
Nuclear Instruments and Methods in Physics Research A 451 (2000) 623}637

Methods for precise photoelectron counting
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Abstract

A series of measurements has been performed on a THORN EMI 9351 phototube in order to investigate its response
to a low light intensity. Precise procedures to determine the intensity of the incident photon #ux have been developed and
compared. The data show that the various approaches give consistent and reliable results, thus allowing the precise
calibration of the device for applications of photon counting. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In many experimental conditions involving scin-
tillators and photomultipliers the light pulse arriv-
ing at the photocathode contains very few photons.
The mean value k of the Poisson distributed num-
ber of photoelectrons (p.e.) detected in a burst de-
pends on various factors. The most important
factors being the energy of the incident particle in
the scintillator, the geometrical coverage of the
photocathode, and the quantum and electrons col-
lection e$ciency of the phototube. In a given
experiment the precise evaluation of k can be
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accomplished with di!erent methods, based on the
use of the information contained in the output of
the phototube.

In the present paper we present the results of an
investigation carried out to evaluate and compare
di!erent methods of mean p.e. number estimation
from the PMT charge distribution. We studied the
charge distribution of the Thorn EMI 9351 PMT
planned for use in the Borexino experiment. In
Borexino an organic liquid scintillator is used to
detect the 7Be solar neutrinos through the elec-
tron}neutrino elastic scattering. A rate of few p.e.
per PMT is expected (for a reference on Borexino
see for example Refs. [1,2]).

In order to study the response of the PMT for
various levels of a light intensity we used neutral
density optical "lters (that do not change the spec-
tral characteristic of the radiation). These are used
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Table 1
Properties of the optical "lters

Density D Transmission q q Tolerance (%)

0.3 0.5 5
0.7 0.2 5
1 0.1 5
1.3 0.05 10
1.7 0.02 10
2 0.01 10
3 0.001 20

Fig. 1. Sketch of the experimental set-up.

to control the amount of the incident light in di!er-
ent measurements.

In Table 1 the properties of the "lters used are
summarized. Here q"U

T
/U

0
is the ratio of the

transmitted to the incident luminous #ux and
D"log

10
1/q is the optical density.

The results of our experiment are described be-
low. In Section 2, we underline the features of the
PMT charge signal, that are important for the
development of a PMT charge response model. In
Section 3, we discuss the model of the Single Elec-
tron Response (SER). In Section 4, we present dif-
ferent methods of mean number of p.e. evaluation
and in Section 5 we analyze the measurements.
Section 6 contains the conclusions.

2. The PMT charge response to a low intensity
light source

The charge response of the PMTs to low inten-
sity light has been studied using the Borexino PMT
test facility at the Gran Sasso Laboratories. The
experimental setup is shown in Fig. 1. A
Hamamatsu pulsed laser (0.39 mW peak power,
27.3 ps pulse width, 415 nm wavelength, which is
close to the maximum quantum e$ciency of PMT
9351) is used to study the PMT charge distribution.
Using the laser internal trigger, an ADC gate is
generated, as shown in the same "gure. The light
pulse from the laser is delivered by a 6 m long optic
"ber into the dark room. Between the "ber and the
PMT, an optical "lter support is placed. The dark-
noise distribution has also been studied with the
laser turned o! using the ADC to gate the PMT

signal (discriminated at the level of 0.05}0.10 p.e.) in
order to cut the electronics noise.

We have performed a set of measurements with
di!erent "lters using the same PMT. The PMT is
placed inside a k-metal shield in order to screen the
Earth's magnetic "eld.

The "rst step of the procedure to determine the
mean number of detected photoelectrons requires
the precise determination of the single-electron
response of the phototube.

Assuming that a Poisson distribution describes
the p.e. number leaving the photocathode as re-
ported in Ref. [3], one can write

P(2)

P(1)
"

k
2

(1)

where P(2) and P(1) are the probability to detect
two or one p.e., respectively, and k is the mean
value of p.e.'s. Therefore, in order to keep the PMT
charge multiphotoelectrons responses at the 1%
level it is necessary to have k40.02. Acquiring the
PMT charge distribution, we controlled this num-
ber using the probability to have zero p.e.:

P(0)"
N

1%$
N

53*'

"e~k (2)

where N
1%$

is the number of events in the pedestal
(i.e. the response when no p.e. leaves the photo-
cathode) and N

53*'
is the number of laser triggers.
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Fig. 2. Dark noise and PMT response to a low intensity light
source. The dynodes noise distribution is also shown.

For small k the output of the PMT could be
altered by the dark noise of the PMT, which is of
the order of some kHz. Because of the dark noise
a number of random coincidences can be detected,
expressed by

f
3!/$0.

"f
$!3,

f
53*'

q
'!5%

(3)

where f
3!/$0.

is the random coincidence rate, f
$!3,

is
the dark noise rate and q

'!5%
is the ADC gate. On

the other hand, for small k the event rate is, using
Eq. (2)

f
%7%/54

"(1!P(0)) f
53*'

Kkf
53*'

. (4)

Therefore, in order to have the random coincid-
ences' contribution at the level of 1% it is necessary
to keep

k5
f
$!3,

q
'!5%

0.01
. (5)

For a 2 kHz dark rate and q
'!5%

"80 ns, Eq. (5)
gives k50.016. Thus, for k"0.02 or greater
a PMT response has both a negligible contribution
from the dark-noise distribution and multi-
photoelectrons.

In Fig. 2, we show a typical PMT charge distri-
bution together with the dark-noise distribution

from the same PMT. For these data, a software
threshold was set at the level of 0.15 p.e. Looking at
the two spectra we can point out the following
di!erences: a longer tail and a higher contribution
of small amplitude pulses distinguish the dark-
noise distribution. The origin of the longer tail
events is due to Cherenkov light of cosmic ray
particles and scintillation caused by natural radio-
activity contamination in the PMT itself, as re-
ported in Ref. [4]. In order to understand the origin
of the higher contribution of small amplitude pulses
we grounded the "rst dynode and kept the photo-
cathode at a small positive potential. In this way
the possible noise from the dynode system was
measured. The distribution we obtain is also pre-
sented in Fig. 2. It does not "t the di!erence be-
tween the spectra. The most probable origin of this
di!erence is the thermoionic emission from the
photocathode material (SbCsK) which is covering
the inner parts of the PMT due to the manufactur-
ing procedure of the photocathode. Another contri-
bution, as reported in Refs. [5,6], could come from
the elastically scattered and backscattered electrons
from the "rst dynode.

From the consideration above, we note the
following:

f a signi"cant amount of small amplitude pulses in
the charge spectra is an intrinsic property of the
EMI 9135 PMT, and it should be taken into
account when modeling the SER;

f a signi"cant di!erence between the SER and the
dark noise makes it impossible to use the latter
distribution for the precise PMT calibration;

f the response of the PMT for a low intensity light
source is not a pure SER as, due to the statistical
nature of photon counting, there is always a cer-
tain amount of multiple p.e counting with a total
probability 1!P(0)!P(1), where P(0) is the
probability of no response and P(1) is the prob-
ability of a SER.

3. The SER charge distribution parameters

As it has been mentioned in the previous section,
even for small k, the PMT charge distribution
is not a pure SER. In order to extract the SER
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distribution, i.e the ideal PMT response to one
p.e. hitting the "rst dynode, the pedestal and
multiple p.e. response should be rejected from
the experimental charge distribution. We do it
using an ideal SER model which is discussed in this
section.

The main parameters of the ideal SER we are
evaluating in this section are the mean value x

1
of

the ideal SER itself and its relative variance
v
1
"(p

1
/x

1
)2, where p

1
is the ideal SER standard

deviation.

3.1. The SER model and xtting function for the PMT
response to small k

An ideal SER model consisting of a Gaussian
and an exponential is used

SER
0
(x)"

G
p
E

A
e
~

x~x1

A #

1

J2pp
0

1!p
E

g
N

e~(1@2)(x~x0~x1
p0 )2, x'0

0, x40

(6)

with the following parameters:

f A is the slope of the exponential part of the
SER

0
(x),

f p
E

is the fraction of events under the exponential
function,

f x
1

is the pedestal position,
f x

0
and p

0
the mean value and the standard

deviation of the Gaussian part of the single p.e.
response, respectively;

and the factor

g
N
"

1

2A1#ErfA
x
0

J2p
0
BB

where Erf (x) is the error function, takes account for
the cut of the PMT response Gaussian part.

The model has been applied to a number of
di!erent PMTs. From this, we "nd a good quality
of the "nal "t and this justi"es our choice of the
SER

0
(x) function.

To account for the electronics noise, we perform
a convolution of the ideal SER with a noise

function, Noise(x):

SER(x)"SER
0
(x)?Noise(x) (7)

where

Noise(x)"
1

J2pp
1

e~(1@2)(x~x1p1 )2 (8)

which "ts the pedestal with a proper normalization.
The convolution does not in#uence the Gaussian
part of the SER since p

1
<p

1
(in our measure-

ments p
1
&0.01p

1
), but it does a!ect the exponen-

tial part because it is closer to the pedestal. The
analytical formula for the convolution of the ex-
ponential function with the Gaussian gives

Ser(x)"
p
E

2A
e p2

1~2A(x~x1 )
2A2 A1#ErfA

Ax
1
!p2

1
J2Ap

1
BB. (9)

The PMT response for a low light intensity con-
tains a certain amount of multiple primary p.e.
signals. Assuming that the PMT response is linear,

we can write x
n
"nx

1
and p

n
"Jnp

1
, where

x
n

and p
n

are the mean value and the standard
deviation of the PMT response to n p.e., respective-
ly. Taking into account the Poisson distribution of
the detected light and using a Gaussian approxima-
tion for the responses to n p.e. '2 (the validity of
this assumption is discussed later), the multi-p.e.
response will have the following form:

M(x)"
NM

+
n/2

P(n;k)

J2npp
1

e
~(1@2n)Ax~nx1~x1

p1 B
2

(10)

where the response to n p.e. is approximated by
a Gaussian and P(n;k) is the Poisson distribution
with mean value k to account for the di!erent
contributions of 0Pn p.e. In Eq. (10) N

M
, the

maximum number of multiple-p.e. responses con-
sidered, depends on k and on the ADC scale. The
function M(x) has three additional parameters
k, x

1
and p

1
.

For "tting the PMT response to a low intensity
light source (small k) with a small contribution of
multiple p.e., approximate values of x

1
and p

1
can

be used

x
1
+(1!p

E
)x

0
#p

E
A (11)

p
1
+(1!p

E
)(p2

0
#x2

0
)#2p

E
A2!x2

1
. (12)
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Fig. 3. The SER charge distribution taken with a mean p.e.
number equal to 0.021. In the upper plot the exponential part
and the Gaussian one in the SER are shown. The exponential
function is convoluted with the noise. The contribution of 2 and
3 p.e. to the PMT response can be seen in the logarithmic scale.

The approximate character of these formulae come
from the cut in the Gaussian part of the SER, whose
portion below 0 is truncated.

A more complex analytical approach has been
developed for larger k with lower statistics data.
This approach gives a precise value of x

1
and p

1
(see Appendix A). Here we are following the stan-
dard procedure of the SER de"nition described in
literature (7), making corrections for the multiple
hits and small amplitude pulses contribution.

From Eqs. (7), (8) and (10) the "tting function for
the PMT distribution can be written as

f (x)"N
0
(P(0)Noise(x)#P(1)SER(x)#M(x)) (13)

where N
0

is a normalization factor. In Eq. (10) we
choose the values of x

0
, p

0
, p

E
and A as free para-

meters for "tting. When used with small k, this
function will work well only for very high statistics
because of the larger magnitude of the P(0) prob-
ability.

We should point out that Eq. (13) was used only
to separate the contribution of small amplitude
pulses from the events in the pedestal and can be
applied only in the case of small k (&0.02) and
high statistics data. For 1% precision of k de"ni-
tion at 1p CL the necessary statistics is 105 (see
Appendix B). We veri"ed the statistics needed
for a 1% precision of the SER parameters de"ni-
tion is of the order of 105 excluding the pedestal. So
for k&0.02 the total number of events should be
105.

3.2. The SER charge distribution parameters

To obtain the SER parameters x
1

and v
1

the
following procedure has been applied.

(1) Using Eq. (2) an approximate value of k is
de"ned by evaluating the ratio of the events
under the Gaussian "tting the pedestal to the
total number of triggers.

(2) The "t of the experimental data with Eq. (13) is
performed with "xed k (see Fig. 3).

(3) The mean value, xH
.
, and the r.m.s., pH

.
, have

been de"ned for the experimental distribution
after the pedestal rejection. To reject the ped-
estal events the experimental data have been
used for x'x

1
#5p

1
, while the data have

been replaced by the "tting curve (see black-
painted area in Fig. 4) for x(x

1
#5p

1
.

(4) The number of pedestal events have been esti-
mated from the di!erence between the total
number of triggers and the events under the
modeling curve (see Fig. 4), then the precise
k value has been obtained using Eq. (2).

(5) x
1

and v
1

(the SER relative variance) have been
obtained from xH

.
and vH

.
"(pH

.
/xH

.
)2 (the

PMT charge distribution relative variance) dis-
carding the contribution of the multiple-hits,
using the formulae (see Appendix C):

x
1
"xH

.A1!
k
2B. (14)

v
1
"

vH
.
!k/2

1!k/2
. (15)

4. Estimation of the mean number of p.e.

We studied four di!erent procedures to
obtain the mean p.e. number from the PMT
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Fig. 4. The pedestal rejection procedure using the single photo-
electron "tting function. The SER model function convoluted
with the noise circumscribe the black-painted area.

charge distribution.

(1) We assume the Poisson distribution of the de-
tected light, the mean p.e. number can be de-
"ned from Eq. (2)

k"!ln(P(0)).

(2) In addition, we assume the linearity of the
PMT, the electronics and the ADC; then the
mean number of p.e. can be estimated from the
mean value of the charge spectra using the
calibration of the SER:

k"
x
.

x
1

(16)

where

x
.
"

+N(i)i

+N(i)
(17)

and it is de"ned for all spectra, including ped-
estal. N(i) is the content of the ith bin of the
charge histogram. x

1
is di!erent (lower) than

the location of the peak in the output charge
distribution for single photoelectron.

(3) The mean p.e. number can be estimated from
the relative variance of the charge spectra. For
the assumption involved see Refs. [3,8]. If v

1
is

the relative variance of the SER distribution,
then

v"A
p
.

x
.
B

2
"

1#v
1

k

i.e.

k"
1#v

1
v

. (18)

(4) Supposing, as before, the linearity of the PMT
response and the mutual independence of every
primary p.e. participating in the anode charge
formation, one can construct the basis set of
functions f

N
(x), which can be used for the

charge distribution "tting:

f
N
(x)"f

N~1
(x)?f

1
(x) (19)

where f
N
(x) is the response of the PMT for

N-p.e. and f
1
(x) is the SER in Eq. (6). The

parameters in f
1
(x) have to be de"ned with the

procedure described in Section 3. Taking into
account the underlined assumptions, the "tting
function for a measured charge distribution
can be written as

f (x)"
N.!9

+
N/1

P(N) f
N
(x)#P(0) f

1
(x) (20)

where P(N) is the Poisson distribution of
N and f

1
(x) is the noise function. For k big

enough instead of Eq. (19) a Gaussian approxi-
mation can be used. In this case, as we show
below, the functions f

N
(x) can be Gaussians.

This is practically the case of Eq. (13).

5. Data analysis

The data analysis of the measurements taken
with di!erent "lters have been performed using the
four methods mentioned above. The results of the
analysis are presented in Table 2 and discussed in
the next subsections.
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Table 2
Mean photoelectrons number obtained implementing di!erents methods !,"

No. q Att (dB) k"x
.
/x

1
k"!ln(P(0)) k"(v

1
#1)/(v!v(p)) "tI(s2)

1 0.001 0 0.0211 0.0211 0.0211 !

2 0.01 10 0.202 0.208 0.204 0.206 (2.72)
3 0.02 10 0.432 0.436 0.431 0.430 (1.48)
4 0.05 10 1.10 1.07 1.09 1.08 (2.42)
5 0.1 10 2.12 2.06 2.10 2.10 (1.69)
6 0.2 10 4.16 ! 4.20 4.12 (1.25)
7 0.5 20 10.2 ! 10.2 10.13 (2.14)
8 " 20 21.7 ! 21.7 21.3 (1.65)

!Too low statistics for the method used.
"No "lters.

Table 3
PMT charge distribution parameters (left column) and the SER
ones (right column)

x
.
"249.4 x

1
"246.7

v"0.303 v
1
"0.296

We aimed to achieve 1% accuracy in our
measurements, so we keep signi"cant numbers for
all the data in Table 2 at this level of accuracy. We
estimated the accuracy only for the P(0) method
(see Appendix B) directly. It is di$cult to estimate
the precision of the other methods in such a direct
way but one can see from Table 2 that the di!erent
methods give equal results within the claimed accu-
racy.

5.1. The SER parameters

In order to obtain with a satisfactory precision
the SER parameters a high statistics data sample of
1.8]108 laser trigger was taken with an optical
"lter having q"0.001. Using the procedure
described above, we obtained the following
numbers.

(1) The number of events under the SER histo-
gram after pedestal rejection was
N

%7
"3.725]106. The mean number of photo-

electrons was calculated to be

k"!lnA1!
3.725]106

1.8]108 B"0.021,

since N
%7
"N

53*''%34
(1!P(0)).

(2) With k "xed to 0.021 the "t has been performed
with the function of Eq. (13) (see Fig. 3).

(3) The calculated PMT charge distribution para-
meters are reported in Table 3.

(4) Using the "t, the pedestal events number have
been estimated, leading to the precise evalu-
ation of the number of p.e., which however,
resulted virtually unchanged (indeed the new
evaluation turns out to be 0.0211). It can be
seen in Fig. 4 that we have a certain amount of
negative small amplitude pulses near x

1
. These

signals are registered when the trigger hits just
after the big amplitude dark event pulse (which
has negative overshoot) has occurred. These
pulses should be considered as no-p.e. events.

(5) The SER parameters obtained from Eqs. (14)
and (15) are presented in Table 3, from which it
can be seen that the di!erence with the para-
meters inferred directly by the `not correcteda
charge distribution is negligible.

5.2. The attenuator calibration

In order to increase the dynamical range of the
ADC an attenuator has been used before the ampli-
"er as shown in Fig. 1. Using a precise charge
generator (LeCroy mod. 1976) the calibration of the
ADC for the attenuator set at 0, 10, 20 and 30 dB,
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Table 4
Attenuator calibration parameters

Setting (dB) Attenuation

10 3.20
20 10.24
30 33.49

Table 5
Mean p.e. number evaluated by three di!erent methods of ped-
estal rejection. I method: using the single photoelectron response
"tting function to discard real photoelectrons small amplitude
pulses. II method: using a suitable cut (see text) to discard real
pulses from the pedestal region. III method: "tting the pedestal
events with a Gaussian

No. I method II method III method

1 0.0211 0.0212 0.0202
2 0.208 0.207 0.205
3 0.431 0.433 0.425
4 1.29 1.32 1.30

respectively, has been performed. For every set of
data a linear "t has been done. The pedestal, mea-
sured with high statistics, has been taken as the
constant parameter of the "tting linear function.
Finally, the calibration of the attenuator has been
obtained as the ratio of the corresponding slopes.
The data are presented in Table 4.

5.3. `No photoelectron event numbera estimation

Together with the pedestal rejection procedure
described in Section 3.2 ("rst column in Table 5),
two alternative methods have been tried.

(1) We "xed a value averaging the SER around
x
1
#5p

1
with a spread of $p

1
, then we rejec-

ted the events under the measured charge distri-
bution for x'x

1
#5p

1
plus the events under

the rectangular area from x
1

up to x
1
#5p

1
.

The mean p.e. number for di!erent measure-
ments are listed in Table 5 in the second column.

(2) Fitting the pedestal with a Gaussian, we took
as pedestal events the normalization factor
N

1%$
. The mean p.e. number, obtained with this

method of pedestal rejection, for di!erent
measurements are listed in Table 5 in the third
column.

The "rst method gives better results evaluating the
pedestal. Nevertheless, the second one, easier to
implement, gives results in acceptable agreement in
comparison with the former.

5.4. Mean photoelectrons number estimation using
SER mean value

Having evaluated x
1

(the mean value of the SER)
one can estimate k from Eq. (16). Data are present-
ed in Table 2.

We should note that, because of the asymmetri-
cal shape of the SER, x

1
is less than x

0
, the main

peak position. For a sample of 40 PMTs tested
during the preparation of the CTF this di!erence
was in the range of 0}15%. So it is not correct to
calibrate the PMTs using x

0
.

Here we would like also to point out another
di$culty that arises from the non-equivalence of
x
0

and x
1
. Not knowing a priori the x

1
value which

should be de"ned in the complicated enough way
described before we adjust the PMT operating high
voltage in order to have the gain factor at k"107
at the peak position. It means that the real PMT
gain is up to 15% less and is equal to k@"kx

1
/x

0
.

5.5. The basis set of the xtting functions

5.5.1. Convolution of the ideal PMT response
A "tting function for the measured charge spectra

can be obtained from the known SER
0

function
( f
1
(x)). The SER

0
parameters was obtained by "tting

high statistics data. Then the set of discrete functions
have been obtained as recursive convolution:

f 0
N
(i)"

i
+
k/1

f 0
1
(k) f 0

N~1
(i!k). (21)

Such a set f 0
N

has been obtained for every at-
tenuator setting. In Figs. 5 and 6 we show these
functions (continuous line) evaluated for 0 and 30
dB, respectively. Then the convolution with the
Gaussian noise function has been performed:

f
N
(i)"

i`10p1

+
k/i~10p1

f 0
N
(k) Noise(i!k). (22)

630 R. Dossi et al. / Nuclear Instruments and Methods in Physics Research A 451 (2000) 623}637



Fig. 5. Set of convoluted and Gaussian (dashed lines) functions
to work out the phototube charge distribution "tting for a 0 dB
attenuator setting.

Fig. 6. As in Fig. (5) but for a 30 dB attenuator setting.
Fig. 7. PMT charge distribution "t using the convolution
method.

So the "nal "tting function is

f (i)"N
0A

N.!9

+
N/1

P(N) f
N
(i)#P(0) f

1
(i)B. (23)

The data with k44 were "tted with four free
parameters: the normalization N

0
, the mean num-

ber of p.e. k, x
1

and p
1
. For k'4 when events in

pedestal cannot be clearly separated x
1

and p
1

were
"xed at the measured values. In Table 2 we present
in the last column the values of k and s2 obtained
using Eq. (23).

An example of this "tting method is presented in
Fig. 7.

5.5.2. Gaussian approximation of basic functions f
N

For large k ('4) a Gaussian approximation has
been tried instead of using function (23). In this case
instead of Eq. (22) we use (Fig. 8)

f
N
(x)"

1

J2pp
N

e~(1@2)(x~xNpN )2 (24)

with

x
N
"

x
1
N

k
!55

(25)

p2
N
"NA

p
1

k
!55
B#p2

1
. (26)
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Fig. 8. PMT charge distribution "t using the convolution
method (upper plot) and the Gaussian approximation for the
"tting functions.

Fig. 9. PMT charge distribution "t using the convolution
method (upper plot) and the combined Gaussian one.

Table 6
Recalculated values for the relative variance method

k"x
.
/x

1
k"(v

1
#1)/v k"(1#v

1
)/(v!v(p))

1.10 1.08 1.09
2.12 2.06 2.10
4.16 3.99 4.20

10.2 9.46 10.2
21.7 18.8 21.7

In Figs. 5 and 6 we plot these Gaussians (dashed
lines) for comparison with Eq. (22). It can be seen
that for a number of p.e.53 the Gaussian co-
incides with the corresponding function from Eq.
(22). One can also see (Fig. 6) that the noise signi"-
cantly changes the f

N
functions for high k

!55
, so even

the SER can be replaced by a Gaussian in a noisy
environment.

For 0.05(k(1 a combined method has been
used: as f

1
(x) was chosen the SER function and for

each f
N
(x) (N'1) were chosen Gaussians as in Eq.

(24).
An example of this "tting method is presented in

Fig. 9 (lower plot).

5.6. The quality of the xt

The quality of the "t was checked by three cri-
teria:

(1) s2 method;
(2) comparison with the k value obtained by the

other methods;
(3) the k value obtained for the di!erent at-

tenuator setting should be the same.

The convolution method is good for k50.05
and up to kK10 then it gives slightly smaller
values due to the accumulated errors while con-
structing the f

N
functions. The Gaussian approxi-

mation gives good results starting from k'1 (even
if s2 is big), and it is de"nitely better for high
k values (k'10). For 0.05(k(1 the combined
method gives results comparable with the convolu-
tion one.

5.7. Estimation of k using the relative variance

Estimation of k using formula (18) for k'4 gives
signi"cantly di!erent values in comparison with the
other methods used (see Table 6). A possible reason
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1 It is easy to check that the same distribution spread will
provide the use of the following formulae:

p2
N
"N(p2

1
#(N!1)x2

1
v
1
)#p2

1
(28a)

p2
N
"Np2

1
#k2x2

1
v
1
#p2

1
. (28b)

Formula (28) has been chosen after the analysis of the "t quality
(see Section 5.6)

Fig. 10. PMT charge distribution "t using the Gaussian ap-
proximation. The mean number of p.e. is calculated to be 21.71
and s2"2.76.

Fig. 11. PMT charge distribution "t with correction for the light
transfer #uctuations. The mean p.e. number is 21.68 and
s2"1.80.

could be the #uctuations in the electron collection,
electrons transfer e$ciency, etc. In the case of
a normal distribution (it is also true for a Poisson
distribution) of the emitted light one can take
into account such #uctuations, as reported in
Ref. [8]

v"v(p)#
1#v

1
k

(27)

where v(p) is the relative variance of the photo-
electrons transfer e$ciency.

Fitting the data using Eq. (27) with v
1
"xed, we

obtained v(p)"8.7]10~3. This is a too small value
to in#uence the estimation of small k, but it be-
comes noticeable for a bigger k.

In Table 6, we show recalculated values for the
k51. These are also found in Table 2, in the 6th
column.

5.8. Fit correction for the electrons transfer
yuctuations

The e!ect of the electrons transfer #uctuation
should also be taken into account for the proper
"tting of the PMT charge distribution for large k.
Indeed, "tting the charge distribution with kK10
using the Gaussian approximation the p of the
"tting curve tends to be slightly less than the ex-
perimental value (see Fig. 10).

Fluctuations in the transfer e$ciency will lead
"nally to increase the distribution spread. In order
to account for this we introduce the additional
parameter v(p):1

p2
N
"N(p2

1
#kx2

1
v
1
)#p2

1
. (28)

We implement the "t using Eq. (28) for charge
distributions with k'4. In Table 7, where the
"tting results are presented, one can see that
v(p)&7]10~3.

An example of the "t is presented in Fig. 11, the
quality of the "t is better, though the k values
remains almost unchanged. This is a consequence
of the Poisson character of the primary electrons
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Table 7
Recalculated values for the relative variance method

N
0

k
I

k
F

s2 v(p) (10~3)

1 21.7 21.8 1.65 4.7
2 10.2 10.2 2.14 7.6
3 4.16 4.20 1.70 7.0

Fig. 12. Calculated mean p.e. number (x
.
/x

1
) vs. declared trans-

mission as reported in Table 1.

counting, which is the main assumption in the
"tting function. The last column of Table 7 reports
the results obtained with such correction.

6. Conclusions

The assumption of the Poisson distribution of
the detected p.e. number proved to be reasonable
for our experimental conditions, as well as the
model chosen for the SER. In Fig. 12, we present
a logarithmic plot where the estimated p.e. number
is shown as dependence on the transmittancy of the
"lters.

All of the methods give values which are in good
agreement with expected linear dependence of the
p.e. number registered on the "lter transparency.
The "gure demonstrates the linearity of the setup in
the dynamic range of 0.02}20 p.e.

The best method for p.e. number estimation in
the 0.2(k(5 range experimental conditions
(when the variations of the light transfer e$ciency
are bigger then in the laboratory setup) is the "t of
the PMT charge distribution with the function
(A.6) with x

0
, p

0
,P

E
and A values "xed to the

values found during the independent PMT calib-
ration and with free k and v(p).

The advantage of the "tting method is its ability
to restore k from `cuta charge distribution. In the
case where the independent calibration was not
performed the functions of Appendix A can be used
with free parameters in order to estimate x

1
(using

formulae of Appendix A). This will need more
statistics.

If the charge distribution has `no cuta and the
SER (or x

1
parameter) is known, the mean p.e.

number can be estimated by dividing the mean of

the distribution by the calibration value x
1

(posi-
tion of the mean for a `purea SER).

7. For Further Reading

The following references are also of interest to
the reader: [7,9}11].
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Appendix A. Function for the PMT response 5tting
for the lKK1

Formula (13) cannot be implemented to "t the
PMT response to a light source with intensity of
K1 p.e. because of the approximate character of
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the estimation of x
1

and p
1
. These quantities can be

estimated precisely in our model as

x
1
"Ax0

#

p
0

J2pg
N

expA!
1

2A
x
0

p
0
B

2

BB
](1!p

E
)#p

E
A (A.1)

p2
1
"Ax2

0
#p2

0
#

x
0
p
0

J2pg
N

expA!
1

2A
x
0

p
0
B

2

BB
](1!p

E
)#2p

E
A2!x2

1
(A.2)

where g
N

is a normalization factor taking into
account the cut of the Gaussian part of the SER
spectra:

g
N
"

1

2A1!erfA!
x
0

J2p
0
BB. (A.3)

Another problem arises from the substitution of the
multiple p.e. responses with Gaussians. While for
n53 the Gaussian is a very good approximation
(see Fig. 5), there is a signi"cant deviation from the
Gaussian shape in the n"2 response. Precise ana-
lytical formula for the f

1
?f

2
convolution is quite

complicated and its use in the "tting procedure
slows down the calculation. The following approxi-
mation can be obtained neglecting the smallest
contributions (x should be replaced by x!x

1
on

the right-hand side of the equation in the case of
non-zero pedestal value):

f
2
(x)"p2

E

x

A2
e~x@A#2

(1!p
E
)p

E
J2pp

0

]expA!
1

2A
x!x

0
!A

p
0

B
2

B
#

(1!p
E
)2

2Jpp
0

expA!
1

2A
x!2x

0
p
0
J2 B

2

B. (A.4)

The last problem of the correct PMT charge
spectra "tting is taking into account the photons
transfer e$ciency v(p) (including all the possible
variations of the photocathode quantum e$ciency
from point to point and from the angle of incidence,
etc.) One can neglect this variations only for

k;
1#v

1
v(p)

. (A.5)

For a big enough k when parameter v(p) is not
known it is better to leave it free and use formula
(28) for p

N
.

The "tting function for a measured charge distri-
bution can be written as

f (x)"P(0) f
1
(x)#P(1) f

1
(x)#P(2) f

2
(x)

#

N.!9

+
N/3

P(N) f
N
(x) (A.6)

where P(N) is the Poisson distribution and f
1
(x) is

the noise function. For the functions f
N
(x) the

Gaussian approximation (with parameters de"ned
by (A.1) and (A.2) is used. f

1
(x) function coincides

with Eq. (7).
Function (A.6) has been tested on the CTF

(prototype of BOREXINO (10)) data (runs with
a Rn source at the center of the detector). It turns
out a s2K0.9!1.1 with a statistics of K80 000
events.

The parameter v(p)K0.025 in the CTF is signi"-
cantly bigger than the one we could expect using
our setup (because of the more complex light trans-
fer in CTF).

In order to check the stability of the "t 64 sam-
ples of 40 000 events each have been acquired using
the setup shown in Fig. 1 for the same PMT and in
the same conditions with k"2.15 (de"ned from the
combined statistics with a high precision following
the procedure described in Section 3.2). The "t of
each run has been performed. The "t parameters
change around their mean values as (for 1p):

SkT"2.151$0.026

Sv
1
T"0.294$0.014

Sx
1
T"244$2.

So we can conclude that a statistics of 40 000 events
with kK2 is enough to obtain a SER calibration
with a 1% precision at the 1p CL.

If the SER parameters (x
0
,p

0
, p

E
and A) are "xed

to the values obtained in independent high statis-
tics calibration and only the parameters k, v(p),x

1
and p

1
are free, the "t of the same data samples

gives

SkT"2.147$0.009

providing even better estimation of the k value.
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Fig. 13. Statistics for 1% accuracy at 1p and 3p CL for di!erent
mean number of p.e.

Appendix B. The accuracy of the mean p.e. number
calculation from the amount of no-p.e. events

The estimation of the mean number of p.e. from
the amount of the events in the pedestal is based
only on the assumption of the Poisson-like distri-
bution of the p.e. registration statistics. This means
we do not take into account the linearity of the
PMT, which is an important point when all the
other methods described in this paper but this one
are concerned.

However, while implementing this technique,
errors can arise in separating small amplitude
pulses from pedestal events (no-p.e. events). Here
we suppose that pedestal events are separated per-
fectly.

Let us call P
0

the probability to have a no-p.e.
response, then 1!P

0
is the probability to have

a p.e. response. Because of the Poisson law of the
registrated p.e.:

P
0
"e~k. (B.1)

The mean p.e. number is estimated from

k"!lnA
N

1%$
N

53*''%3
B. (B.2)

Therefore, we have a simple binomial law for the
probability of having a signal under the pedestal.
The mean value and the r.m.s. for this binomial
distribution are, respectively,

SN
1%$

T"N
53*''%3

P
0

(B.3)

and

p2
N1%$

"N
53*''%3

P
0
(1!P

0
). (B.4)

For a 1p error estimation we can substitute

N
1%$

with N
1%$

$JN
53*''%3

e~k@2J1!e~k. The
error on k is not symmetrical and it turns out that
the bigger error comes out from the substitution of

N
%7%/54

!JN
%7%/54

e~k@2J1!e~k. Performing this
substitution and taking we have

k#*k"!lnAe~k!
1

JN
53*''%3

e~k@2J1!e~kB.
(B.5)

For 1% accuracy at 1p CL *k"0.01k and as
a consequence

N
53*''%3

"

1!e~k
e~k(1!e~0.01k)2

. (B.6)

In this way it is possible to work out the number of
triggers, N

53*''%3
. In Fig. 13, the number of triggers

for a 1% accuracy at 1p CL is shown.

Appendix C. Corrections to the SER parameters to
account for multi p.e. hits

Let us consider P(n) as the Poisson distribution
of the photoelectrons hitting the "rst dynode. The
mean value of the ADC distribution will be, sup-
posing the linearity of the PMT response: x

n
"nx

0
and p

n
"Jnp

0
, where x

0
and p

0
are, respectively,

the mean value and the standard deviation of the
SER; and taking into account the Poissonian distri-
bution of the detected light:

xH
.
"

P(0)0#P(1)x
1
#P(2) ) 2x

1
#2

P(1)#P(2)#2

"x
1

k
1!P(0)

(C.1)
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where x
1

is the mean value of the SER and the
normalization does not contain P(0) because the
pedestal is not measured. Taking into account the
condition k;1, the correction on x

1
can be ob-

tained from (C.1):

x
1
"x*

.A1!
k
2B . (C.2)

To de"ne the relative variance:

vH,A
pH
.

xH
.
B

2
"

Sx2T
SxT2

!1 (C.3)

one should know Sx2T, where SxT,xH
.
:

Sx2T"SxT2#(pH
.
)2

"

P(0)0#P(1)(x2
1
#p2

1
)#P(2)(4x2

1
#2p2

1
)#2

P(1)#P(2)#2

"

p
1
SnT#x2

1
Sn2T

1!P(0)
(C.4)

where SnT,k and SnT"Sn2T!SnT2 (Poisson
distribution) has been used. From Eq. (C.4) it turns
out that

Sx2T"SnT
p
1
#(1#SnT)x2

1
1!P(0)

. (C.5)

Therefore, the relation between vH and v
1

is

vH"(v
1
#1)

1!e~k
k

!e~k. (C.6)

Taking into account the condition k;1, the cor-
rected value of v

1
can be obtained from (C.6):

v
1
"v*A1#

k
2B!

k
2
. (C.7)
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