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Abstract

A previously derived relativistic energy density functional for nuclei, based on low-energy in-medium
chiral dynamics, is generalized to implement constraints from chiral SU(3) effective field theory and applied
to Λ hypernuclei. Density-dependent central and spin–orbit mean fields are calculated for a Λ hyperon using
the SU(3) extension of in-medium chiral perturbation theory to two-loop order. Long range ΛN interactions
arise from kaon-exchange and from two-pion-exchange with a Σ hyperon in the intermediate state. Short-
distance dynamics is encoded in contact interactions. They include scalar and vector mean fields reflecting
in-medium changes of quark condensates, constrained by QCD sum rules. The Λ single particle orbitals are
computed for a series of hypernuclei from 13

ΛC to 208
ΛPb. The role of a surface (derivative) term is studied. Its

strength is found to be compatible with a corresponding estimate from in-medium chiral perturbation theory.
Very good agreement with hypernuclear spectroscopic data is achieved. The smallness of the Λ-nuclear
spin–orbit interaction finds a natural explanation in terms of an almost complete cancellation between short-
range scalar/vector contributions and longer range terms generated by two-pion exchange.
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1. Introduction

The spectroscopy of Λ hypernuclei [1–3] sets strong constraints [4] on the spin dependence of
the ΛN effective interaction. There is convincing evidence that the Λ-nuclear spin–orbit interac-
tion is abnormally weak compared to the very strong spin–orbit force experienced by nucleons in
ordinary nuclei. Experiments setting limits on the spin–orbit coupling in light Λ hypernuclei are
reported in Ref. [5]. A recent analysis [6] of heavy hypernuclei confirms the systematic smallness
of the Λ-nuclear spin–orbit splitting.

Many theoretical attempts were made over the years to understand the weakness of the
Λ-nuclear spin–orbit coupling [7–11], with model assumptions ranging from quark degrees of
freedom via phenomenological boson exchange mechanisms to unusually strong (negative) ωΛ

tensor couplings. The systematics of Λ-nuclear shell model orbitals have been studied in a variety
of approaches. The quark–meson coupling model [12,13] seeks the origin of the weak spin–orbit
coupling of the Λ at the quark level. Relativistic mean-field (RMF) models [7,14] generate the
spin–orbit coupling by the coherent interplay of scalar and vector mean fields. Even though these
fields are only about half as strong for Λ hyperons as compared to those for nucleons in nuclei,
the resulting Λ-nuclear spin–orbit splittings are usually still too large unless additional ad-hoc
mechanisms are invoked for their suppression. In mean-field descriptions with phenomenological
density-dependent interactions of Skyrme type [15–17], and in several hypernuclear many-body
calculations (Fermi Hypernetted Chain, Brueckner–Hartree–Fock) [18,19], the spin–orbit split-
ting is suppressed simply by hand.

In this article we follow a different path motivated by recent developments at the interface
between low-energy QCD and the nuclear many-body problem. Chiral effective field theory is
established as the realization of QCD in the low-energy limit, with pions as Goldstone bosons of
spontaneously broken chiral symmetry being the active light degrees of freedom. In its version
with nucleons and �(1230) isobars as heavy baryons, chiral effective field theory is considered
to be an appropriate starting point not only for describing low-energy pion–nucleon interactions
but also for the nuclear many-body problem [20,21].

In-medium chiral perturbation theory [21,22] provides a successful framework for construct-
ing the energy density of nuclear matter as a function of Fermi momentum kF . Long and inter-
mediate range one- and two-pion exchange interactions including tensor and three-body forces
are treated explicitly. Short-distance dynamics, not resolved in detail at the characteristic Fermi
momentum scales, is encoded in contact terms. The contact terms generate contributions to the
energy per particle that are linear in the density ρ = 2k3

F /(3π2). These terms need to be adjusted,
e.g. by reproducing the empirical binding energy, while terms of higher (fractional) powers in the
density, involving effects of the filled Fermi sea on two-pion exchange processes, are computed
with input fixed entirely by empirical low-energy pion–nucleon data. Three-nucleon interac-
tions are systematically incorporated. Spin–orbit forces follow consistently from the evaluation
of spin-dependent terms in inhomogeneous nuclear matter [23–27].

The translation of this framework into a relativistic energy density functional for finite nuclei
[28,29] is designed so that it keeps the separation-of-scales concepts of the previous nuclear
matter calculations. It includes explicit pion and two-pion exchange dynamics up to three-loop
order in the energy density. It also incorporates strong scalar and vector mean fields (equivalent
to contact interactions and constrained by in-medium QCD sum rules), and an additional surface
(derivative) term. Applications of this approach to nuclei have been quite successful throughout
the nuclear chart and naturally suggest a systematic extension to hypernuclei, with special focus
on the very different spin–orbit interactions of nucleons and Λ hyperons.
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The generalization to chiral SU(3) introduces a well-defined set of couplings of the pseu-
doscalar meson octet to the baryon octet. The longest range ΛN interactions are now generated
by two-pion exchange with an intermediate ΣN and (less importantly) by kaon exchange. The
even longer range one-pion exchange is excluded in lowest order by the isospin I = 0 of the Λ.
Contact interactions are again representing unresolved short-distance dynamics. A first study us-
ing this in-medium chiral SU(3) dynamics approach was performed for 16

ΛO as a test case [30]. In
the present work these calculations are systematically expanded over a large range of hypernuclei
from 13

ΛC to 208
ΛPb.

The basic mechanisms that govern spin–orbit interactions in comparison between nuclei and
hypernuclei are a persistent theme of the present study. Three major sources of spin–orbit inter-
actions in nuclear systems can be identified:

(i) short-distance dynamics of coherently acting scalar and vector mean fields;
(ii) intermediate range spin–orbit forces induced by the pion exchange tensor interaction in

second order, with Pauli blocking of intermediate nucleon states;
(iii) a three-body spin–orbit interaction of Fujita–Miyazawa type [31], produced by two-pion

exchange with intermediate excitation of a virtual Δ isobar.

All of these mechanisms are generated within the in-medium chiral dynamics framework.
The important feature pointed out in Refs. [23,32] and further elaborated in Ref. [33], is that
mechanism (ii) comes with opposite sign but similar magnitude as compared to mechanisms (i)
and (iii). The balance between all three mechanisms is shown to account for the large residual
spin–orbit splitting observed empirically in nuclei. For a Λ in a hypernucleus, however, the three-
body Fujita–Miyazawa mechanism (iii) has no analogue simply because the Λ exists only as a
single valence particle and there is no hyperon Fermi sea. This implies that the short-distance
(or scalar-vector) mechanism (i) and the intermediate range, second-order tensor force mech-
anism (ii) largely cancel [32] to make a small net spin–orbit splitting for the Λ-hypernuclear
orbitals. Testing this scenario over a large set of hypernuclei is one of the primary goals of the
present work.

2. Theoretical framework

2.1. Hypernuclear energy density functional

A reliable and accurate calculational framework to deal with fermionic many-body systems
such as nuclei and hypernuclei is the density functional approach. Here we start from a rela-
tivistic energy density functional for hypernuclei with a single Λ hyperon orbiting in the nuclear
environment:

E[ρ] = EN [ρ] + EΛ
free[ρ] + EΛ

int[ρ], (1)

where EN is the energy of the nuclear core and

EΛ
free =

∫
d3r 〈Φ0|ψ̄Λ[−iγ · ∇ + MΛ]ψΛ|Φ0〉, (2)
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EΛ
int =

∫
d3r

{〈Φ0|GΛ
S (ρ)(ψ̄ψ)(ψ̄ΛψΛ)|Φ0〉

+ 〈Φ0|GΛ
V (ρ)(ψ̄γμψ)

(
ψ̄Λγ μψΛ

)|Φ0〉
+ 〈Φ0|DΛ

S ∂μ(ψ̄ψ)∂μ(ψ̄ΛψΛ)|Φ0〉
}
, (3)

are the additional contributions to the energy involving the hyperon. Here |Φ0〉 denotes the hy-
pernuclear ground state; ψΛ(x) and ψ(x) are the hyperon and nucleon fields, respectively.

The E[ρ] of Eqs. (1)–(3) represents a generalization to hypernuclei of the nuclear energy
density functional [28,29], constrained by basic features of low-energy QCD. The nuclear part
EN [ρ], introduced in Ref. [29], describes the core of interacting protons and neutrons in terms of
the corresponding isoscalar and isovector densities and currents.1 The hypernuclear functional,
Eq. (1), includes the Λ kinetic energy and mass term EΛ

free of Eq. (2), and the term EΛ
int of Eq. (3)

which summarizes Λ-nucleon interactions in the nuclear environment.
Also included in this density functional is a surface term proportional to DΛ

S that involves
gradients of the isoscalar–scalar nucleon density and the scalar hyperon density distributions.
Such a term arises naturally in the gradient expansion of the energy density functional for a
finite system. The leading pieces (the first two terms on the r.h.s. of Eq. (3)) correspond to the
local density approximation (LDA). They account for the interaction of a Λ with homogeneous
isospin-symmetric nuclear matter taken at the actual local density of the nuclear core. The Λ-
hypernucleus is spatially inhomogeneous, however, and surface effects are expected to be non-
negligible. The gradient term (third term in Eq. (3)) is introduced to account for such corrections
beyond the LDA.2 The explicit form of this surface term is guided by the corresponding part of
EN [ρ] in the nucleon sector [29].

2.2. Effective interaction

The strength of the effective Λ-nucleon interaction in the nuclear medium, see Eq. (3), is
determined by density-dependent vector and scalar couplings, GΛ

V (ρ) and GΛ
S (ρ), of dimension

(length)2. We follow here a strategy analogous to our previous calculations for nuclei. Long and
intermediate range hypernuclear dynamics are governed by chiral two-pion and kaon exchanges
in the presence of the nuclear Fermi sea. Short distance dynamics is encoded in contact terms
which generate Hartree type mean-field contributions linear in the density. The hyperon self-
energies resulting from both long and short range interactions are then transcribed into equivalent
density-dependent couplings, expanded in (fractional) powers of the local density ρ(r).

Consider first the effective couplings generated by in-medium two-pion and kaon exchange
processes and denoted by GΛ

π,K(ρ). Their contributions to the Λ hyperon self-energy in the
medium have been calculated explicitly [32] as functions of the nuclear Fermi momentum. This
calculation was performed using in-medium chiral SU(3) perturbation theory to two-loop order.
Following the procedures described in Ref. [29] one finds:

GΛ
π,K(ρ) = �GΛ + g3ρ

1
3 + g4ρ

2
3 , �GΛ = g1 − g2Λ̄. (4)

1 We retain the notation adopted in Refs. [28–30]: space vectors are denoted with boldface characters (x), vectors in
isospin space with an arrow (�τ ); Greek symbols are used for space–time indices.

2 The gradient term introduced here is a step beyond our previous hypernuclear study [30] which employed a simpler
LDA model.
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The hyperon self-energy is derived and calculated in the non-relativistic limit at which Lorentz
scalar and vector contributions are indistinguishable. Our convention is that GΛ

π,K(ρ) acts with
equal share in both scalar and vector channels so that its total contribution to the Λ self-energy is
2GΛ

π,K(ρ)ρ (ignoring the small difference between scalar and baryon densities at this point). The

density-independent piece �GΛ (with constants g1 and g2) is associated with the regularization
of divergent parts of two-pion exchange loop integrals, where Λ̄ � 0.7 GeV is a typical cut-
off scale. This high-momentum (or short-distance) piece is equivalent to a ΛN contact term
encoding unresolved short-range dynamics at momentum scales large compared to the nuclear
Fermi momentum. The density-dependent terms proportional to g3 and g4 reflect the action of
the Pauli principle on intermediate nucleons participating in the two-pion and kaon exchange
processes. The constants gi are deduced from [32], with the following values:

g1 = 2.51 fm2, g2 = 0.83 fm3, g3 = −0.44 fm3, g4 = 0.84 fm4.

Notably, in the terms with non-trivial density dependence representing in-medium chiral two-
pion and kaon exchange dynamics, g3 and g4 enter with alternating signs.

A second distinct set of contact terms, with coupling constants denoted as G
Λ(0)
V and G

Λ(0)
S ,

is introduced to account for the strong Lorentz scalar and vector fields of about equal magnitude
but with opposite signs, the ones that figure prominently in relativistic mean-field phenomenol-
ogy [34]. In the context of in-medium QCD sum rules [35], these terms can be associated with the
leading density dependence of the chiral (quark) condensate, 〈q̄q〉, and the quark density 〈q†q〉.

Altogether, the scalar and vector Λ–nuclear interaction strengths are given as:

GΛ
S (ρ) = G

Λ(0)
S + GΛ

π,K(ρ), GΛ
V (ρ) = G

Λ(0)
V + GΛ

π,K(ρ). (5)

Note that with a typical cut-off parameter Λ̄ � 0.7 GeV, the contact term from chiral 2π ex-
change, �GΛ � −0.5 fm2, is much smaller than what is expected for the individual magnitudes
of the scalar and vector contact couplings G

Λ(0)
S,V . For nucleons, G

(0)
V � −G

(0)
S ∼ 10 fm2. For the

Λ hyperon we also anticipate G
Λ(0)
V � −G

Λ(0)
S , but with a typical strength of only about half that

for nucleons. The approximate cancellation in the sum ΣS + ΣV of the scalar and vector mean
fields produced by G

(0)
S,V is contrasted by their coherent enhancement in the difference ΣS − ΣV

that contributes prominently to the spin–orbit coupling.
In summary, we have the low-density expansion

GΛ
S,V (ρ) = GΛ

S,V + g3ρ
1
3 + g4ρ

2
3 , (6)

with two contact terms, or low-energy constants

GΛ
S,V = G

Λ(0)
S,V + �GΛ, (7)

representing short-distance and “vacuum” dynamics. Apart from the strength of the additional
surface derivative term, these two constants are effectively the only adjustable parameters of the
model. Their arrangement in the form (7) is such that individually large “vacuum” parts G

Λ(0)
S,V

are separated from the smaller piece �GΛ arising from in-medium chiral perturbation theory in
the non-relativistic limit. Such a separation is not necessary in principle but useful in practice. In
particular, it helps interpreting the physics content of G

Λ(0)
S,V in relation to in-medium QCD sum

rules, as will be discussed in Section 2.4.
Concerning the coupling strength DΛ

S of the surface (gradient) term in Eq. (3) we follow a
similar procedure as in Ref. [29]: DΛ will first be treated as an adjustable parameter, and its
S
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resulting value will then be compared with an estimate based on in-medium chiral perturbation
theory (cf. Appendix A). The coupling DΛ

S of the gradient term3 could be density-dependent as
well, but it will turn out in practical applications that it is not necessary to go beyond the simplest
approximation with a constant coupling.

2.3. Single-particle equations

The minimization of the hypernuclear ground-state energy leads to a set of coupled relativistic
equations of Kohn–Sham type for the nucleons and the single Λ-hyperon (see Ref. [30] for
further details):

[−iγ · ∇ + Mi + γ0Σ
i
V + Σi

S

]
ψi

α(r) = εi
αψi

α(r) with i = n,p,Λ, (8)

where ψi
α(r) are the Dirac wave functions of single-particle orbitals α with energies εα for the

nucleons and the Λ hyperon, Mi are their corresponding masses, and Σi
V,S denote the vector

and scalar self-energies, respectively. The hypernuclear ground state is determined by the self-
consistent solution of the single-particle Kohn–Sham equations (8) for a given number of protons,
neutrons, and for the single Λ-hyperon. Self-consistency here means that the self-energies are
functionals of the ground state density calculated in the no-sea approximation [34,36] from the
single-particle solutions of the Kohn–Sham equations for the nucleons. Because of the explicit
density dependence of the couplings, rearrangement contributions [37] appear in the vector self-
energies of protons and neutrons. The Λ self-energies

ΣΛ
V = GΛ

V (ρ)ρ, ΣΛ
S = (

GΛ
S (ρ) + DΛ

S ∇2)ρS, (9)

are then expressed in terms of the vector and scalar ground-state local densities, ρ(r) and ρS(r),
of the nuclear core. These densities are determined self-consistently together with the wave func-
tions ψ

n,p
α (r) and ψΛ

β (r).

Note that the upper components of the Λ’s Dirac wave function in a given orbital, ψΛ
β , expe-

rience a self-consistent potential U Λ = ΣΛ
V +ΣΛ

S , the sum of the vector and scalar self-energies.

Given that G
Λ(0)
V and G

Λ(0)
S almost cancel, we see that U Λ � 2GΛ

π,K(ρ)ρ (+ surface term) is
of genuine non-relativistic origin. Moreover, the dominant part of this average potential comes
from the short distance (Hartree) piece proportional to �GΛ, while the sum of the g3 and g4
terms gives only a small correction. The lower components of ψΛ

β , on the other hand, involve the

large difference of vector and scalar self-energies, ΣΛ
V − ΣΛ

S � (G
Λ(0)
V − G

Λ(0)
S )ρ, that enters in

the discussion of the Λ-nuclear spin–orbit coupling, see Section 4.2.

2.4. Guidance from in-medium QCD sum rules

The QCD ground state (vacuum) is characterized by condensates of quark–antiquark pairs and
gluons, an entirely non-perturbative phenomenon. The quark condensate 〈q̄q〉, i.e. the vacuum
expectation value of the scalar quark density, plays a particularly important role as an order
parameter of spontaneously broken chiral symmetry. At a renormalization scale of about 1 GeV

3 In non-relativistic calculations such gradient terms have usually been omitted on the grounds that finite-range effects
are included in an approximate way by the use of the empirical charge densities [15], or they are thought to be absorbed
in phenomenological non-linear terms in powers of ρ [15–17].
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the chiral vacuum condensate is 〈q̄q〉0 � −(240 MeV)3 � −1.8 fm−3 [38]. Hadrons, as well as
nuclei, are excitations built on this condensed QCD ground state. The density-dependent changes
of the condensate structure in the presence of baryonic matter are a source of strong scalar and
vector mean fields experienced by nucleons (and hyperons). In-medium QCD sum rules [35]
relate the leading changes of the scalar quark condensate 〈q̄q〉ρ and quark density 〈q†q〉 = 3ρ,
at finite baryon density ρ, to the scalar and vector self-energies of a nucleon (or hyperon) in the
nuclear medium.

The strength of the chiral condensate at normal nuclear matter density, ρ0 � 0.16 fm−3, is
reduced by about one third from its vacuum value. The detailed density dependence of this con-
densate has recently been studied [39] using in-medium chiral perturbation theory to three-loop
order in the energy density, i.e. at a level consistent with the approach employed in the present
work. It is found that at densities ρ � ρ0, the leading linear ρ dependence of 〈q̄q〉ρ dominates
whereas non-linear effects become increasingly important at higher densities. Assuming that the
nucleon mass MN in vacuum scales roughly with the vacuum chiral condensate, the in-medium
scalar and vector self-energies of the nucleon can be expressed as [35]:

Σ
N(0)
S = −σNMN

m2
πf 2

π

ρS, Σ
N(0)
V = 4(mu + md)MN

m2
πf 2

π

ρ. (10)

Here σN = 〈N |mqq̄q|N〉 is the nucleon sigma term (� 50 MeV), mπ is the pion mass
(138 MeV), and fπ = 92.4 MeV is the pion decay constant. For the quark masses we take
mu + md � 12 MeV (again at a renormalization scale of about 1 GeV). The resulting Σ

N(0)
S

and Σ
N(0)
V are individually large, 300–400 MeV in magnitude. Their ratio Σ

N(0)
S /Σ

N(0)
V �

−σN/4(mu + md) ∼ −1 suggests the already mentioned strong cancellation of scalar and vector
potentials in the single-nucleon Dirac equation.

The constraints implied by Eq. (10) are admittedly not very accurate, given corrections from
condensates of higher dimension and uncertainties in the values of σN and mu + md . The esti-
mated error for the ratio Σ

(0)
S /Σ

(0)
V � −1 is about 20%. Nonetheless, Eq. (10) is useful for first

orientation when estimating the contact couplings G
(0)
S,V :

G
(0)
S � −σNMN

m2
πf 2

π

� − σN

4(mu + md)
G

(0)
V ∼ −11 fm2, (11)

using σN � 50 MeV and mu +md � 12 MeV. This estimate is actually in remarkable agreement
with the values determined from a best fit analysis of ground-state properties of finite nuclei
throughout the nuclear chart (G(0)

S = −11.5 fm2 and G
(0)
V = 11.0 fm2) [29], the values we use as

basic input in the present work as well.
In the case of a hyperon in the nuclear medium, finite-density QCD sum rules [40] predict

reduced scalar and vector self-energies of the Λ while maintaining Σ
Λ(0)
S � −Σ

Λ(0)
V , though

with large uncertainties. We introduce the ansatz

G
Λ(0)
S,V = ζG

(0)
S,V , (12)

with a parameter ζ < 1 controlling the reduction of the Λ couplings relative to those for the
nucleon. Assuming that only non-strange quarks contribute to the contact interactions generated
by the condensate background, a naive quark model estimate gives ζ = 2/3. We leave room for
an optimization [30]4 of the parameter ζ by comparison with empirical Λ single-particle energies

4 In Ref. [30] we have used χ instead of ζ for the ratios GΛ(0)/G(0) .
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Table 1
Best-fit values of the contact term �GΛ (determined by the cut-off scale Λ̄) and of the strength DS

Λ of the surface

(gradient) term, for different choices of the ratio ζ = G
Λ(0)
S,V

/G
(0)
S,V

(input: G
(0)
S

= −11.5 fm2, G
(0)
V

= 11.0 fm2 from

Ref. [29]). The fits are performed by reproducing single particle energies of s- and p-states in 16
ΛO and 208

ΛPb. Also

shown is the resulting depth U Λ of the Λ central potential.

ζ �GΛ (fm2) Λ̄ (MeV) DS
Λ (fm4) U Λ (MeV) χ2

0.4 −0.55 718.6 −0.304 −34.7 3.41
0.5 −0.56 721.0 −0.340 −35.4 4.34
2
3 −0.58 726.1 −0.415 −36.6 2.86

in hypernuclei. In fact, while the quark model value is an option, the result of the detailed QCD
sum rule analysis [40] is closer to ζ = 0.4.

3. Single particle states of the Λ

Given the explicit input for the long and intermediate range kaon and two-pion exchange
interactions, the only remaining unknowns are the strengths of the short-distance (contact) terms,
G

Λ(0)
S,V , and of the surface gradient term, DΛ

S . These will now be fixed by detailed fits to the
empirical single particle orbits of the Λ in selected hypernuclei. The contact terms are specified
by the parameter ζ relating the scalar and vector mean fields of the Λ to those of the nucleons,
see Eq. (12). The remaining �GΛ involves the cut-off scale Λ̄. One expects this cut-off scale to
be around 0.7 GeV, subject to possible further fine-tuning.

We proceed as follows. The values of Λ̄ and DΛ
S are adjusted for different values of ζ (us-

ing 0.4,0.5 and 2/3, i.e. ranging from the QCD sum-rule estimate to the naive quark-model
prediction), by performing a least-squares fit to the empirical single-Λ energy levels:

χ2 =
∑
α

(
εth
α − ε

exp
α

δε
exp
α

)2

. (13)

Here εth
α and ε

exp
α are the theoretical and experimental single-Λ energies, respectively, with un-

certainties δε
exp
α . For the set of experimental energies in Eq. (13) we choose the s- and p-levels

of 16
ΛO and 208

ΛPb (see Table 2).5 An uncertainty of 3% is assumed for the s-states, and 5% for
the p-states. For the nucleon sector the FKVW energy density functional [29] is used, without
readjustments of any parameters. The fits are summarized in Table 1, where we display the op-
timal values of the cut-off scale Λ̄ (or equivalently, the contact term proportional to �GΛ), and
the strength of the gradient term DS

Λ, for ζ = 0.4,0.5 and 2/3. The corresponding χ2 values are
given in the column on the right. Note that at this stage the data set used in the fit does not include
the (small) splittings between the p-shell spin–orbit partner states, but only the average energies
of the p-orbitals.

Quite acceptable fits are obtained with �GΛ in the range −(0.55–0.58) fm2, producing a cen-
tral Λ single particle potential U Λ

central = 2�GΛρ(r) � −(35–37) MeV (ρ(r)/ρ0). The required

cut-off scales Λ̄ are close to Λ̄ � 0.7 GeV [32], almost independent of the ratio ζ = G
Λ(0)
S,V /G

(0)
S,V .

5 In a recent Jlab Hall-A report [41], Cusanno et al. studied the single particle spectrum of 16
ΛN and found for the 1s

binding energy the value 13.76 ± 0.16 MeV, in apparent disagreement with the corresponding value for 16
ΛO if charge

symmetry would be approximately realized.
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In view of the cancellation between scalar and vector contact terms G
(0)
S and G

(0)
V , this is of

course not surprising.
The inclusion of the surface term proportional to ∇ρΛ · ∇ρ turns out to be important. An

attempt to fit the Λ energy levels without this term results in an unacceptably large χ2 value (�
200), because it is not possible to simultaneously reproduce levels in light and heavy hypernuclei.
For the strength of this term, DΛ

S , one could directly use the theoretical estimate −0.56 fm4 from
in-medium chiral perturbation theory (cf. Appendix A). The resulting agreement with data is
then significantly improved, but not yet optimal (χ2 � 10). In particular, one still encounters
overbinding for heavy systems. The best fit values, DΛ

S � −(0.3–0.4) fm4, are nevertheless still
in remarkable qualitative agreement with chiral theory.

In this work all calculations are performed assuming spherical symmetry and a simplified
configuration: a closed core of nucleon pairs plus a single Λ-hyperon. These are commonly used
approximations and recent investigations have confirmed their validity. The study of Ref. [17]
has shown that deformation effects need to be taken into account only in very light systems
which are not the subject of the present investigation. Of the hypernuclei considered in this
work, only 13

ΛC is sensitive to deformation, but recent RMF studies [42] have pointed out that
the stabilizing effect of the Λ tends to restore spherical symmetry in the hypernuclear system.
Effects related to the odd number of nucleons in hypernuclei appear to be rather small [17]. In
the case of hypernuclei with open nucleon shells, we include pairing correlations described in
the BCS approximation with empirical pairing gaps [43] (except for 13

ΛC, which is calculated in
the closed-shell approximation).

4. Λ-nuclear spin–orbit coupling

Having specified the input for the Λ-hypernuclear central and surface potentials, we can
now concentrate on a more detailed investigation of the Λ-nuclear spin–orbit interaction, one
of the central themes of hypernuclear spectroscopy. As already indicated in the introduction,
Λ-hypernuclei feature extremely small energy spacings between spin–orbit partner states, as
compared to the large spin–orbit splittings in ordinary nuclei [1–3]. In this section we first briefly
summarize the available data and review the current theoretical approaches. The final subsection
presents and discusses results based on our novel interpretation of the smallness of the Λ-nucleus
spin–orbit coupling [32,33].

4.1. Brief summary of experimental results

Detailed informations on Λ spin–orbit splittings derive from measurements of light hypernu-
clei with nucleons in the p-shell. The BNL 929 experiment [44], using 13C as target, reported
an energy splitting between the p1/2 and p3/2 Λ levels �εΛ(p) = 152 ± 54 ± 36 keV. At
present this experimental result provides the most convincing evidence for the small spin–orbit
coupling in Λ-hypernuclei. It has been corroborated by experiments on heavier hypernuclei.
For 16

ΛO a combined analysis of (K−,π−γ ) and (π+,K+) experimental spectra (experiments
KEK E336 [45] and CERN-SPSII [46]), allowed the determination of the very small energy
level splitting between the 2+ and 0+ states: �ε(2+–0+) = 40 ± 320 keV. Motoba [47] used
the linear dependence of the relation between �ε(2+–0+) and the p-level splitting �εΛ(p),
to estimate �εΛ(p) = 300–600 keV.6 An updated analysis [6] of data from the experiment

6 A more recent study by Hashimoto et al., lowers this estimate to: −800 < �εΛ(p) < 200 keV (cf. Fig. 23 in Ref. [1]).
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89Y(π+,K+)89
ΛY [48] has confirmed that the spin–orbit interaction is also strongly suppressed

in heavy hypernuclei: �εΛ(f ) � 200 keV, �εΛ(d) � 150 keV and �εΛ(p) � 90 keV. So far
these are the only empirical spin–orbit splittings outside the region of p-shell nuclei.

4.2. Previous theoretical studies

The framework of energy density functionals provides an accurate description of hypernuclei
over the whole mass table [15]. At the same time light systems (e.g. p-shell hypernuclei) are also
successfully described using phenomenological hyperon–nucleus potentials such as the one in-
troduced by Dalitz and collaborators [49]. More recent ab-initio calculations start from realistic
free YN potentials, as for example the Nijmegen studies based on meson-exchange interactions
[50,51], or the Jülich potential based on SU(3) chiral perturbation theory [52]. However, all
these realistic YN potentials tend to strongly overestimate the ΛN spin–orbit interaction in hy-
pernuclei. For instance, recent calculations based on the cluster model approach [53] predict
�εΛ(p) � 390–960 keV for 13

ΛC.7

For first orientation, recall the Walecka-type relativistic mean-field approach to nuclei [34]
in which short-range dynamics is parametrized by the exchange of a phenomenological scalar
boson (σ ) and a vector boson (ω) between nucleons. The corresponding mean fields produce
large scalar (S) and vector (V ) nucleon self-energies. The effective spin–orbit potential [57] is
obtained in the non-relativistic limit of the single-particle Dirac equation:

Vso = 1

2M2

(
1

r

∂

∂r
Vls(r)

)
l · s, (14)

where the large spin–orbit potential Vls arises from the difference of the vector and scalar poten-
tials: ΣV (r) = gωω0(r) and ΣS(r) = gσ σ (r), with ΣV (0) � 330 MeV and ΣS(0) � −400 MeV
[58–60]. Explicitly,

Vls = M

Meff
(ΣV − ΣS), (15)

where Meff is an effective mass specified as [59]

Meff = M − 1

2
(ΣV − ΣS). (16)

At this point it is useful to clarify the close correspondence between a Walecka type phe-
nomenology (or an in-medium QCD sum rule approach) of strong scalar-vector mean fields, and
certain contact terms appearing at next-to-leading order (NLO) in the effective field theory de-
scription of the NN interaction. A combination of NLO contact terms (with two derivatives, see
Eq. (5) in Ref. [61]) generates a Galilei invariant spin–orbit interaction

−i

4
C5(σ 1 + σ 2) · [(p′

1 − p′
2

) × (p1 − p2)
]
, (17)

where C5 is given by a linear combination of P -wave low-energy constants:

7 With a recent improvement of the Nijmegen potential, called ESC06 [54], it appears possible to obtain values of �εΛ

that are closer to data. However, Nijmegen potentials such as ESC04, fail to reproduce the single-Λ binding energies [55].
Thus the microscopic interpretation of the Λ-nuclear spin–orbit interaction, starting from one-boson exchange YN in-
teractions, remains an open problem. For the latest version (ESC07) including also contributions from quark degrees of
freedom, see [56].
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C5 = 1

16π

[
2C

( 3P0
) + 3C

( 3P1
) − 5C

( 3P2
)]

. (18)

It has been shown in Ref. [61] that the strength of the spin–orbit term derived from the free NN

interaction agrees quantitatively with the one required in nuclear shell-model calculations. It has
furthermore been demonstrated in Ref. [62] that the spin–orbit contact term (18), in a relativistic
Dirac–Brückner (DBHF) calculation, generates the strong scalar and vector mean fields in the
combination ΣS − ΣV . Thus the inclusion of contact terms representing condensate background
fields does not at all spoil the consistency of in-medium chiral calculations based on the LO
πN Lagrangian. These background fields are just equivalent reflections of short distance NN

dynamics.
The scalar-vector approach can be transcribed analogously for hypernuclei. Empirical spin–

orbit splittings are reproduced by simply assuming much weaker couplings between the Λ and
the exchanged bosons. In particular, in one of the early studies of this type [7], a reduction of 1/3
was suggested for the Λ potentials with respect to the corresponding nucleon self-energies

ΣΛ
S = 1

3
ΣS and ΣΛ

V = 1

3
ΣV . (19)

In contrast, the naive quark model assumes that the non-strange quarks couple to the σ and
ω mean-fields (the s-quark spectator hypothesis) and suggests a reduction factor of 2/3. With
this value, however, it is not possible to reproduce the empirical spin–orbit splittings in Λ-
hypernuclei. A possible solution proposed in Ref. [8] involved an additional strong tensor cou-
pling term in the ωΛ interaction Lagrangian

LωΛ = gΛ
ω ψ̄Λγ μψΛωμ + f Λ

ω

2MΛ

ψ̄ΛσμνψΛ∂νωμ. (20)

This additional term modifies the effective Λ spin–orbit potential as follows:

Vso,Λ � 1

2M∗2
Λ

[
1

r

∂

∂r

((
2
f Λ

ω

gΛ
ω

+ 1

)
ΣΛ

V − ΣΛ
S

)]
l · s. (21)

For f Λ
ω /gΛ

ω = −1 the potential Vls(Λ) = (2f Λ
ω /gΛ

ω + 1)ΣΛ
V − ΣΛ

S is now very small compared
to that for the nucleon (see Ref. [10] for more details, and Figs. 2 and 3 of Ref. [11]).

While phenomenological studies, based on the assumption of a strong ωΛ tensor cou-
pling [11], worked in reproducing the empirical single-Λ levels for a number of hypernuclei,
they did not offer a consistent microscopic explanation for the spin–orbit suppression in Λ-
hypernuclei. Realistic YN potentials (NSC97) that reproduce phase shift data suggest signifi-
cantly weaker ωΛ tensor couplings [50]. The older Nijmegen D and F potentials, for example,
give −0.12 and −0.54 for the ratio f Λ

ω /gΛ
ω [9], respectively, considerably smaller in magnitude

than the value ≈ −1 required in Eq. (21) to reproduce the empirical spin–orbit splittings.
Alternative microscopic models of hypernuclear spectroscopy have also been developed more

recently. A synthesis of quark-model and relativistic one-boson exchange picture has been estab-
lished by the Quark–Meson Coupling (QMC) model [12,13]. In this model Vso,Λ arises entirely
from Thomas precession. To obtain the correct spin–orbit splittings, a piece − 2

M∗2
Λ r

gΛ
ω

d
dr

ω(r)l · s
must be included in addition to the self-consistent calculation of single-Λ energy levels. Lenske
et al. [14] have developed a density-dependent relativistic framework in which the Λ-meson cou-
plings are partly determined from a ΛN T-matrix, and partly fitted to a selected set of data. In
that approach the spin–orbit energy splittings �εΛ display a uniform dependence on the nuclear
mass number A (cf. Fig. 7 of Ref. [14]). This is in contrast to the QMC results, where �εΛ � 0
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for all hypernuclei and any Λ orbital [12]. The spin–orbit energy splittings computed in [14] still
overestimate the empirical values, and this led those authors to raise the quest for an additional
reduction mechanism of the Λ-nuclear spin–orbit force.

4.3. The Λ-nuclear spin–orbit interaction from chiral SU(3) two-pion exchange

Starting from in-medium chiral SU(3) dynamics for the Λ hyperon in nuclear matter [32,33]
and its translation to a hypernuclear energy density functional [30], we have identified two basic
competing mechanisms at the origin of the unusually small Λ-nuclear spin–orbit interaction:
strong scalar-vector mean fields acting coherently, and the spin–orbit force of opposite sign [32]
induced by the second order pion exchange tensor interaction with an intermediate Σ hyperon.
A third prominent contributor to the spin–orbit force in ordinary nuclei, namely the three-body
interaction of Fujita–Miyazawa type, has no counterpart in single-Λ hypernuclei, as already
mentioned.

Let us briefly recall the steps leading to the “wrong sign” spin–orbit interaction from two-
pion exchange [32]. Consider a Λ that scatters in slightly inhomogeneous nuclear matter from
an initial momentum p − q/2 to a final momentum p + q/2. One identifies a spin–orbit term
ΣΛ

ls (kF ) = i
2UΛ

ls (kF )σ · (q × p ), in the spin-dependent self-energy of the Λ, with

UΛ
ls (kF ) = −2

3

(
DgA

f 2
π

)2 ∫
|p1|<kF

d3p1

(2π)3

∫
|p2|>kF

d3p2

(2π)3

× (p1 − p2)
4MB

[m2
π + (p1 − p2)

2]2[�2 + p2
2 − p1 · p2]2

. (22)

It depends only on known SU(3) axial-vector coupling constants (D = 0.84, gA = 1.3) and
on �2 = (MΣ − MΛ)MB which involves the (small) mass difference between the Σ and the
Λ hyperon. The average baryon mass MB = 1.05 GeV appearing in the numerator is a re-
minder that this spin–orbit interaction has a non-relativistic origin. The momentum space loop
integral (22) is finite and hence model-independent, in the sense that no regularizing cut-off is
required. The spin–orbit coupling strength at saturation density, UΛ

ls (k
(0)
F ) � −15.1 MeV fm2 at

k
(0)
F � 1.36 fm−1, has a sign opposite to the standard spin–orbit coupling strength. Evidently, this

contribution to the Λ spin–orbit potential tends to cancel the contribution from the strong scalar–
vector mean fields. However, contrary to the case of nucleons in ordinary nuclei (see Fig. 1),
this “wrong sign” spin–orbit interaction is not compensated in turn by a three-body spin–orbit
interaction [32,33]. Thus the smallness of the Λ-nucleus spin–orbit finds its natural explanation
in terms of an almost complete cancellation between short-range background mean-field contri-
butions and longer range terms generated by 2π -exchange.

One might argue that the UΛ
ls of Eq. (22), derived for infinite nuclear matter with its

continuous single particle energy spectrum, overestimates the magnitude of the two-pion ex-
change spin–orbit force considerably. This turns out not to be the case. In order to examine
this question, consider instead a finite cubic box of length 2L with a discrete momentum
spectrum, p = (π/L)n and n ∈ Z 3. Momentum space integrals are now replaced by sums,∫

d3p/(2π)3 → (1/8L3)
∑

n. The density ρ is 1/(2L3) times the sum over all occupied, discrete
single particle states. Now take, for example, a finite system with A = 48 for which L � 3.35 fm.
The result is UΛ

ls � −14.7 MeV fm2, to be compared with −15.1 MeV fm2 for nuclear matter.
The quantitative effect of in-medium two-pion exchange on the energy spacings between

single-Λ spin–orbit partner states, is calculated in first-order perturbation theory:
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Fig. 1. Schematic picture of contributions to the spin–orbit interaction of a nucleon in nuclei and a Λ in hypernuclei.
First row: contact terms summarizing strong scalar and vector fields and unresolved short-distance dynamics. Second
row: iterated pion exchange (mostly second order tensor interactions) with Pauli-blocked intermediate nucleon states.
Third row: three body terms generated by 2π exchange with intermediate excitation of a virtual � isobar and in-medium
insertions (resembling Fujita and Miyazawa [31]). This mechanism has no counterpart for Λ hyperons since there is no
filled hyperon Fermi sea. Signs of the different contributions are indicated.

�εΛ
α = 〈α|�HΛ

ls |α〉, (23)

for each hyperon orbit α, with

�HΛ
ls = UΛ

ls (k
(0)
F )

2r

d

dr

(
ρ(r)

ρ(0)

)
σ · l. (24)

The Λ single particle states |α〉 are determined by self-consistent solutions of the Dirac
equation (8), and ρ(r) is the corresponding ground-state nuclear density, also computed self-
consistently, with ρ(0) ≡ ρ(r = 0).

A demonstration of the counterbalance between short-distance contact term and intermediate
range two-pion exchange contributions to the spin–orbit splitting is shown in Fig. 2 for the ex-
ample of 16

ΛO. It shows how the spin–orbit term from the in-medium two-pion exchange (second-
order tensor) force basically compensates the contribution from scalar-vector mean fields.

We close this subsection with a note on corrections to the chiral spin–orbit potential from the
SU(3) decuplet. A study along these lines has been performed in Ref. [63] which extended the
work of Ref. [32] and considered also � and Σ∗ intermediate states in the two-pion exchange
processes. Corrections from virtual excitations of such states, despite their large masses, turned
out to be non-negligible because of their strong couplings to the pions and the baryons octet.
The results found previously in Ref. [32] were basically confirmed: the spin–orbit potential from
two-pion exchange is a non-relativistic effect as demonstrated by its proportionality to the baryon
mass. It is model-independent as it does not require regularization and depends only on physi-
cal parameters (masses and coupling constants). We have examined this extended UΛ

ls in our
approach as well and briefly report results at the end of the next section.
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Fig. 2. Calculated Λ single particle energy levels in 16
ΛO. Left panel shows the spin–orbit splitting from short-distance

dynamics (scalar and vector mean fields) only; right panel: after inclusion of the spin–orbit term from in-medium two-
pion exchange.

5. Results

The previously described framework, with parameters fixed once and for all by the s- and p-
states of 16

ΛO and 208
ΛPb, is now tested systematically in comparison with the empirical energies

for all known single-Λ levels of six hypernuclei, from light to heavy. The input from Table 1 with
ζ = 0.5 is used,8 together with the FKVW parameters [29] in the nucleon sector of the energy
density functional but, as will shortly be shown, the results are not very sensitive to a particular
choice of one of the three parameter sets for the ΛN couplings.

Our results are summarized in Tables 2 and 3 and compared with those of six different calcu-
lations: Quark Meson Coupling (QMC) [12,13], Fermi Hypernetted Chain (FHNC) [18], Skyrme
(SK) [16], Brueckner–Hartree–Fock (BHF) [19] with the Njimegen SC97F potential [50], rela-
tivistic mean field models with a tensor coupling [11] (RMFI with f Λ

ω /gΛ
ω = −1) and density-

dependent interactions [14] (RMFII). The single particle energy spectra are calculated in the
approximation of a closed even–even nucleon core + Λ-hyperon, i.e. the theoretical spectra9

correspond to 13
ΛC, 17

ΛO, 41
ΛCa, 91

ΛZr, 141
ΛCe and 209

ΛPb.
Comparing our (FKVW) results to those of a relativistic mean-field calculation (RMF1) that

uses a strong Λ-nuclear tensor force with f Λ
ω /gΛ

ω = −1, one observes differences in the spin–
orbit splittings of Λ orbitals with large angular momentum l. For example, the FKVW spin–orbit
splitting, though very small on an absolute scale and well within experimental errors, tends to
be more than twice the RMF1 splitting for a Λ in f - and g-orbitals. The mechanisms at work
in FKVW and RMF1 involve of course very different physics. A technical difference arises
because the FKVW spin–orbit splitting is treated perturbatively, whereas the RMF calculations
are performed self-consistently.

The present calculations (column FKVW) are evidently in very good agreement with data, and
comparable in quality or superior (especially for heavier hypernuclei) to the energy spectra calcu-
lated with other approaches. The QMC model in its original form included a phenomenological

8 We recall that the results are not sensitive to a particular choice of parameter sets in Table 1.
9 For 13C the calculation should not be considered fully realistic due to the closed shell approximation.
Λ
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Table 2
Binding energies (in MeV) of single-Λ levels in 13

ΛC, 16
ΛO, 40

ΛCa and 89
ΛY. Experimental energies [1] are shown in

comparison with the results of the present calculations, using the input parameters of Table 1 and ζ = 0.5 (column
FKVW). Also listed are results of five different models: Quark Meson Coupling (QMC) [12,13], Fermi Hypernetted
Chain (FHNC) [18], Skyrme (SK) [16], Brueckner–Hartree–Fock (BHF) [19] with the Njimegen SC97F potential [50],
and RMF models with a tensor coupling [11] (RMFI with f Λ

ω /gΛ
ω = −1) and density-dependent couplings [14] (RMFII).

Nucleus εs.p. Expt. FKVW QMC FHNC SK BHF RMFI RMFII
13
ΛC 1s1/2 11.38 ± 0.05 12.3 – 8.3 11.7 13.7 12.5 11.7

1p3/2 0.38 ± 0.1 0.1 – – 0.9 1.4 1.1 1.1
1p1/2 0.0 0.8 0.0

16
ΛO 1s1/2 12.42 ± 0.05 12.6 16.2 12.00 13.3 15.5 12.9 12.8

1p3/2 1.85 ± 0.06 2.0 6.4 1.8 3.0 3.7 3.3 2.8
1p1/2 1.9 6.4 3.0 1.4

40
ΛCa 1s1/2 20.0 ± 1.0 18.9 20.6 20.0 18.0 20.7 19.0 17.6

1p3/2 12.0 ± 1.0 10.1 13.9 10.6 10.1 11.5 10.7 9.1
1p1/2 10.1 13.9 10.5 7.8
1d5/2 1.0 ± 1.0 1.6 5.5 1.6 1.6 2.0 2.7 1.5
1d3/2 0.9 5.5 2.4 1.5

89
ΛY 1s1/2 23.1 ± 0.5 23.4 24.0 23.3 21.1 24.1 23.7 23.2

1p3/2 16.5 ± 4.1 17.2 19.4 16.9 15.6 17.8 17.6 17.2
1p1/2 17.2 19.4 17.4 16.3
1d5/2 9.1 ± 1.3 10.2 13.4 10.1 9.1 10.4 10.7 10.3
1d3/2 9.8 13.4 10.5 8.9
1f7/2 2.3 ± 1.2 2.8 6.5 – 2.1 2.4 3.7 3.1
1f5/2 2.0 6.4 3.4 1.0

Table 3
Binding energies (in MeV) of single-Λ levels in 139

ΛLa and 208
ΛPb (continued from Table 2).

Nucleus εs.p. Expt. FKVW QMC FHNC SK BHF RMFI RMFII
139

ΛLa 1s1/2 24.5 ± 1.2 24.7 – – 22.1 25.3 25.2 25.2
1p3/2 20.4 ± 0.6 20.0 – – 17.9 20.5 20.4 20.5
1p1/2 20.0 20.4 20.2
1d5/2 14.3 ± 0.6 14.3 – – 12.8 14.5 14.8 14.9
1d3/2 14.1 14.6 14.1
1f7/2 8.0 ± 0.6 8.0 – – 6.9 7.8 8.6 8.5
1f5/2 7.4 8.4 7.1
1g9/2 1.5 ± 0.6 1.5 – – 0.6 0.6 2.4 2.2
1g7/2 0.5 2.0 0.2

208
ΛPb 1s1/2 26.3 ± 0.8 25.8 26.9 27.6 23.1 26.5 26.5 27.2

1p3/2 21.9 ± 0.6 22.0 24.0 22.8 19.6 22.4 22.7 23.4
1p1/2 22.0 24.0 22.6 23.1
1d5/2 16.8 ± 0.7 17.4 20.1 17.4 15.4 17.5 18.0 18.5
1d3/2 17.3 20.1 17.9 17.9
1f7/2 11.7 ± 0.6 12.2 15.4 – 10.5 11.8 12.7 13.2
1f5/2 11.8 15.4 12.5 12.1
1g9/2 6.6 ± 0.6 6.5 10.1 – 5.1 5.6 7.1 7.5
1g7/2 5.8 10.1 6.9 5.8



178 P. Finelli et al. / Nuclear Physics A 831 (2009) 163–183
Fig. 3. Binding energies of the Λ in different (s,p, . . .) orbitals of six hypernuclei (cf. Tables 2 and 3), calculated with
the FKVW density functional using the three parameter sets for the ΛN couplings (cf. Table 1). Results are plotted
as functions of the mass number and compared with experimental energies [1]. Also shown is a Woods–Saxon fit [15]
(dashed curves) to guide the eye.

Table 4
P -shell spin–orbit splittings Δ ≡ �εΛ(p) for six hypernuclei ( 13

ΛC, 16
ΛO, 40

ΛCa, 89
ΛY, 139

ΛLa, 208
ΛPb). Experimental

values [44], or empirical estimates [1,47,48], are shown in comparison with our theoretical predictions (FKVW), using a
broad range of ζ parameters (see Eq. (12)), and other relativistic calculations with (RMFI [11]) or without (RMFII [14])
tensor coupling. All energies are given in keV. The asterisk means that a local fit has been necessary.

Nucleus Exp. Δ

[keV]
FKVW
(0.4 � ζ � 0.66)

RMFI [11] RMFII [14]

13
ΛC 152 ± 54 ± 36 [44] −160 � Δ � 510 310 ∼ 1100∗

16
ΛO 300 � Δ � 600 [47] −210 � Δ � 490 270 ∼ 1400

−800 � Δ � 200 [1]

40
ΛCa – −140 � Δ � 420 210 ∼ 1400

89
ΛY 90 [48] −40 � Δ � 180 110 ∼ 700

139
ΛLa – −20 � Δ � 80 50 ∼ 300

208
ΛPb – −20 � Δ � 70 50 ∼ 300

spin–orbit correction and the Pauli-blocking effect at the quark level. Without these corrections
the resulting energy levels show a strong overbinding (cf. Table 4 in Ref. [12]). A very recent
improvement [13] solved the overbinding problem, introducing the scalar polarizability of the
nucleon in a self-consistent way instead of the Pauli blocking correction. In Tables 2 and 3 we
have included the latest update of these calculations.

Fig. 3 provides a further test of the sensitivity of calculated single-Λ energies with respect
to a variation of the ratio ζ = G

Λ(0)
S,V /G

(0)
S,V between contact terms representing the in-medium

condensate background fields for the hyperon and the nucleons. For the six hypernuclei listed in
Tables 2 and 3, the Λ binding energies calculated with the FKVW parameters plus the three best-
fit parameter sets from Table 1 that determine the ΛN couplings, are plotted as functions of the
mass number and compared with empirical energies. Calculations with all three parameter sets



P. Finelli et al. / Nuclear Physics A 831 (2009) 163–183 179
of the ΛN interaction reproduce the data with high accuracy for a wide range of hypernuclear
masses, using a reasonable band width of ζ values between the QCD sum-rule estimate (ζ ∼ 0.4)
and the naive quark-model (ζ = 2/3).

In Table 4, we show the theoretical spin–orbit splittings for Λ p-levels in comparison with
empirical values (second column) and other relativistic calculations with (fourth column) and
without (fifth column) tensor coupling.

Concerning the Λ-nuclear spin–orbit splittings, these calculations have all been performed
using the chiral SU(3) two-pion exchange ΛN interaction with just the Σ hyperon in the in-
termediate state. Adding terms with decuplet intermediate states as studied in Ref. [63] do not
change the picture in any significant way, except that, looking at �εΛ(p), there is then a prefer-
ence for the smaller ratio ζ � 0.4, consistent with the in-medium QCD sum rule analysis.

6. Summary and conclusions

1. A previously derived (FKVW) relativistic nuclear energy density functional, with con-
straints from low-energy QCD, has been generalized to hypernuclei. In-medium chiral SU(3)

dynamics is implemented at three-loop order in the energy density, with explicit treatment of two-
pion (and kaon) exchange ΛN interactions in the presence of the filled Fermi sea of nucleons.

2. Strong scalar and vector fields experienced by the Λ are considered to emerge from its cou-
pling to density-dependent quark condensates constrained by in-medium QCD sum rules. They
are manifest in the form of contact terms that can be related to low-energy constants in a (chiral)
effective field theory. The corresponding scalar and vector Hartree potentials have opposite signs
and cancel in the central mean field. Their magnitudes are about 0.4–0.5 of the corresponding
mean fields for nucleons in nuclei. These reduced mean fields are consistent with the (admittedly
uncertain) QCD sum rule analysis for nucleons and hyperons in a nuclear medium.

3. A Λ-nuclear surface coupling term, that appears in the gradient expansion of a density
functional for finite systems, is generated model-independently from in-medium chiral SU(3)

perturbation theory at the two-pion exchange level. This term proves to be important in obtaining
good overall agreement with Λ single-particle spectra throughout the hypernuclear mass table.

4. The chiral two-pion exchange ΛN interaction in the presence of the nuclear core generates
a (genuinely non-relativistic, model-independent) contribution to the Λ-nuclear spin–orbit force.
This longer range contribution counterbalances the short-distance spin–orbit terms that emerge
from scalar and vector mean fields, in just such a way that the resulting spin–orbit splitting of Λ

single particle orbits is extremely small. A three-body spin–orbit term of Fujita-Miyazawa type
that figures prominently in the overall large spin–orbit splitting observed in ordinary nuclei, is
absent for a Λ in hypernuclei, simply because in a single-Λ hypernucleus there is no Fermi sea
of hyperons.

5. The confrontation of this highly constrained approach with empirical Λ single-particle
spectroscopy turns out to be quantitatively successful, at a level of accuracy comparable to that of
the best existing hypernuclear many-body calculations. The resulting Λ-nuclear single-particle
potential has dominant Hartree term with a central depth of about −30 MeV, consistent with
earlier phenomenology.

6. While a relativistic framework has been used here for practical convenience, this is not
mandatory. Given the cancellation of relativistic scalar and vector terms in the central mean field,
their coherent effect in building up part of the spin–orbit force can be translated into derivatives
of contact terms at next-to-leading order in an equivalent, non-relativistic effective field theory.
The important compensating two-pion exchange mechanism that renders the overall spin–orbit
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coupling for the Λ hyperon so abnormally small, is entirely of non-relativistic origin, as well as
the similarly important surface gradient term that adds to the Λ-nuclear potential.
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Appendix A. Gradient term of the Λ-nuclear density functional

We briefly outline the chiral EFT estimate for the strength parameter DΛ
S of the gradient term

in the interaction part of the Λ-nuclear density functional equation (3).
This parameter can be evaluated from the spin-independent part of the self-energy of a Λ-

hyperon interacting with weakly inhomogeneous nuclear matter. Let the Λ scatter from initial
momentum −q/2 to final momentum +q/2, as shown in the two-pion exchange diagram of
Fig. A.1. For small momentum transfer q to the inhomogeneous nuclear medium, the Λ mean-
field potential is modified by a correction term proportional to q2. In the energy density functional
the factor q2 generates (via Fourier transform) the product of density gradients: ∇ρΛ · ∇ρ (with
ρ = 2k3

F /3π2 the nuclear density).
Consider now the two-pion exchange between the Λ and the nucleons in the medium. The

small momentum transfer q enters both the pion–baryon vertices, and the pion propagators. Ex-
panding the diagrammatic expression for the Λ self-energy up to order q2, one finds:

ρD
(π)
Λ (ρ) = D2g2

AMB

6f 4
π

∫
|p1|<kF

d3p1 d3l

(2π)6

l2(4l4 + 9l2m2
π + 3m4

π )

(m2
π + l2)4[Δ2 + l2 − l · p1]

+ Pauli blocking terms, (A.1)

with the axial vector coupling constants D = 0.84 and gA = 1.3. Here MB = 1047 MeV denotes
an average baryon mass, and the ΣΛ mass-splitting MΣ −MΛ = Δ2/MB = 77.5 MeV has been
rewritten in terms of the small scale parameter Δ = 285 MeV. The function D

(π)
Λ (ρ) determines

the (possibly density-dependent) strength of the gradient term. The Pauli blocking correction in
Eq. (A.1) is obtained by reversing the sign, and substituting the loop momentum as l = p1 − p2
with |p2| < kF . In this way the Pauli-blocked intermediate nucleon states in the filled Fermi
sea get properly removed from the loop integral. Note also that the loop integral in Eq. (A.1)
is finite as it stands and does not require any regularization. It could even be solved in terms of
elementary functions (an arctangent and square-roots).

The density-matrix expansion of Negele and Vautherin [64] contributes a term proportional to
∇2ρ to the in-medium insertion for an inhomogeneous many-nucleon system. Taking this term
into account one obtains the following additional contribution to the strength function:

ρD
(π)
Λ (ρ) = −D2g2

AMB

48f 4
π k4

F

∫
|p1|<kF

d3p1 d3l

(2π)6

35l4(5p2
1 − 3k2

F )

(m2
π + l2)2[Δ2 + l2 − l · p1]

+ Pauli blocking terms. (A.2)
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Fig. A.1. Two-pion exchange between a Λ-hyperon and nucleons, with a Σ -hyperon and Pauli blocking effects in the
intermediate state. The horizontal double lines represent the filled Fermi sea of nucleons.

Fig. A.2. The strength function D
(π)
Λ (ρ)ρ related to the gradient term of the Λ-nuclear interaction, as function of the

nucleon density ρ.

This combined loop and Fermi sphere integral is also convergent as it stands. The weighting
factor 5p2

1 − 3k2
F ensures that the divergent constant from the loop integral (scaling e.g. with an

ultraviolet cut-off) disappears in the final result.
Summing up all four contributions from Eqs. (A.1) and (A.2), the resulting density-dependent

strength function ρD
(π)
Λ (ρ) is shown in Fig. A.2. Since the density dependence is almost linear,

the function D
(π)
Λ (ρ) can be approximated by its value at nuclear matter saturation density ρ0 =

0.16 fm−3:

D
(π)
Λ (ρ0) = (139.3 − 21.0 − 10.6 + 1.3) MeV fm5 = 109 MeV fm5. (A.3)

Note that this estimate for the strength of the gradient term is a model-independent and
parameter-free result derived from the long-range 2π -exchange with a Σ -hyperon in the in-
termediate state. Comparing the gradient term for the Λ-hyperon with the corresponding term in
Λ-nuclear density functional equation (3), we obtain the following relation:

−D
(π)
Λ = DΛ

S . (A.4)

From Eq. (A.3) it then follows:

DΛ = −0.56 fm4, (A.5)
S
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remarkably close in value to the chiral EFT prediction for the strength of the corresponding
gradient term in the nucleon sector of the density functional: DS = −0.7 fm4.
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