate and objective model selection whose goodness has 

been tested by comparing the performance among several 

criteria, with both simulated and experimental data. 

II. METHODS 

A graphical representation of the proposed algorithm is given 

in Fig. 1. The envelope matrix is used for estimating the signal 

dependent noise power, and the two matrices W and C are used 

for the evaluation of the log-likelihood value. At the same time, 

the number of elements in W is taken as the number of degrees 

of freedom in the spatial component, while the C matrix is 

processed by the wavelet-based algorithm described in the 

following section for the evaluation of the degrees of freedom 

in the time component. 

A. Definition of the Akaike Information Criterion 

The classical definition of the AIC is given by 

 

ˆlog (2 2)AIC NM= − +L            (2) 

 

where N is the total number of free parameters in the model 

and ˆ( )ML  is the likelihood value for the estimation. AIC for 

muscle synergy extraction via classical gaussian NNMF is 

typically written as a function of the number of synergies k [18]-

[19]: 

 

2

, ,

2
1 1

(
2 )

ˆ
(

)
( )

SM NN
i j i j

M S

i j M

M
AI k

M
C Nk N

= =

+
−

= +  (3) 

  

  

where the first term is the negative log-likelihood value and 

the second term is proportional to the sum of the parameters in 

W (kNM) and in C (kNS). This formula is valid only if data are 

corrupted only by white gaussian noise and all the samples of 

W and C are independent one from the other. 

 In the case of motor commands, it has been shown that the 

control signals are corrupted by signal dependent noise. This 

kind of noise can be modelled as having a constant coefficient 

of variation (constant-CV noise) [22], so we modified the first 

log-likelihood term in the AIC into the following: 

 

Fig 1: A graphical representation of the procedures adopted for the evaluation of the AIC 
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where the term 
2

; ,SDN i j  takes into account an estimation of 

the power of the signal dependent noise on the i-th muscle at 

the j-th time instant. The full derivation of this quantity is given 

in Section II.B. 

Moreover, when dealing with muscle synergy analysis, the 

matrix M is composed of sEMG envelopes; these signals, which 

are obtained from the raw sEMG, maintain the same sampling 

frequency of the original signal, that is over dimensioned 

considering the envelope frequency content. This implies that 

the samples of each envelope are not all independent and that 

in AIC the number of degrees of freedom in time is lower than 

2 SkN .  

 To evaluate the correct number of free parameters we 

considered a set of power spectra of the activation signals as 

obtained after a wavelet decomposition applied on each row of 

the activation coefficients matrix C. The full description of this 

method is given in Section II.C. 

The modified version of the AIC has then been expressed as 

follows: 
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Where NDoF;i,j is the estimated number of free parameters for 

each event and each synergy, NM is the number of muscles and 

Le is the number of events. In this formulation an event is 

defined as one cycle, for cyclical task, or one movement for 

non-cyclical tasks; since most of the analyses on muscle 

synergies rely on the repetition of several movements this 

choice has been made in order to extract correctly only the 

degrees of freedom related to the frequency content of the 

muscle activations alone, without taking into account the 

periodical or quasi-periodical nature of movement repetitions. 

This resulting formula for the AIC takes into account both a 

more realistic model of the noise present in the data 

(represented by the modified variance term in the log-likelihood 

formula) and an accurate computation of the free parameters of 

the model (NDoF;i,j). 

B. Signal dependent noise 

For deriving a model of the signal dependent noise, we used 

the constant CV hypothesis given in [22]; since the variance of 

the signal dependent noise in motor commands has been shown 

to be 

 
2 2( )SDN Sc =                                    (6) 

 

where S  is the estimated mean of the distribution and c  is a 

value between 0.1 and 0.25, we approximated the signal 

dependent noise power with 

 

( )
2

2

, , ,SDN i j i jc S =                           (7) 

 

where S is a smoothed version of each sEMG envelope and c 

is a random value between 0.1 and 0.25. For smoothing, we 

used a time constant equal to 1/ peakf , where 
peakf  is the 

median peak frequency of the amplitude envelope across all the 

events or cycles. 

 After the estimation of the sample-by-sample signal 

dependent noise power, we inserted this value into the 

likelihood function, so considering the noise for the i-th sample 

of the j-th muscle to be white and gaussian with a variance that 

is given by 

 
2 2 2

, , ,i j M SDN i j  +=                                                          (8) 

 

C. Wavelet-based method for the selection of the correct 

number of free parameters 

The first step of muscle synergy analysis is the estimation of 

the point-by-point sEMG amplitude (i.e. the extraction of the 

envelope); the amplitude signal can be extracted from the 

rectified version of the signal by some fixed or adaptive time 

constant filters. It has been demonstrated that the maximum 

meaningful frequency contained in the rectified sEMG is 

significantly lower than the maximum frequency allowed by the 

typical 1 or 2 kHz sampling frequencies needed for correctly 

sampling the original signal [23]; considering this, every kind 

of optimal low pass filter for amplitude estimation has a cut-off 

frequency that is approximately lower than 30 Hz [24]. The 

commonly used sEMG envelopes (and so the synergy 

activation profiles) can be considered to be always 

oversampled, resulting in the need for a procedure for selecting 

the correct number of degrees of freedom for AIC (i.e. the 

minimum number of samples able to describe correctly the 

activation coefficients of each synergy). 

For the application in the computation of the AIC, we derived 

a rough estimation of the correct number of degrees of freedom 

using a procedure based on a discrete wavelet decomposition of 

the signal using a Daubechies 5 wavelet. At each decomposition 

level h, we resampled the detail coefficients so as to have the 

same number of samples for both the original signal and the 

wavelet coefficients.  

We then calculated a function whose values are obtained 

from the correlation coefficient of all (from 0 to fs/2n; fs: 

sampling frequency) the portions of the normalized spectra of 

the detail coefficients and the one of the original signal. Since 

the detail coefficients at the level h+1 are a high pass filtered 

version of the approximation at level h that has been shifted to 

baseband, this means to compare the frequency content at the 

level h with its high pass filtered version across all the level h 

bandwidth. In the case of sEMG signal, this function has been 

found to have a minimum in correspondence with the 

approximation level at which some of the power of the signal is 

transferred into the detail coefficients. A semi-quantitative 

proof of the presence of this minimum is given in Appendix C. 
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 The advantage of using a wavelet-based method arises from 

the fact that it works with quadrature mirror filters (i.e. the 

effect of the filter on each approximation and detail signal is 

approximately the same) and that it implements automatically a 

down-sampling of the signal, so that the approximation is 

automatically an optimal representation of the signal. 

Considering this, if the minimum of the aforementioned curve 

is at the h-th level, we defined the correct number of free 

samples to be:  
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         (9) 

 

where Li represents the length of the detail coefficients at the h-

th level. This relationship takes into account the total power PA 

and PD of the approximation and detail coefficients at each 

decomposition level and defines the number of degrees of 

freedom considering the nature of the signal included in each 

frequency band. 

The total number of free parameters for the model is then 

defined as the sum across all the muscles and all the events or 

cycles of the so defined degrees of freedom. 

 

D. Comparison with other model selection criteria 

For a comparison between our method NAIC and the solutions 

already proposed in literature we used several different 

approaches, widely used in previous research: 

 

o Hard threshold on VAF value (NVAF) [25] 

o Hard threshold on R2 value (NR2) [13] 

o Hard threshold on single-muscle VAF value (NM) [10] 

o If the increase in VAF value from n to n+1 synergies is 

lower than 5%, n is selected as the correct number of 

modules (N5). This method is a global implementation 

of what has been proposed in [10] 

o Comparison with surrogate data: if the increase in VAF 

going from n to n+1 synergies is lower than the 75% of 

the one found with the same number of modules in the 

decomposition of a matrix composed of random data 

with the same amplitude distribution, n is selected as the 

correct number of synergies (NSURR) [9] 

o Threshold on the curvature of any three consecutive 

points of the VAF curve (NCURV) [29] 

o Threshold on the goodness of the linear fit of the points 

of the VAF curve starting from any number of synergies 

(NFIT) [30] 

 

VAF and R2 are defined as 

 

𝑉𝐴𝐹 =  1 − 
∑ ∑(𝑀 − �̂�)2

∑ ∑ 𝑀2             (10) 

 

𝑅2  =  1 − 
∑ ∑(𝑀 − �̂�)2

∑ ∑(𝑀 − �̅�)2           (11) 

 

The thresholds for NVAF and NR2 have been optimized using 

the simulated data, varying them within the range [0.75-0.99] 

with steps of 0.05, and they have been set to 0.97 and 0.95 

Fig. 2. Distribution of the identified number of synergies for the analysis on simulated data. Results are calculated across all the pre-processing (i.e. cut-off 
frequency and SNR range) conditions and shown only around the true number of synergies (indicated in red). 
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respectively; the same threshold applied to NVAF has been used 

also for NM. The optimization has been made in order to have 

high performance on average across all the simulation 

conditions.  

Both simulated and experimental data have been used for the 

comparison. In particular, simulated data have been used to 

assess the accuracy of NAIC with a controlled and varying 

number of muscle synergies, while the test on experimental data 

has been introduced to check if our criterion is able to give 

precise results in different tasks, experimental conditions and 

pre-processing steps. 

 

E. Simulated data 

In silico data have been simulated from 15 muscles which 

activations were generated by a known number of synergies 

Nsyn ranging from 2 to 15. 

The activation coefficients C have been generated with a 

Hann window of length uniformly chosen between 150 and 200 

samples (equivalent length: 150-200 ms by hypothesizing 1kHz 

sampling frequency); the distance between the activations of 

two different synergies was set to have a minimum value of 50 

samples (equivalent length: 50 ms). The Hann function is given 

by the relation 

 

𝑤(𝑥) = 𝑐𝑜𝑠2 𝜋𝑥

𝐿
               (12) 

 

and has been chosen to simulate bell-shaped physiological 

activations. The corresponding C profiles have then a length 

that is increasing when the number of synergies is higher in 

order to maintain separation across the different activations. 

The corresponding synergy vectors W were generated as to 

have a random number of active muscles between 1 and 2 

Nm/Ns and a maximum correlation value of 0.6 among distinct 

synergy vectors. This last condition was needed to ensure that 

the activity of all the modules was significant in describing 

correctly the data, meaning that a wrong estimation of the 

correct number of synergies would on average lead to a bad 

approximation of the activity of at least one muscle. 

After the definition of the envelope matrix as M = WC, we 

introduced signal dependent noise according to the model 

described in Section II.B, and each muscle activation profile 

was used for generating a synthetic sEMG signal following the 

model proposed by Stulen and De Luca [27] at a theoretical 

sampling frequency of 1 kHz; white gaussian noise was added 

on the generated signal as to have controlled SNR values. For 

testing the criteria in different SNR scenarios, we defined three 

ranges: 

 

o 2 to 5 dB (High-noise) 

o 7 to 10 dB (Med-noise) 

o 15 to 18 dB (Low-noise) 

 

We carried out a simulation composed of 30 realizations for 

each SNR range; the SNR value for each generated sEMG 

signal was set to a random uniform value between the two limits 

and was calculated as if no concurrent signal dependent noise 

was present; for simulated data, the equivalent power of the 

signal dependent noise is negligible with respect to these levels 

of simulated noise so that this choice is coherent with the 

assumptions of the algorithms. For each realization, we 

extracted the linear envelope to be decomposed via NNMF 

using rectification and low pass filtering at different frequencies 

(5, 10 and 20 Hz, using a 3rd order Butterworth filter). 

F. Experimental data 

For the test on the experimental data, we used two different 

datasets consisting of the sEMG activity recorded from two 

different tasks. These datasets were chosen as representative of 

two potentially distinct motor control strategies, with different 

constraints and nature of the task: 

 

o Pedalling (ROME dataset): this dataset is composed of 

the activity of 8 unilateral lower limb muscles (Rectus 

Femoris, Vastus Medialis, Vastus Lateralis, Tibialis 

Anterior, Gluteus Maximus, Biceps Femoris, Soleus, 

Gastrocnemius Medialis) during pedalling at a fixed 

cadence (60 RPM) from 9 healthy subjects. The 

complete description of the experimental protocol is 

given in [8]. This dataset was included for testing the 

behaviour of the AIC criterion in the case of a lower limb 

cyclical dynamic task with quasi-periodic muscle 

activations. 

o Isometric upper limb (DUBLIN dataset): this dataset is 

composed of the activity of 13 unilateral upper limb 

muscles (Brachiradialis, Biceps brachii short and long 

head, Triceps brachii lateral and long head, anterior, 

medialis and posterior Deltoid, Pectoralis major, 

Trapezius, Infraspinatus, Teres major and Latissimus 

dorsi) from 14 subjects. The full description of the task 

and experimental protocol is given in [28]; this dataset 

is included as a test of the performance when dealing 

with upper limb isometric, non-periodic, activations. 

 

The signals composing the ROME dataset were sampled at 1 

Fig. 3. Average AIC versus Nsyn curves for 3, 4 and 10 synergies.  
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kHz, while the DUBLIN data are sampled at 2 kHz. Envelopes 

were extracted using the same procedures used for the synthetic 

signals, and each event (for DUBLIN) or cycle (for ROME) was 

time-normalized to 128 and 256 samples for both datasets, to 

increase the speed and reliability of the wavelet method, due to 

the dyadic nature of the reduction of degrees of freedom at each 

step of the wavelet decomposition. 

G. Quantification of the performance 

Accuracy of the model selection criteria has been defined as 

the percentage of the correct identification of the number of 

synergies for each combination of SNR level, number of 

synergies and cut-off frequency (for simulated data) and of 

resampling length and cut-off frequency (for experimental 

data). The accuracy is then calculated, for each combination of 

parameters as the number of the correct identifications divided 

by the number of attempts (i.e. the number of replicates for 

simulated data and number of subjects for experimental 

signals). 

The dependency of the accuracy on the processing choices 

has been tested with a three-way ANOVA test, with cut-off 

frequency, SNR level and true number of synergy as factors for 

simulated data and cut-off frequency, resample length and 

dataset (i.e. ROME and DUBLIN) for experimental signals. In 

order to meet the assumptions of the ANOVA test, variances of 

the data have been stabilized by using an arc-sine square root 

transformation on the values and the normality of the residuals 

has been checked.  

III. RESULTS 

A. Simulated data 

The results in Fig. 2 show the distribution of the Nsyn 

identified by all the methods across all the conditions (SNR and 

cut-off frequency). An example of the AIC curve for different 

true values of the number of synergies is shown in Fig. 3. 

The results in Table I and II show the accuracy as a function 

of the cut-off frequency for the envelope (average across the 

three SNR values), and the same results considered as a 

function of the SNR range (average across all the cut-off 

frequencies).  
TABLE I 

ACCURACY (%)  FOR DIFFERENT CUT-OFF FREQUENCIES ON THE 

SIMULATED DATASET 

  5Hz 10Hz 20Hz  

 NAIC 71.03 78.10 73.81  

 NM  28.17 32.30 33.49  

 NSURR  72.46 91.59 94.52  

 NVAF * 49.84 73.73 83.57  

 N5%  21.90 32.30 35.00  

 NR2 32.14 35.32 38.89  

 NCURV  42.06 49.37 48.73  

 NFIT 79.76 84.05 78.89  

In Table III, the descriptive statistics of the accuracies for 

each processing scenario and SNR level and for all the 

simulated Nsyn are shown; since the performance of any 

algorithm are dependent (p<0.05) on the true number of 

synergies when the data are generated by a high number of 

modules, we tested with this measure the overall stability of the 

criteria as a function of the processing choices and the SNR, not 

the number of synergies. The AIC criterion has the most stable 

performance across all the conditions (p>0.05 for all the 

conditions), being either the best performing or comparable 

with the best performing one, having in some conditions lower 

accuracy with respect to NSURR. Statistical dependency on the 

highlighted factor has been marked in Table I and II with an 

asterisk. 

 
TABLE II 

ACCURACY (%) FOR DIFFERENT SNR RANGES ON THE SIMULATED DATASET 

  High-Noise Med-Noise Low-Noise  

 NAIC 72.78 74.84 75.32  

 NM  26.9 33.49 33.57  

 NSURR * 94.52 88.17 75.87  

 NVAF * 41.67 74.68 90.79  

 N5% * 12.86 30.79 45.56  

 NR2 35.63 35.87 34.84  

 NCURV 46.98 46.59 46.59  

 NFIT  70.95 84.21 87.54  

 

 
TABLE III 

AVERAGE, MINIMUM AND MAXIMUM ACCURACY (%)  ON THE SIMULATED 

DATASET 

  Average Minimum Maximum  

 NAIC 74.31 66.19 79.29  

 NM 31.32 21.90 35.95  

 NSURR 86.19 61.43 100  

 NVAF 69.05 21.19 98.81  

 N5% 29.74 6.90 51.43  

 NR2 35.45 30.00 35.95  

 NCURV 46.72 41.19 49.76  

 NFIT 80.90 66.43 87.86  

 

 

B. Experimental data 

For testing the performance of the different methods with the 

two experimental datasets, we defined the estimated true 

number of synergies for each subject as the most frequent value 

obtained with the three most accurate criteria; the three selected 

criteria have been chosen as the ones able to yield a minimum 

accuracy higher than the 50% on the whole simulated dataset, 

namely NAIC, NSURR and NFIT.  

 
 TABLE IV 

ACCURACY (%) FOR DIFFERENT CUT-OFF FREQUENCIES 

(EXPERIMENTAL DATASETS) 

  ROME DUBLIN  

  5Hz 10Hz 20Hz 5Hz 10Hz 20Hz  

 NAIC 68.75 75.00 62.5 60.71 57.14 60.71  

 NM * 25.00 12.50 0 0 0 0  

 NSURR 50.00 56.25 65.5 71.43 82.14 75.00  

 NVAF * 75.00 25.00 0 21.43 0 0  

 N5% 50.00 50.00 50.00 14.29 14.29 28.57  

 NR2 * 62.50 75.00 37.50 35.71 7.14 0  

 NCURV * 87.5 87.5 81.25 50.00 39.29 28.57  

 NFIT 50.00 56.25 62.50 0 0 0  

 

 

In Fig. 4 the average behaviour of the AIC curve for the 

ROME and DUBLIN subjects is shown. The two curves exhibit 

a pronounced minimum in correspondence of 4 synergies, 

coherently with previous literature [8][28]. 
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Results for both the ROME and the DUBLIN datasets are 

shown in Tables IV and V. Median and IQR values are 

computed by calculating the subject-by-subject accuracy (i.e. 

the values coming from each subject and all the processing 

choices). Our criterion has been found to have the most stable 

performances across the two datasets and the processing 

conditions. VAF-based criteria, in contrast have a dependency 

on the dataset, being NSURR the optimal choice on DUBLIN 

dataset, and NCURV on ROME. The accuracy and error reported 

in Table IV and V are expressed with respect to the 

hypothesized true number of synergies.  

Dependency of the accuracy on the cut-off frequency has 

been marked with an asterisk in Table IV. No dependency on 

the resample length has been found (p>0.05 for all the 

algorithms), while only NAIC has independent accuracy with 

respect to the dataset. 

 
TABLE V 

ERROR STATISTICS (EXPERIMENTAL DATASET) 

    ROME DUBLIN  

    Median 25th  75th  Median 25th  75th   

 NAIC 0 0 0 0 0 1  

 NM 2 1 4 6.5 4 8  

 NSURR 0 -1 0 0 0 0  

 N90 1 0 2 3 2 4  

 N5% -0.5 -1 0 -1 -1 -1  

 NR2 0 0 1 1.5 1 3  

 NCURV 0 0 0 -1 -2 0  

 NFIT 0 0 1 3 3 4  

 

IV. DISCUSSION 

In this paper we proposed a method to apply the Akaike 

Information Criterion for the selection of the correct number of  

synergies to be extracted from multi-muscle sEMG recordings 

via the original Gaussian Non-Negative Matrix Factorization 

algorithm. 

Previous attempts to apply this criterion to the original 

NNMF implementation concluded that, regardless of data 

structure, the minimum for the AIC was found for 1 synergy 

[21], and in general the application of this criterion led to an 

overall underestimation of the underlying number of synergies 

[18]-[20]; since the increasing branch of the AIC curve is given 

by the dominance of the degrees of freedom term over the 

likelihood term, such a result can derive from an overestimation 

of the number of free parameters, generally due to 

oversampling. We modified this part of the AIC criterion to take 

into account the characteristics of the sEMG envelope, by 

evaluating an optimal subsampling procedure for each synergy 

activation. In doing so, we corrected the overestimation of the 

second term in the AIC, finding results that are independent 

from any processing choice. 

In addition, we modified the likelihood term in AIC to take 

into account the physiological characteristics of the signals to 

be decomposed; since it has been proved [22] that neural 

commands are corrupted by signal dependent noise, we 

corrected the noise power in the model to insert an additive term 

that takes into account a rough estimation of the power of the 

neural noise. Both this and the correction on the number of free 

parameters yielded a corrected version of the AIC criterion that 

is able to identify the correct number of synergies by using the 

most used implementation of the NNMF algorithm. 

 From a general point of view, we found that our method is 

able to yield good results on different datasets and across all the 

possible true numbers of motor modules. 

The analysis on simulated data proved how, although for 

small numbers of synergies most of the criteria have 

comparable performances, when no hypotheses about the 

maximum number of synergies can be made, NAIC, NFIT and 

NSURR represent the safest choices for the definition of the 

dimensionality of the model.  

The analysis on the two experimental datasets, proved that 

also when dealing with real sEMG signals, NAIC has 

independent performance from the nature of the data, while the 

other best performing algorithms, namely NSURR and NCURV fail 

to maintain a stable performance over the two scenarios.  

Between the two datasets, ROME is the one that has in 

general the lowest error across all the criteria; this is mainly due 

to the fact that the envelopes are quasi-periodical, and all the 

corresponding synergies are activated with very regular shapes. 

DUBLIN, in contrast is more challenging, considering its non-

periodical nature; the lower regularity of the task results in a 

worsening of the precision of most of the criteria, suggesting 

that for the selection of the optimal processing scheme some a 

priori knowledge on the activations is needed. It has to be 

remarked that the results on the two datasets depend on the 

method used for defining the true number of synergies; our 

strategy, however, exploits the results from the best performing 

algorithms to extract this information, aiming to a stable and 

reliable comparison. Moreover, the estimated true number of 

synergies is coherent with previous results that have been 

published on the same dataset, varying between 3 and 5. 

Threshold-based criteria have here been tested with 

optimized values based on the simulated data; this optimization 

is possibly not valid also for our experimental data, hence the 

low accuracies reported. While a different optimization can 

improve the performance of NVAF, NR2 and NM, this dependency 

is alone a disadvantage of these methods over all the others. In 

the literature, the threshold is typically set to 90% for VAF 

values and in most cases requires some additional heuristic 

analysis to determine the correct number of synergies; for this 

reason, the analysis with this threshold has not been included 

 

Fig. 4.  Average behaviour, across all subjects and all pre-processing 
conditions, of the AIC versus Nsyn curve for both the experimental 

datasets (ROME: dynamic, cyclical. DUBLIN: isometric, non 

cyclical).  
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here.  

NSURR, N5%, NCURV and NFIT all attempt to find the elbow of 

the VAF curve; all these methods also apply a threshold on 

some curvature or slope measure so that the very same 

consideration can be applied also on those algorithms. NSURR, 

however, apart from the subjective 0.75 threshold on the slope, 

exploits statistical features of the signal and has a working 

principle that is closer to NAIC with respect to all the other 

selection methods in terms of independence from subjective 

choices. All the tested criteria can be applied on both VAF and 

R2 curves, with different thresholds; in this work we selected 

the most used strategies to benchmark the performance of NAIC 

in order to yield a characterization of its accuracy with respect 

to the current scientific literature on the topic.  

Our information-based criterion is tuned on the general 

characteristics of the signals used in the analysis and is not 

dependent on any threshold; this, together with the good 

performance reached with all the tested data, support the 

proposal of our AIC criterion as a standard method for selecting 

the correct number of muscle synergies from any kind of multi-

muscle sEMG recordings. In the literature, several alternative 

methods for an automatic detection of the number of synergies 

have been proposed [31]-[33]; all the techniques, however, 

exploit different assumptions on the task or the 

neurophysiological significance of the W and C components. In 

our proposed technique, in contrast, the number of a priori 

assumptions on the underlying model of the signal was 

minimized; a fine tuning of the model parameters could lead to 

further improvements of the method, even though a more 

complex definition of the likelihood term could be required. 

The present methodology was implemented for the 

synchronous muscle synergy model, but an Akaike Information 

Criterion could be fitted ad-hoc for other modular motor control 

models, such as the one based on fixed temporal components 

[5][26] or the time varying muscle synergies approach [3]. 

V. CONCLUSIONS 

In this paper, we proposed a method for the evaluation of the 

Akaike Information Criterion for the selection of the number of 

muscle synergies to be extracted from multi-muscle surface 

EMG recordings. Our implementation is based on both the 

definition of a model for the log-likelihood function and on a 

procedure for the calculation of the number of free parameters 

in the synergy model. We proved that our method has good 

performance in the identification of the correct number of 

modules in both simulated and experimental conditions, 

independently from any pre-processing choices; considering 

this, our AIC can represent a good solution for the improvement 

of the repeatability and reliability of muscle synergy analyses 

results. 

APPENDIX 

A. PROOF OF THE BEHAVIOUR OF THE CORRELATION CURVE 

An approximation of the sEMG envelope spectrum can be 

built as: 

𝑃(𝑓) =  {

0        𝑓 < 𝑓1         
1       𝑓1 < 𝑓 < 𝑓2

0       𝑓 > 𝑓2         
            (13) 

 

With this approximation the correlation coefficient can be 

written as proportional to 

 

𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝 −
1

𝐹𝑚
𝑁𝑢𝑝,𝑠𝑁𝑢𝑝,𝑑              (14) 

 

With 𝐹𝑀 =  
𝑓𝑠

2𝑛,  𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝  the number of overlapped high 

samples and 𝑁𝑢𝑝,𝑠 and 𝑁𝑢𝑝,𝑑 the number of samples equal to 1 

in the signal portion and detail coefficient spectra, respectively. 

This quantity is decreasing with the decomposition levels 

before the maximum frequency of the signal considering the 

fact that 𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝  is 0 and 
1

𝐹𝑚
𝑁𝑢𝑝,𝑠 is higher the lower 𝐹𝑀. When 

𝐹𝑀 is lower than 𝑓1, the quantity is increasing with the 

approximation levels, being 𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝 and 𝑁𝑢𝑝,𝑠 equal to 0 and 

𝑁𝑢𝑝,𝑑 decreasing. 

If at a certain decomposition level 𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is higher than 0, 

the value of the correlation is increasing with respect to the 

previous level. 

Considering these three trends of the curve, the correlation is 

expected to have a minimum in correspondence of the 

maximum frequency of the spectrum if 𝑓2 < 𝑓𝑠. 
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