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Background: Medial temporal lobe (MTL) atrophy is one of the key biomarkers to detect early neuro-
degenerative changes in the course of Alzheimer's disease (AD). There is active research aimed at identifying
automated methodologies able to extract accurate classification indexes from T1-weighted magnetic
resonance images (MRI). Such indexes should be fit for identifying AD patients as early as possible.
Subjects: A reference group composed of 144 AD patients and 189 age-matched controls was used to train and
test the procedure. It was then applied on a study group composed of 302MCI subjects, 136 having progressed
to clinically probable AD (MCI-converters) and 166 having remained stable or recovered to normal condition
after a 24 month follow-up (MCI-non converters). All subjects came from the ADNI database.
Methods: We sampled the brain with 7 relatively small volumes, mainly centered on the MTL, and 2 control
regions. These volumes were filtered to give intensity and textural MRI-based features. Each filtered region
was analyzed with a Random Forest (RF) classifier to extract relevant features, which were subsequently
processed with a Support Vector Machine (SVM) classifier. Once a predictionmodel was trained and tested on
the reference group, it was used to compute a classification index (CI) on the MCI cohort and to assess its
accuracy in predicting AD conversion in MCI patients. The performance of the classification based on the
features extracted by the whole 9 volumes is compared with that derived from each single volume. All
experiments were performed using a bootstrap sampling estimation, and classifier performance was cross-
validated with a 20-fold paradigm.
Results: We identified a restricted set of image features correlated with the conversion to AD. It is shown that
most information originate from a small subset of the total available features, and that it is enough to give a
reliable assessment. We found multiple, highly localized image-based features which alone are responsible
for the overall clinical diagnosis and prognosis. The classification index is able to discriminate Controls from
AD with an Area Under Curve (AUC)=0.97 (sensitivity ≃89% at specificity ≃94%) and Controls from MCI-
converters with an AUC=0.92 (sensitivity ≃89% at specificity ≃80%). MCI-converters are separated from
MCI-non converters with AUC=0.74(sensitivity ≃72% at specificity ≃65%).
Findings: The present automated MRI-based technique revealed a strong relationship between highly
localized baseline-MRI features and the baseline clinical assessment. In addition, the classification index was
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also used to predict the probability of AD conversion within a time frame of two years. The definition of a
single index combining local analysis of several regions can be useful to detect AD neurodegeneration in a
typical MCI population.

© 2011 Elsevier Inc. All rights reserved.

Introduction

In recentyears, theearly clinical signsofAlzheimer'sdisease (AD)have
been extensively investigated, leading to the concept of amnestic Mild
Cognitive Impairment (aMCI), an intermediate cognitive state between
normal aging and dementia (Winblad et al., 2004). The aMCI condition is
currently identified by both a reported and an objective memory
impairment, either associatedwith a slight impairment in other cognitive
areas (multi-domain aMCI) or not (single-domain aMCI).

In longitudinal studies the aMCI subjects are experienced either to
convert to AD (converters) or not (non-converters). In the latter case they
may remain stable in the aMCI state or theymay even revert to normalcy.
Therefore, aMCI is a clinically and pathologically heterogeneous state in
need of effective and reliable strategies to predict the clinical evolution.
When these are available, hopefully upcoming disease-modifying drugs
will be administered only to the aMCI subjects with prodromal AD as
diagnosedwith the help of specific biomarkers (Dubois et al., 2007, 2010).

Neuropsychology is the clinical cornerstone in the effort of performing
a good and reliable predictive classification of the aMCI subjects. However
such tests alone prove to be not completely satisfactory because of
relatively low specificity between aMCI converters and non-converters
and because of floor effects that sometimes make recall measures
relatively insensitive to longitudinal changes.

The new proposed criteria for early diagnosis of AD suggest that
one or more biomarkers should show typical findings (“supportive
features”) for an aMCI subject to be diagnosed as affected by early AD
(Dubois et al., 2007).

The evidence of medial temporal lobe (MTL) atrophy in magnetic
resonance imaging (MRI) is probably themost easily accessedworldwide.

Studies carried out in the last decade indicate thatMRI can beused to
quantify regional atrophy in MCI population, distinguishing early and
later preclinical stages of AD (Pruessner et al., 2000; Shen et al., 2002).

A key contribution to biomarker findings came from the Alzheimer's
Disease Neuroimaging Initiative (ADNI), a large study launched in 2003
by the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and non-
profit organizations. The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the progression of MCI
and early AD.

The noticeable growth in the number of candidate biomarkers
poses the question on which one can add more value to the routinely
performed episodic memory tests.

In principle, an ideal biomarker should detect a specific patho-
physiological feature of AD, not present in the healthy condition, in
other primary dementias, or in confounding conditions. Besides being
reliable, a biomarker should be detectable by means of procedures
which must be relatively non-invasive, simple to perform, widely
available and not too expensive.

Among others, various morphological brain measures performed
by means of MRI, ranging from brain-wide, voxel-wise multivariate
measures to the selective volume estimate of restricted regions of
interest, such as the hippocampal formation, have been proposed as
candidate biomarkers (Frisoni et al., 2006; Karow et al., 2010; Desikan
et al., 2009). In particular, regional neuro-anatomical changes have
been investigated as biomarkers for Alzheimer's disease (Holland et
al., 2009; Vemuri et al., 2010), and aMCI conversion (Risacher et al.,
2010).

The increased interest in such “supportive features” derived from
neuroimaging is due to the improved image quality and to the
development of novel computer-assisted image processing tools
giving the possibility of an automated volume and shape quantifica-
tion of brain structures. Moreover, the interest is also raised by the
availability of large sets of imaging data collected by large multicenter
studies such as the ADNI.

In the context of neuroimaging applied to AD, computer-aided
analysis techniques have been proposed to discover and study
biomarkers via texture changes in signal intensity (Freeborough and
Fox, 1998), gray matter concentrations differences, atrophy of sub-
cortical limbic structures (Thompson et al., 2004; Frisoni et al., 2006)
and general cortical atrophy (Thompson et al., 2003; Lerch et al.,
2005). The underlying assumption being, in the general case, that
changes in neuropsychological or neurological functions under con-
sideration have a morphological counterpart, detectable via structural
MRI.

A growing body of literature has used machine learning methods
to extract high-dimensional features of interest from MRI, on which
classification functions are built to assist in clinical diagnosis of
probable AD or predict future clinical status for individuals with MCI
(Klöppel et al., 2008; Fan et al., 2008; Lao, 2004; Davatzikos et al.,
2008).

Hippocampal atrophy analysis performed by means of three-
dimensional (3D) MRI seems to obtain a rather good discriminative
value (Ferreira et al., in press). However, according to the traditional
approach such volumetric measurements typically rely on manual/
semi-automated outlining of the hippocampal structures on serial MR
images, which is time consuming and prone to inter-rater and intra-
rater variability.

In order to overcome these difficulties a novel approach was
proposed in a previous paper (Calvini et al., 2009). It is based on a
simple, quick, and operator independent method for the automatic
extraction of two regions around the hippocampus (one for each side
of the brain) from an MR image. From such subimages, denoted there
as hippocampal boxes (HBs) and containing both the hippocampus
and the perihippocampal region, a statistical indicator was able to
separate the AD, aMCI and controls cohorts with good accuracy.

We propose, as an evolution of the previous technique, a
procedure which is able to find other pathology-specific volumes of
interest (VOIs) where a high discrepancy exists between healthy
controls and either MCI converters or AD patients. Within a given VOI,
we shall see that only a small volume contributes to the cohort
discrimination, that is, the relevant information for the clinical
assessment is highly localized. A Classification Index (hereafter
designated as CI) could then be computed and found potentially
more accurate than the discrimination based on the previous HBs.

Materials and methods

Our procedure is meant to be fully automated and consists of five
steps summarized as follows: (i) image preprocessing (noise removal,
affine registration, gray-level intensity normalization), (ii) multiple
VOI extraction by means of template-matching and rigid registration,
(iii) feature computation and Random Forest-based (RF) feature
classification, (iv) Support Vector Machine (SVM) analysis and CI
computation, (v) CI validation and conversion probability estimation
based on follow-up clinical assessment.
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Subjects

The raw data used in the preparation of this article were
downloaded from the Alzheimer's Disease Neuroimaging Initiative
(ADNI) public database (http://www.loni.ucla.edu/ADNI/Data). Up to
the date of this writing, the ADNI has recruited229 healthy elderly
(CTRL), 398 MCI and 192 AD patients to participate and be followed
for 2–3 years.

Statistical data of the subjects included in our analysis are
summarized in Table 1. Subjects have been divided into 2 categories:
a training/testing set and a trial set.

The training/testing set consisted of 333 age and sex-matched
subjects, namely 189 CTRL and 144 AD. The trial set consisted of 302
MCI subjects, 136 of whom converted to AD in a time-frame of 2 years
from the baseline scans. These subjects were selected from the larger
ADNI data on the basis of having both baseline and at least 2 years
information fully available. Moreover, training subjects were chosen if
confirmed to be healthy controls/AD at follow-up assessment.

MRI acquisition and preprocessing

All images used here were acquired with 1.5 T scanners. Data were
collected across a variety of scanners with protocols and processed.
For up-to-date information on ADNI eligibility criteria and protocols
see http://www.adni-info.org.

Raw NIFTI-converted MRI scans were downloaded from the ADNI
site, automatically reviewed by signal-to-noise statistics for quality,
and processed with a wavelet based noise-filtering algorithm to
improve signal-to-noise ratio and image uniformity across different
sites.

Wavelet based denoising methods for MRI are quite common in
literature, as wavelet domain processing has many beneficial
properties compared to classical image domain processing. Through
the wavelet transform of the image we gain access to a sparse
hierarchical representation where most of the information is con-
tained in few high magnitude coefficients and the remaining low
magnitude coefficients can be related to the noise present in the
image.

Among the firsts to use wavelet techniques we can cite the work of
Healy et al. (1992) and Hilton et al. (1996) for the case of functional
MRI. Nowak (1999) was the first to address the problem of the bias
introduced by the Rician noise model that affects MR images, and
proposed a wavelet scheme that operates on the squared magnitude
of the images. Pizurica et al. (2003) performed a preliminary
coefficients classifications in order to empirically estimate the
statistical distributions of the coefficients that represent useful
image features and employed these probabilities in a Bayesian de-
noising scheme.

For our work we propose a soft-threshold de-noising scheme in
the Full Steerable Pyramid. The Steerable Pyramid is a particular
wavelet transform first proposed by Castleman et al. (1998) and then
extended by Portilla et al. (2003). The SteerablePyramid is a
redundant transform; contrary to the Discrete Wavelet Transform
(DWT) it is translation and rotation-invariant. This means that for
each scale we can select as many orientations as we want, gaining a

precise response to every structure contained in the image. It is thus
particularly suited for image analysis and de-noising.

One drawback of the Steerable Pyramid is that the transform is
inherently 2D (it is not straightforward nor computationally feasible
to obtain a 3D extension). On the other hand using a 3D wavelet
transform such as the 3D-DWT does not seem the best approach
either, as we lose the fine orientation selectivity of the Steerable
Pyramid. Three-dimensional wavelets are used in literature for
compression (Schiavi et al., 2004) but it is the 2D approach which is
the one most suitable for processing and analysis.

In our work we solve the problem by sequentially applying the de-
noising technique for each slice and each direction, therefore a total of
three noise-filtered MRIs are produced. The three filtered images are
merged into a mean MRI to further improve the signal-to-noise ratio
(see Fig. 1 for a schematic representation of the filtering procedure).

A novel method for filtering the noisy wavelet coefficients was
devised for this work. The idea for the selection of an appropriate size
for the soft-thresholding function is based on preserving the
structures of the image. The noise filtering procedure uses an
automatic calibration of the noise threshold Nt and three thresholds
Nt* are required to process a 3D image (one threshold for each
direction).

To look for the appropriate Nt*, we computed the Structural
Similarity Index (SSI) between the raw image and the filtered one as
function of Nt. The structure similarity index was first proposed by
Wang et al. (2004) and it is commonly used as an image quality index.
The computation is carried out separately on the three principal slices
(axial, sagittal, coronal) passing through the image center of mass.

The SSI is well suited to account for visual detail preservation
versus image information content, surpassing the classical image
quality indexes, such as Mean Square Error based indexes. The SSI is
defined as:

SSI gk; f k
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where gk and f k are local image patches taken from the same location
of two images g and f. The local SSI index measures the similarities of
three elements of the image patches: the local patch luminances, the
local patch contrasts, and the local patch structures. μgk and μfk are the
means of gk and f k, σgk and σfk are the standard deviations of gk and fk,
covgk, f k is the covariance between gk and fk and c1 and c2 are user-
defined constants. The resulting measure of similarity is finally given
by the average of the local SSI (Wang and Bovik, 2009).

Since the SSI is a symmetric measure, it can be thought of as a
similarity measure for comparing any two signals, and it is thus not
limited to a usage for image quality assessment. In addition, with the
proposed approach we are not making any assumption on the
underlying statistics of the image noise, we are only looking at the
preservation of the relevant structures, thus avoiding any approxi-
mate definition of the distribution of the noise and obtaining a fully
automatic de-noising of our data.

The SSI is a monotonically decreasing function of the threshold
value Nt. In order to get a good compromise between structure
preservation and noise removal, the Nt* value is chosen to be right

Table 1
Demographics and clinical findings at baseline. (⋆) training/testing set; (†) trial set. “APoE x/y” stands for Apolipoprotein E−�(y) on the allele x; subject number is within parenthesis.

Cohort Sample
size

Age [y] M/F MMSE APoE

2/2 2/3 3/3 3/4 4/4

CTRL ⋆ 189 76.6±5.1 95/94 29.1±0.9 0.5% (1) 11.1% (21) 60.0% (114) 24.8% (47) 1.5% (3)
MCI-NC † 166 75.7±7.3 106/60 27.2±2.4 0.0% (0) 6.0% (10) 46.0% (77) 35.5% (59) 10.8% (18)
MCI-C † 136 75.1±7.1 80/56 25.2±2.7 0.0% (0) 2.2% (3) 31.6% (43) 45.6% (62) 17.6% (24)
AD ⋆ 144 75.5±7.5 78/66 22.3±3.3 0.0% (0) 1.4% (2) 28.4% (41) 45.1% (65) 22.2% (32)
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after the ”knee” of the function, defined as the intermediate value
between the zero of the first derivative and the inflection point.

Automatic noise thresholding is targeted at improving MRI scan
uniformity throughout the subjects, yielding better analysis stability with
respect to images coming from different scanners. Fig. 2 shows a sample
sagittal cross-sectioncontaining the right hippocampus as the original
image (left) and after the application of the de-noise filter (right).

Registration and intensity normalization

De-noised scans were then registered onto the Montreal Neurolog-
ical Institute (MNI) reference with a 12 parameter affine registration
and resampled onto a 1 mm3 isotropic grid (Mazziotta, 1995).

In order to ensure an accurate registration, each image underwent
a 2-fold affine registration process, one with the normalized
correlation and one with the normalized mutual information metric.
The two-fold registration is a split process, where each image
undergoes two registration processes in parallel, each one having its
own metric and optimization parameters. The reason for using a split
registration process is that of circumventing possible local minima in
the parameter space. Ultimately, the double registration proves more
reliable, as each single method failed to provide accurate registration
on some images. To decide which image to keep after the split
registration process, they were compared to the MNI reference using
the normalized correlation metric and the best one was kept as final
registered image.

The registered images were then intensity normalized bymeans of
a segmen-tation-based method. Our method relies on a region-of-
interest-based intensity segmentation. The chosen ROI, identified on
the reference image, measures n=50×120×50=300,000 voxels
and is oriented along the long axis of the corpus callosum (see Fig. 3).
This region proves to be relatively easy to classify into Cerebro-Spinal
Fluid/Gray Matter/White Matter (CSF/GM/WM) and—thanks to the
morphological characteristics of the included anatomical structures—
it can be easily registered onto any target image.

The initial ROI, set as reference, is manually outlined on the MNI
image and is subsequently registered onto each target image by means
of a rigid transformation. The registration outputs the corresponding

Fig. 1. Schematic representation of the noise-filtering process. The graph on the upper right corner shows the typical trend of the SSI vs the noise thresholdNt, expressed as percent of
the maximum image intensity. The dash-dotted lines show the positions of the three thresholds Nt* computed on the axial, sagittal and coronal slice.

Fig. 2. Sample of a sagittal slice including the right hippocampus: original image (left),
noise-filtered image (right).

Fig. 3. Intensity normalization ROI size and positioning displayed on the MNI reference
image (ventricula and corpus callosum). Similar ROIs are extracted on each image to
serve as basis for the histogram matching procedure, following the segmentation into
CSF/GM/WM.
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ROI in the target image, which is thereafter segmented into
CSF/GM/WM with k-means cluster analysis (Seber, 1984).

The three cluster means are matched to the corresponding
CSF/GM/WM mean levels on the reference image. These are the fixed
points through which a cubic spline is fitted. This non-linear intensity
normalization pairs the three mean cluster intensities in the ROI
(CSF/GM/WM) between each subject and theMNI reference image, and
extends the mapping to the other gray levels by a smooth piecewise
polynomial curve. Fig. 4 shows a schematic representation of the
intensity mapping.

With this procedure we achieve good histogram normalization
among images coming from different scanners. We also ensure that
the mean gray levels of the three main cerebral matter contributions
are mapped onto those of the MNI reference.

VOI extraction

The objective of this step is to extract selected VOIs on which
salient image-based features can be computed. This step is accom-
plished by template matching techniques and rigid registration.

Each VOI is a parallelepiped-shaped volume with specific di-
mensions and it is associated with a set of atlas-like templates. Briefly,
templates represent classes of similar structures, and they are
computed once and for all from a set of matched aged Controls, MCI
and AD patients. We have taken the VOI templates as a given atlas, as
they were extracted in previous works (Calvini et al., 2009). Their use
came into play only as a means to ensure correct registration of the
various anatomical regions among subjects.

Once a set of templates is available for a given VOI, we used rigid
registration tomap them onto the target MRI. A correlation coefficient
is calculated between each template and the tentative VOI extracted
by registering that template onto the target image. The tentative VOI
with the best normalized correlation value to its template is returned.

Nine VOIs are extracted from any given MRI (see Fig. 5). They
include or capture part of anatomical structures, as listed in Table 2.
Due to a minor computational setback, the right counterpart of VOI n.
7 (insula-sup. temporal gyrus) could not be consistently extracted
from all MRIs. For this reason it has not been included in this work.

Although there is virtually no limitation to how finely the brain
parcelization with VOIs can be made, we selected some candidate

volumes relevant to AD-related pathology, based on previousMRI and
FDG-PET findings (Mosconi et al., 2007; Fennema-Notestine et al.,
2009; Walhovd et al., 2010b; Liu et al., 2010).

Seven VOIs (Table 2[a]) were chosen to include those temporal
lobe structures that are known to be affected in early AD, such as the
entorhinal, perirhinal cortex, hippocampus and parahippocampal
gyri, irrespective of normal inter- and intra-individual variability. Two
additional VOIs (Table 2[b]) were chosen as control volumes in
regions known to be relatively spared in early AD.

However, VOI positions other than those considered in this work
could be explored by means of the same approach, to include regions
showing early atrophic changes such as, for instance, the thalami and
the parietal cortex.

Global and local alignment optimizations between reference and
subject are achieved via affine and rigid transformation, on the whole
MRI and on the VOI respectively. The two-step global registration
process has been shown in other studies to reduce positional
variability of the VOI (Duchesne, 2006), which in turn lowers the
chances of propagating as unwanted noise in the morphometric
modeling.We are avoiding nonlinear registrations here on purpose, as
we shall show they are not needed to achieve high accuracy in cohorts
discrimination.

Fig. 4. Sample cubic piecewise polynomial curve mapping the ROI original gray level
intensities. The three points are the mean levels of segmented CSF/GM/WM from the
ROI. Target CSF/GM/WM levels are fixed while original ones are computed on the ROI
extracted from the image.

Fig. 5. VOI size and positioning displayed on the MNI reference image. The main
structures captured by each VOI are listed in Table 2. VOI n. 1,2: red; VOI n. 3,4: green;
VOI n. 5,6: yellow; VOI n. 7: cyan; VOI n. 8,9: magenta.

Table 2
Main gray matter structures captured in the VOIs (see Fig. 5). [a] potentially significant
regions; [b] control regions.

VOI n. Main anatomical structures

[a] 1 Hippocampus, enthorinal cortex (right)
2 Hippocampus, enthorinal cortex (left)
3 Amigdala (right)
4 Amigdala (left)
5 Middle and inf. temp. gyrus (right)
6 Middle and inf. temp. gyrus (left)
7 Insula-Sup. temporal gyrus (left)

[b] 8 Rolandic (right)
9 Rolandic (left)
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Features and classification

For each subject, a total of Z=9 VOIs are extracted and each is
filtered with f=18 different filters. Choices in image filtering are
unlimited in principle but practical computational considerations
suggested some restrictions.We therefore opted for a small set chosen
to enhance both intensity and texture-based characteristics: Gaussian
mean, standard deviation, range, entropy and Mexican-hat filters
calculated on different voxel neighborhoods (see Table 3). The result
of the application of the chosen filters to a sample image (a sagittal
cross-section of the right hippocampus) is shown in Fig. 6.

Each VOI z is filtered according to Table 3 leading to a total of

F = f × ∑
Z

z=1
Vz

features, where Vz is the number of voxels in VOI z. The feature set
consists therefore of the ensemble of all voxels of the filtered VOIs
extracted from the MRI under analysis. The number of features for
each MRI easily reaches the order of 106 and it is reasonable that not
all of them be relevant in the CTRL/AD classification.

Random Forest algorithms were demonstrated to easily deal with
high numbers of input features and it was also shown they improve on
accuracy in comparison toother supervised learningmethods (Breiman,
2001; Svetnik et al., 2003). Aside from improved accuracy, there are two
extremely useful byproducts: out-of-bag estimates of generalization
error and variable importance measures (Breiman, 2001; Bylander,
2002). It has been shown that the importance information can be used
to select the most probable predictors (Archer and Kimes, 2008).

During training and for each feature, the RF classifier returns a
number representing the relative importance of the feature for the
classification. This “important features map” (IFM) weights those
voxels within a VOI (and for each filter f), which are most relevant to
the CTRL/AD cohort separation.

According to Archer and Kimes (2008), the RF algorithm together
with the important variable information is most useful when there is a
large number of highly collinear covariates, such as the case where
voxels represent morphological structures.

The IFM can be used to prune the less relevant features, cutting the
original number by approximately two orders of magnitude. Pruning
was performed by thresholding the IFM, cutting out the lowermost 95%.
However, this value is not a critical parameter. CTRL/AD classification
performance was plotted against the threshold to find a reasonable
trade-off.Wechecked that lowerpruning thresholdsdidnot improveon
the classifier cross-validation results, whereas higher values (e.g. 98%
and up) impoverished the feature set of too much information and
therefore they did impact on the result quality. We opted for a high
enough threshold to reduce the features to amoremanageable number
without impacting on the classification performance.

This feature pruning significantly reduced the computational time
and resources necessary to train and cross-validate our classifiers.
Once our input set was pruned from all but the most relevant features
we fed it to a set of SVM classifiers (Cortes and Vapnik, 1995) and their
outcome was averaged out to give the Classification Index.

Statistical and computational considerations

In order to assess the statistical significance for the VOI extraction,
feature selection and classification, we resorted to the bootstrap
procedure and the k-fold cross-validation (Zhu et al., 2006). Fig. 7
displays a schematic overview of the training and testing procedure.

Bootstrapping involves the generation of multiple versions of the
training group, serving to ensure maximum learning efficiency from a
limited dataset and involves the generation of several random
samples with replacement. In our procedure it was used to train
many RF classifiers in order to get the IFM.

The chained RF and SVM classifiers were validated on the CTRL/AD
set with a 20-fold, cross-validation paradigm. As shown in Fig. 7, m ≃
N/20 subjects are left out from the N CTRL+AD subjects and the
training process is carried on the remaining N-m. MCI population was
used neither in the training nor in the testing process.

Cohort classification was performed with an SVM algorithm, whose
input is a subset of the feature space computed on all the VOIs (pruned
features). As stated in Section 2.5, this subset is obtained by masking
the whole feature set F with a thresholded IFM to reduce the total
number of features per subject. The resulting number of features F̃ is the
same for each subject and it is determined by the threshold applied to
the IFM.

Still, the number of the pruned features F̃ is generally much greater
than the number of training subjects. In order tominimize over-training
effects, several SVM classifiers (nsvm) are trained on a random sample
taken from the pruned feature space F̃.

nsvm = 1:2 ×
2 F̃

N−m

Being N-m the number of subjects in the training set, each SVM

classifier takes
N−m
2

features in input. In order to take most of the

features into account, nsvm was chosen to cover 1.2 times the number
of the pruned feature set F̃ . The CI value is computed by averaging the
dichotomic outcome of the single SVM classifier on the nsvm set.

Although the SVM algorithm is capable of dealing with a large
number of features, it is known to performmore reliablywhen themost
irrelevant inputs are purged out (Guyon et al., 2002). In this way, the
preliminary step with the RF can improve the classification stability.

Volumes Of Interest have been centered onto specific anatomical
regions and their sizes are chosen to assure accurate registration,
therefore some VOIs may share common volume. Volume redundancy
may seem relevant among some VOIs (like, for instance, between the
hippocampus and the amigdala region) but the actual analysis is
carried out on the IFM pruned features and not on the whole VOI
volume. On the IFMmap, wemeasured a volume overlap of about 10%.

Even though some redundancy is still present in the IFM from
neighboring VOIs, SVM classification is not impaired because it only
means that a small percentage of features are more likely to be picked by
the random sampling.

Clinical data on all cohorts include follow-up classification. We are
interested in the MCI cohort follow-up which is usually taken every
6 months up to 2 years after the baseline acquisition. Regarding MRI
data, we analyzed baseline scans only, as we aim to determine the
conversion-to-AD probability based on the initial scan analysis.

Image processing from raw data to VOI extraction was completed
using a combination of ITK tools (Yoo et al., 2002), FLIRT (Smith et al.,
2004) and MATLAB (http://www.mathworks.com) in the framework
of the LONI pipeline environment (Rex et al., 2003). RF and SVM
classifiers, model prediction and the whole statistical analysis were
performed using MATLAB.

The computational framework used for processing, storing and
analyzing all images is based on a 48 cores Sun Grid Engine cluster
running a LONI pipeline server. The whole process, from raw data to
the CI, takes about 15 minutes per image and is fully automated.

Table 3
List of filters used to enhance both intensity and texture characteristics of the VOIs.

Filter type Neighborhood (voxels)

3×3×3 5×5×5 7×7×7 9×9×9 11×11×11

Null – – – – –

Gaussian mean x x x
Average x x x
Entropy x x x
Range x x x
Std. deviation x x x
Mexican hat x x

474 A. Chincarini et al. / NeuroImage 58 (2011) 469–480



Author's personal copy

Our implementation includes several checkpoints (on the raw MRI,
VOI extraction and VOI content) to ensure data quality throughout the
process. These checkpoints verify incoming data and filter consistency,
so that MRI images and/or VOIs which do not meet satisfactory quality
requirements are automatically discarded. Our checks found about 3%of
the initial rawdataset to be affected either by insufficient data quality or
image registration problems. Numbers in Table 1 describe the dataset
once the poor quality images were dropped out.

Results

The first result comes directly from the RF classifier. For
visualization purposes, a smoothed, thresholded IFM overlaid on a
representative structural MRI scan is shown in Fig. 8. The plotted IFM
is the superposition of all thresholded IFMs computed on the 9 VOIs. It
shows that the relevant information is squeezed into some decidedly
small areas within the VOIs.

Relevant locations mostly match those found in literature
(Hinrichs et al., 2009; McEvoy et al., 2009; Misra et al., 2009; Morra
et al., 2009; Pelaez-Coca et al., 2011; Hinrichs et al., 2011; Li et al., in
press; Plant et al., 2010) and they are rather precisely pinpointed. This
characteristic is due to the lack of smoothing in all our pre-processing,
VOI extraction and region analysis, whereas most works in literature
rely on deformable registration and Gaussian convolution. See Table 4
for a detailed list of the main relevant regions.

Classification

Once the classifier was trained and tested on the CRTL/AD cohorts,
we applied it to the MCI population. The CTRL population is first
compared with the mild AD subjects and then with the prodromal AD
subjects (i.e. the MCI-C).

The averaged output from the SVM classifiers is taken as Classifica-
tion Index (CI) and plotted. Its values range from 1 (Normalcy) to −1
(AD). Fig. 9 summarizes its performance on the training/testing set (in
cross-validation) and on the trial set.

The area under the ROC curve (AUC) is ≃0.97 for the CTRL vs. AD,
with a sensitivity ≃ 89% at specificity ≃94%; and AUC ≃0.92 for the
CTRL vs. MCI-C, with a sensitivity≃89% at specificity≃80%. Finally, the
MCI-NC/MCI-C are compared and their AUC is found to be ≃0.74, with
a sensitivity ≃72% and specificity ≃65%.

It is also noteworthy to see how well the single VOI performs in
comparison to the combined volume analysis. We trained and tested
new classifiers separately on each single VOI (in a similar fashion as
described in Section 2) and looked at their cross-validation perfor-
mance, as well as their discrimination ability on the trial set.

Table 5 summarizes these findings and compares the performance
on the individual VOIs to the whole analysis.

Clearly some VOIs exhibit better than average results but no single
VOI consistently matches (or exceeds) the performance of the
combined analysis on both training/testing and trial set.

As expected, the rolandic areas in the 2 control VOIs (see Tables 2
[b] and 5) yield a weaker discrimination than the other VOIs,
particularly on the trial set. The only discrimination value within
these two VOIs comes from temporal lobe structures included at
their borders. Fig. 10 shows a section of the 2 control VOIs and the
related IFM. It is apparent that the IFM is mostly clustered in areas at
the VOIs border, where it is adjacent to the temporal lobe structures.
The general brain atrophy extension and magnitude in AD subjects
makes the information coming from that IFM still relevant for the
CTRL/AD discrimination but it is not sufficient to tell MCI-C fromMCI-
NC.

We checked whether genotype distribution on misclassified MCI
subjects differed significantly from the original population. A χ2 test
found both misclassified MCI-NC and MCI-C to be not significantly

Fig. 6. Sample VOI section (right hippocampus of an AD subject, sagittal cross-section) after applying intensity and texture filters. Left column, from top: original image, Gaussian 3×3×3,
Gaussian 5×5×5, Gaussian 7×7×7, average 3×3×3, average 5×5×5. Central column, from top: average 7×7×7, entropy 3×3×3, entropy 5×5×5, entropy 7×7×7, range 3×3×3,
range 5×5×5. Right column, from top: range 7×7×7, std. deviation 3×3×3, std. deviation 5×5×5, std. deviation 7×7×7, Mexican hat 9×9×9, Mexican hat 11×11×11.
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different from the original MCI-NC/MCI-C population (p=0.82 and
p=0.11 respectively).

In addition, we tested whether CI classification on MCI subjects
performs significantly better than a random classifierwith aMcNemar's
χ2 test. Setting the significance level to α=0.05 we found χ2≃7.62
(p=0.003).

We also checked how well our VOI-based analysis correlates with
the MMSE score and we found the Pearson's correlation to be r=0.31
(pb10−3) on the trial set.

Discussion and conclusions

This study proposes a computational neuro-anatomic method to
quantify local patterns of brain atrophy in a large sample of cog-
nitively normal individuals and in patients with prodromal or mild
AD. The general approach presented here was validated on a trial set
of a heterogeneous MCI population, and its results in terms of cohort
discrimination are comparable to those found in recent works, where
applied methodologies mostly concerned whole-brain pattern anal-
ysis (Karas et al., 2008; Davatzikos et al., in press; Wang et al., 2010;
Fan et al., 2008). Similarly to these studies, we give individual patient
classification in addition to the group analysis.

Unlike previous studies our approach is based on local analysis,
where the interesting volumes encompass only a small fraction of the
whole brain. In addition, we approached analysis using affine and
rigid registration only, although it relies on regional atlases to achieve
high spatial accuracy among subjects.

It is still unclear whether a whole-brain analysis delivers better
insight on MCI to AD conversion, although some studies advocate the
whole-brain approach (Misra et al., 2009; Cuingnet et al., 2011).

As shown in Table 5, some VOIs (n. 1, 4 and 5) perform nearly as
well as the whole analysis on the training set in cross-validation, but
they come short on the trial set. This could suggest that the diversity
in the MCI population cannot be fully taken into account with a single
region and a more sophisticated approach is called for.

On the other hand, CTRL/AD discrimination seems to be easier to
attain even with a single VOI analysis, as a more advanced AD state
leaves unequivocal marks in more than a few regions. As expected,
CTRL and AD are very well differentiated whereas the MCI cohort is
confirmed to be more heterogeneous even in terms of CI.

The complexity of the atrophy pattern paired to the histopatho-
logical studies of β-amyloid plaques and neurofibrillary tangles
deposition (Braak et al., 1996), indicates a widespread distribution
of brain neuro-degeneration during the progression of AD. This
implies that to examine volumes of a small number of structures
(typically the hippocampus and the entorhinal cortex) may not be
sophisticated enough for separating the CTRL, MCI and AD (let alone

Fig. 7. Training and testing flowchart. Schematic representation of the steps to get the
Classification Index on the CTRL+AD set.

Fig. 8. Important features map (IFM) sections superimposed on the MNI reference
image. Color scale is proportional to the normalized IFM value.

Table 4
Main anatomical structures captured by the thresholded IFM, Brodmann Areas are
within parentheses. These locations are the only ones involved in the computing of the
classification index. A graphical representation is given in Fig. 8.

VOI
n.

Relevant locations

1 Superior temporal gyrus (BA 38), para-hippocampal gyrus, right uncus
hippocampi

2 Left precentral gyrus (Frontal Lobe, BA6), left superior temporal gyrus (BA38),
Left parahippocampal gyrus (BA 28), left uncus hippocampi (BA 20)

3 Right superior temporal gyrus (BA 38)
4 Left superior temporal gyrus (BA 38)
5 Right middle temporal gyrus (BA 21), right inferior temporal gyrus (BA 20)
6 Left middle temporal gyrus (BA 21)
7 Left superior temporal gyrus (BA 38)
8 Right superior temporal gyrus (BA 22), right superior temporal gyrus (BA

38)
9 Left superior temporal gyrus (BA 38)
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MCI-C and MCI-NC) with clinically adequate sensitivity and specific-
ity, as found in neuroimaging literature (Dickerson, 2001; Walhovd et
al., 2010a; Dixon et al., 2002; Liu et al., 2010).

Similarly to Davatzikos et al. (in press) a classification index
checked against clinical assessment and prognosis is derived. In their
work they obtain an MCI-NC/MCI-C performance of AUC=0.66 on an
ADNI MCI population very similar to the oneused in this work; the
performance improves (AUC=0.734) on a subset of 120MCI patients.

Cuingnet et al. (2011) compared several different methods for the
MCI-C/MCI-NC separation on a dataset from the ADNI database and
confirmed that the MCI-C/MCI-NC discrimination is a very difficult
task, even with rather different analysis approaches: only four
methods proved to be slightly more predictive than a random pick.
Two of them, described in Vemuri et al. (2008) and Fan et al. (2007),
make use of information from the whole brain volume; other
approaches, discussed in Klöppel et al. (2008) and Chupin et al.
(2009), are basedon gray matter intensity-based classification and
from hippocampus related information, respectively. The perfor-
mance is provided in terms of a working point identified by the
sensitivity and specificity values and the McNemar test is used to
assess the reliability of the methods with respect to a random choice.

None of the methods is fully satisfactory, suggesting that the
complexity of the disease and the inter-individual differences are
hardly taken into account with biomarkers coming form a single
technique. However, the results may also suggest that many of the
MCI-NC are likely to become MCI-C in the near future and that some
are progressing to dementia due to causes other than AD.

Another recent work by Costafreda et al. (2011) developed an
automatic hippocampal shape analysis procedure for the prediction of
MCI-C, and compares MCI-NC/MCI-C prediction abilities among
several other methods, from fully manual to fully automated. Their
method scores a 77% sensitivity with an accuracy of 80% calculated on
a follow-up of one year.

In addition, they compare their method to several other studies in
literature. Follow-up time, sample size and criteria differs among
studies and results are not directly comparable to our work, for which
the MCI-NC/MCI-C accuracy is ≃68%. Given our sample size of 302
MCI and follow-up time of 24 months and the fully automatic

Fig. 9. Boxplot representation and ROC curve of the classification index (CI) for the CTRL/AD, CTRL/MCI-C and the MCI-NC/MCI-C cohorts. CI values on the training set are computed
in cross-validation (20-fold). Boxplot notches represent the 95% confidence level for the median value (red horizontal line). The Area under the ROC curve for the CTRL/AD is 0.97
(blue line) with a sensitivity ≃89% and specificity ≃94%. The performance on the prodromal-AD (CTRL/MCI-C) is AUC=0.92 (black line) with a sensitivity ≃89% and specificity ≃80%.
The performance on the trial set (MCI-NC/MCI-C) gives an AUC=0.74 (magenta line) with a sensitivity ≃72% and specificity ≃65%.

Table 5
Classifier performance on the training set (results in cross-validation) and the testing
set when only the information from a single VOI is taken into consideration. Numbers
differ among VOIs, and none consistently matches the whole 9-VOI analysis (first line)
on the whole dataset. Results for the CTRL/AD cohorts come from the k-fold cross-
validation; MCI subjects were never used for training.

VOI n. Main structure AUC

CTRL/AD CTRL/MCI-C MCI-NC/MCI-C

All – 0.97 0.92 0.74
1 Hippocampus (r) 0.93 0.91 0.68
2 Hippocampus (l) 0.92 0.88 0.67
3 Amigdala (r) 0.91 0.88 0.66
4 Amigdala (l) 0.93 0.91 0.69
5 Mid. inf. temp. gyr. (r) 0.96 0.94 0.71
6 Mid. inf. temp. gyr. (l) 0.91 0.83 0.65
7 Insula (l) 0.89 0.86 0.69
8 Rolandic (r) 0.81 0.68 0.59
9 Rolandic (l) 0.82 0.73 0.57

Fig. 10. Rolandic VOIs section (yellow) and the related IFM (in color). The IFM position
within the VOIs shows that the relevant information mostly comes from areas
bordering on the temporal lobe.
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characteristic of our analysis, we believe our results to be competitive
(McEvoy et al., 2009; Plant et al., 2010; Ferrarini et al., 2009).

Longitudinal studies have shown that although themajority of MCI
subjects converting to AD dementia does so in the first two years, a
non negligible part of them may convert in the following years
(Bennett et al., 2002). Thus, a 2-year follow-up period may be
insufficient to ensure adequate clinical separation betweenMCI-C and
MCI-NC. This is probably the main reason to explain the lower
accuracy achieved in the MCI-C vs. MCI-NC comparison, with respect
to the MCI-C vs. CTRL comparison.

The CTRL/MCI-C curve shows a good performance in discriminat-
ing prodromal AD and indicates that CI scores computed on baseline
scans already suggest the trend to AD conversion. Due to the
heterogeneous composition of the MCI cohort, the CI score on MCI-
NC vs MCI-C comes out less accurate although it still exhibits a fairly
marked separation between converters/non-converters.

The issue of non-converter MCI patients cannot be solved without
long-term follow-up but we know that MRI changes can be already
detected at least three years before the diagnosis of AD (Whitwell et
al., 2007). Moreover, local cortical thinning in temporal lobes has been
reported in asymptomatic subjects with high brain amyloid load
(Dickerson et al., 2009). This evidence, together with those coming
from the other main biomarkers (such as FDG-PET and cerebrospinal
fluid assays), suggests that signs of neurodegeneration may be
detected several years (i.e., 5–10) before the onset of objective
cognitive signs or symptoms (Clifford R Jack et al., 2010). Thus, we
may suppose the non-converterMCI populationwith a limited follow-
up time (i.e., 2–3 years) is highly heterogeneous, containing patients
who will never convert as well as ‘late’ converters to AD or other
dementias. These ‘late’ converters are actually in an early pre-
Alzheimer state, which may have reduced the accuracy of MRI in
distinguishing between MCI ‘rapid’ converters and non-converters.

The general strategy found in themost recent studies is to combine
biomarkers from different sources, typically structural, functional and
biochemical. Indeed, our results also demonstrated that sole mea-
surements of the hippocampus and the entorhinal cortex are not
sufficient to tell MCI-converters from the MCI-non converters
efficiently, particularly when the follow-up time is limited, while
they seemaccurate enough for the discrimination between CTRL and
AD groups (see Table 5).

Further methodological considerations

The combination of bootstrapped RF, SVM and feature threshold-
ing methods is not new in literature (Ebina et al., 2011; Larios et al.,
2010; Saeys et al., 2008; Singh et al., 2008;Waske and Van Der Linden,
2008; Waske et al., 2010).

More specifically, Ebina et al. (2011) used an SVM trained on 25
optimal features, which were selected from a set of 3000 features
using a RF algorithm complemented with a stepwise feature selection.
Their results on prediction sensitivity using RF+SVMwere over 19.9%
higher than those of control SVM predictors trained with non-
optimized features, strongly suggesting the efficiency of feature
selection method. Larios et al. (2010) applied RF selection of Haar-
based features to a SVM with a non-linear kernel, combining efficient
low-level feature evaluation with discriminative learning for pattern
recognition and image classification.

The importance of feature selection was checked against direct
SVM classification without the IFM thresholding step, that is direct
SVMclassification of thewhole feature spacewithout any prior feature
selection via RF. Due to the high number of features involved in the 9
VOI analysis, we compared the classification performances on VOI n.1
only (the VOI around the right hippocampus). The training/testing
procedure followed the same path as depicted in Fig. 7, taking only one
VOI into consideration and without the RF step.

Results indicate that direct SVM classification performed slightly
worse. On the training/testing set in cross-validation (CTRL+AD) we got
AUCSVMdirect=0.87 vs. AUCRF+SVM=0.93, and the performance on the
trial set (MCI-NC+MCI-C)wasAUCSVMdirect=0.66 vs. AUCRF+SVM=0.68.

As classification is computed by averaging the output of several SVM
classifiers—each trained on a subset of randomly chosen features—it is
reasonable that some SVM results be impaired when including
confounding features in their training. Therefore a smaller AUC value
is to be expected because in the whole unpruned set, many features
may be confounding or only marginally relevant for the CRTL/AD
discrimination.

On the same VOI (right hippocampus) we also tested how well
would a single SVM classifier perform (still without any prior RF
feature selection). A single SVM was trained on CTRL+AD and tested
on MCI-NC/MCI-C cohorts. Results were disappointing, yielding a
mere AUCsingleSVM=0.52 between MCI-NC and MCI-C.

We believe the poor performance is due to the high number of
features (even when considering one VOI only) compared to the
rather small number of training/test data. In this condition, the
cardinality of the data set does not allow a correct evaluation on the
large number of free parameters of the classifier, and that exposes it to
overtraining effects.

We explored also another approach, that is using a RF step only
without any SVM. In this approach a class of boot-strapped RF
classifiers are used to directly provide the classification and not the
feature selection.

As playing ground, we still tested the performance of this RF-only
approach on VOI n.1 and the results should be compared with the
second row of Table 5. This test required some optimization to tune
the number of RF instances and the number of features to consider.
Results show that a set of RF classifiers perform already rather well,
yielding an AUCRFonly=0.90 on the CTRL/AD set in cross-validation
and AUCRFonly=0.64 on the trial set (MCI-NC+MCI-C).

We then tested the relevance of image filters, which we used to
enhance intensity and texture characteristics and to provide a larger
feature space. According to the recent work of Cuingnet et al. (2011)
the voxel-DIRECT approaches were competitive with other methods
including cortical thickness measures and hippocampal volume and
shape. As baseline comparison, the CI performance was checked
against the application of filters to VOIs, that is with a feature set
computed with the null filter only (first line of Table 3).

Analysis was performed on the 9 VOIs and the AUCnull-filter compares
directly to the numbers given on the first line of Table 5 (“All”). We had
AUCnull-filter=0.95 vs. AUCwith-filters=0.97 on the CTRL+AD subjects in
cross-validation, and theperformance on the trial set (MCI-NC+MCI-C)
was AUCnull-filter=0.71 vs. AUCwith-filters=0.74. These results show that
voxel intensity alone is already a very good feature.

Acknowledgments

This research was supported by Istituto Nazionale di Fisica
Nucleare (INFN), Italy, under the project MAGIC-5 (Medical Applica-
tion on a Grid Infrastructure Connection), a joint research project
involving researchers from 6 different INFN sites in Italy: Genova,
Torino, Pisa, Bari, Napoli and Lecce.

This research was also supported by grants to LR, PB and ME from
Università degli Studi di Genova, Italy.

Data collection and sharing for this project was funded by the
Alzheimer'sDiseaseNeuroimaging Initiative (ADNI) (National Institutes
of Health Grant U01 AG024904). ADNI is funded by the National
Institute on Aging, the National Institute of Biomedical Imaging and
Bioengineering, and through generous contributions from the follow-
ing: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers
Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech,
GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli
Lilly andCo.,Medpace, Inc.,Merck andCo., Inc., NovartisAG, Pfizer Inc., F.

478 A. Chincarini et al. / NeuroImage 58 (2011) 469–480



Author's personal copy

Hoffman-La Roche, Schering-Plough, Synarc, Inc., as well as non-profit
partners the Alzheimer's Association and Alzheimer's Drug Discovery
Foundation, with participation from the U.S. Food and Drug Adminis-
tration. Private sector contributions to ADNI are facilitated by the
Foundation for the National Institutes of Health (www.fnih.org). The
grantee organization is the Northern California Institute for Research
and Education, and the study is coordinated by the Alzheimer's Disease
Cooperative Study at the University of California, San Diego. ADNI data
are disseminated by the Laboratory for Neuro Imaging at the University
of California, Los Angeles. This research was also supported by NIH
grants P30 AG010129, K01 AG030514, and the Dana Foundation.

References

Archer, K.J., Kimes, R.V., 2008. Empirical characterization of random forest variable
importance measures. Comput. Stat. Data Anal. 52, 2249–2260.

Bennett, D., Wilson, R., Bienias, J., Aggarwal, N., Mendes De Leon, C., Morris, M.,
Schneider, J., Evans, D., 2002. Cognitive activity and incident AD in a population-
based sample of older persons. Neurology 59, 1910–1914.

Braak, H., Braak, E., Yilmazer, D., De Vos, R., Jansen, E., Bohl, J., 1996. Pattern of brain
destruction in Parkinson's and Alzheimer's diseases. J. Neural Transm. 103, 455–490.

Breiman, L., 2001. Random forest. Mach. Learn. 45, 5–32.
Bylander, T., 2002. Estimating Generalization Error on Two-Class Datasets Using Out-of-

Bag Estimates. Mach. Learn. 48, 287.
Calvini, P., Chincarini, A., Gemme, G., Penco, M.A., Squarcia, S., Nobili, F., Rodriguez, G.,

Bellotti, R., Catanzariti, E., Cerello, P., De Mitri, I., Fantacci, M.E., 2009. Automatic
analysis of medial temporal lobe atrophy from structural MRIs for the early
assessment of Alzheimer's disease. Med. Phys. 36, 3737.

Castleman, K., Schulze, M., Wu, Q., 1998. Simplified design of steerable pyramid filters,
Circuits and Systems. Proceedings of the 1998 IEEE International Symposium, vol. 5.
ISCAS ’98, pp. 329–332.

Chupin, M., Grardin, E., Cuingnet, R., Boutet, C., Lemieux, L., Lehricy, S., Benali, H.,
Garnero, L., Colliot, O., 2009. Fully automatic hippocampus segmentation and
classification in Alzheimer's disease andmild cognitive impairment applied on data
from adni. Hippocampus 19, 579–587.

Clifford R Jack, W.J.J.L.M.S., Knopman, David S., Aisen, P.S., Weiner, M.W., Petersen, R.C.,
Trojanowski, J.Q., 2010. Hypothetical model of dynamic biomarkers of the
Alzheimer's pathological cascade. Lancet Neurol. 9, 119–128.

Cortes, C., Vapnik, V., 1995. Support-vector networks. Mach. Learn. 20, 273–297.
Costafreda, S.G., Dinov, I.D., Tu, Z., Shi, Y., Liu, C.Y., Kloszewska, I., Mecocci, P., Soininen,

H., Tsolaki, M., Vellas, B., Wahlund, L.O., Spenger, C., Toga, A.W., Lovestone, S.,
Simmons, A., 2011. Automated hippocampal shape analysis predicts the onset of
dementia in mild cognitive impairment. Neuroimage 56, 212–219.

Cuingnet, R., Gérardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.O., Chupin, M.,
Benali, H., Colliot, O., 2011. Automatic classification of patients with Alzheimer's
disease from structural MRI: a comparison of ten methods using the ADNI database.
Neuroimage 56 (2), 766–781.

Davatzikos, C., Fan, Y., Wu, X., Shen, D., Resnick, S.M., 2008. Detection of prodromal
Alzheimer's disease via pattern classification of magnetic resonance imaging.
Neurobiol. Aging 29, 514–523.

Davatzikos, C., Bhatt, P., Shaw, L.M., Batmanghelich, K.N., Trojanowski, J.Q., in press.
Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern
classification. Neurobiol. Aging., doi:10.1016/j.neurobiolaging.2010.05.023.

Desikan, R.S., Cabral, H.J., Hess, C.P., Dillon, W.P., Glastonbury, C.M., Weiner, M.W.,
Schmansky, N.J., Greve, D.N., Salat, D.H., Buckner, R.L., Fischl, B., 2009. Automated
MRImeasures identify individuals withmild cognitive impairment and Alzheimer's
disease. Brain J. Neurol. 132, 2048–2057.

Dickerson, B., 2001. MRI-derived entorhinal and hippocampal atrophy in incipient and
very mild Alzheimer's disease. Neurobiol. Aging 22, 747–754.

Dickerson, B.C., Bakkour, A., Salat, D.H., Feczko, E., Pacheco, J., Greve, D.N., Grodstein, F.,
Wright, C.I., Blacker, D., Rosas, H.D., Sperling, R.A., Atri, A., Growdon, J.H., Hyman,
B.T., Morris, J.C., Fischl, B., Buckner, R.L., 2009. The cortical signature of Alzheimer's
disease: regionally specific cortical thinning relates to symptom severity in very
mild to mild ad dementia and is detectable in asymptomatic amyloid-positive
individuals. Cereb. Cortex 19, 497–510.

Dixon, R.M., Bradley, K.M., Budge, M.M., Styles, P., Smith, A.D., In, R., 2002. Longitudinal
quantitative proton magnetic resonance spectroscopy of the hippocampus in
Alzheimer's disease. Brain J. Neurol. 125, 2332–2341.

Dubois, B., Feldman, H.H., Jacova, C., DeKosky, S.T., Barberger-Gateau, P., Cummings, J.,
Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., 2007. Research criteria for the diagnosis
of Alzheimer's disease: revising the NINCDADRDA criteria. Lancet Neurol. 6, 734–746.

Dubois, B., Feldman, H.H., Jacova, C., Cummings, J.L., DeKosky, S.T., Barberger-Gateau, P.,
Delacourte, A., Frisoni, G., Fox, N.C., Galasko, D., 2010. Revising the definition of
Alzheimer's disease: a new lexicon. Lancet Neurol. 9.

Duchesne, S., 2006. MICCAI brainstem segmentation protocol. From Statistical Atlases
to Personalized Models (Workshop). MICCAI Society, Copenhagen, Denmark.

Ebina, T., Toh, H., Kuroda, Y., 2011. DROP: an SVM domain linker predictor trained with
optimal features selected by random forest. Bioinformatics 27, 487–494.

Fan, Y., Shen, D., Gur, R., Gur, R., Davatzikos, C., 2007. Compare: classification of
morphological patterns using adaptive regional elements. IEEE Trans. Med. Imaging
26, 93–105.

Fan, Y., Batmanghelich, N., Clark, C.M., Davatzikos, C., 2008. Spatial patterns of brain
atrophy in MCI patients, identified via high-dimensional pattern classification,
predict subsequent cognitive decline. Neuroimage 39, 1731–1743.

Fennema-Notestine, C., Hagler Jr., D.J., Mcevoy, L.K., Fleisher, A.S., Wu, E.H., Karow, D.S.,
Dale, A.M., 2009. Structural MRI biomarkers for preclinical and mild Alzheimer's
disease. Hum. Brain Mapp. 30, 3238–3253.

Ferrarini, L., Frisoni, G.B., Pievani, M., Reiber, J.H.C., Ganzola, R., Milles, J., 2009.
Morphological hippocampal markers for automated detection of Alzheimer's
disease and mild cognitive impairment converters in magnetic resonance images.
J. Alzheimers Dis. JAD 17, 643–659.

Ferreira, L.K., Diniz, B.S., Forlenza, O.V., Busatto, G.F., Zanetti,M.V., in press. Neurostructural
predictors of Alzheimer's disease: a meta-analysis of VBM studies. Neurobiol. Aging.,
doi:10.1016/j.neurobiolaging.2009.11.008.

Freeborough, P.a., Fox, N.C., 1998. MR image texture analysis applied to the diagnosis
and tracking of Alzheimer's disease. IEEE Trans. Med. Imaging 17, 475–479.

Frisoni, G.B., Sabattoli, F., Lee, a.D., Dutton, R.a., Toga, a.W., Thompson, P.M., 2006. In
vivo neuropathology of the hippocampal formation in AD: a radial mapping MR-
based study. Neuroimage 32, 104–110.

Guyon, I., Vapnik, V., Barnhill, J., Stephen, W., 2002. Gene selection for cancer
classification using support vector machines. Mach. Learn. 46, 389–422.

Healy Jr., D.M., Weaver, J.B., 1992. Two applications of wavelet transforms in magnetic
resonance imaging. IEEE Trans. Inf. Theory 38, 840–860.

Hilton, M., Ogden, T., Hattery, D., Eden, G., Jawerth, B., 1996. Wavelet denoising of
functional mri data.

Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M.K., Johnson, S.C., 2009. Spatially
augmented LPBoosting for AD classification with evaluations on the ADNI dataset.
Neuroimage 48 (1), 138–149.

Hinrichs, C., Singh, V., Xu, G., Johnson, S.C., 2011. Predictive markers for AD in a multi-
modality framework: an analysis of MCI progression in the ADNI population.
Neuroimage 55 (2), 574–589.

Holland, D., Brewer, J.B., Hagler, D.J., Fenema-Notestine, C., Dale, A.M., 2009.
Subregional neuroanatomical change as a biomarker for Alzheimer's disease.
Proc. Natl. Acad. Sci. U.S.A. 106 (49), 20954–20959.

Karas, G., Sluimer, J., Goekoop, R., van der Flier, W., Rombouts, S.a.R.B., Vrenken, H.,
Scheltens, P., Fox, N., Barkhof, F., 2008. Amnestic mild cognitive impairment:
structural MR imaging findings predictive of conversion to Alzheimer disease. AJNR
Am. J. Neuroradiol. 29, 944–949.

Karow, D.S., McEvoy, L.K., Fennema-Notestine, C., Hagler, D.J., Jennings, R.G., Brewer,
J.B., Hoh, C.K., Dale, A.M., 2010. Relative capability of MR imaging and FDG PET to
depict changes associated with prodromal and early Alzheimer disease. Radiology
256, 932–942.

Klöppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D., Fox, N.C.,
Jack, C.R., Ashburner, J., Frackowiak, R.S.J., 2008. Automatic classification of MR
scans in Alzheimer's disease. Brain J. Neurol. 131, 681–689.

Lao, Z., 2004. Morphological classification of brains via high-dimensional shape
transformations and machine learning methods. Neuroimage 21, 46–57.

Larios, N., Soran, B., Shapiro, L.G., Martinez-Munoz, G., Lin, J., Dietterich, T.G., 2010. Haar
Random Forest Features and SVM Spatial Matching Kernel for Stonefly Species
Identification. PR International Conference on Pattern Recognition. IEEE, pp. 2624–2627.

Lerch, J.P., Pruessner, J.C., Zijdenbos, A., Hampel, H., Teipel, S.J., Evans, A.C., 2005. Focal
decline of cortical thickness in Alzheimer's disease identified by computational
neuroanatomy. Cereb. Cortex 15, 995–1001.

Li, Y., Wang, Y., Wu, G., Shi, F., Zhou, L., Lin, W., Shen, D., in press. Discriminant analysis
of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and
network features. Neurobiol. Aging., doi:10.1016/j.neurobiolaging.2010.11.008.

Liu, Y., Paajanen, T., Zhang, Y., Westman, E., Wahlund, L.O., Simmons, A., Tunnard, C.,
Sobow, T., Mecocci, P., Tsolaki, M., Vellas, B., Muehlboeck, S., Evans, A., Spenger, C.,
Lovestone, S., Soininen, H., 2010. Analysis of regional MRI volumes and thicknesses
as predictors of conversion frommild cognitive impairment to Alzheimer's disease.
Neurobiol. Aging 31, 1375–1385.

Mazziotta, L., 1995. A probabilistic atlas of the human brain: theory and rationale for its
developement. Neuroimage 2, 89–101.

McEvoy, L.K., Fennema-Notestine, C., Roddey, J.C., Hagler, D.J., Holland, D., Karow, D.S.,
Pung, C.J., Brewer, J.B., Dale, A.M., 2009. Alzheimer disease: quantitative structural
neuroimaging for detection and prediction of clinical and structural changes in
mild cognitive impairment. Radiology 251, 195–205 PMID: 19201945.

Misra, C., Fan, Y., Davatzikos, C., 2009. Baseline and longitudinal patterns of brain
atrophy in MCI patients, and their use in prediction of short-term conversion to AD:
results from ADNI. Neuroimage 44, 1415–1422 PMID: 19027862.

Morra, J.H., Tu, Z., Apostolova, L.G., Green, A.E., Avedissian, C., Madsen, S.K., Parikshak,
N., Toga, A.W., Jack, C.R., Schuff, N., Weiner, M.W., Thompson, P.M., 2009.
Automated mapping of hippocampal atrophy in 1-year repeat MRI data from 490
subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls.
Neuroimage 45, S3–S15 PMID: 19041724.

Mosconi, L., Brys, M., Glodzik-Sobanska, L., De Santi, S., Rusinek, H., de Leon, M.J., 2007.
Early detection of Alzheimer's disease using neuroimaging. Exp. Gerontol. 42,
129–138.

Nowak, R., 1999. Wavelet-based rician noise removal for magnetic resonance imaging.
IEEE Trans. Image Process. 8, 1408–1419.

Pelaez-Coca, M., Bossa, M., Olmos, S., 2011. Discrimination of AD and normal subjects
from MRI: anatomical versus statistical regions. Neurosci. Lett. 487 (1), 113–117.

Pizurica, A., Philips, W., Lemahieu, I., Acheroy, M., 2003. A versatile wavelet domain
noise filtration technique for medical imaging. IEEE Trans. Med. Imaging 22,
323–331.

Plant, C., Teipel, S.J., Oswald, A., Bhm, C., Meindl, T., Mourao-Miranda, J., Bokde, A.W.,
Hampel, H., Ewers, M., 2010. Automated detection of brain atrophy patterns based

479A. Chincarini et al. / NeuroImage 58 (2011) 469–480



Author's personal copy

on MRI for the prediction of Alzheimer's disease. Neuroimage 50, 162–174 PMID:
19961938.

Portilla, J., Strela, V., Wainwright, M., Simoncelli, E., 2003. Image denoising using scale
mixtures of gaussians in the wavelet domain. IEEE Trans. Image Process. 12,
1338–1351.

Pruessner, J.C., Li, L.M., Serles, W., Pruessner, M., Collins, D.L., Kabani, N., Lupien, S.,
Evans, A.C., 2000. Volumetry of hippocampus and amygdala with high-resolution
MRI and three-dimensional analysis software: minimizing the discrepancies
between laboratories. Cereb. Cortex 10, 433–442.

Rex, D.E., Ma, J.Q., Toga, A.W., 2003. The LONI Pipeline Processing Environment.
Neuroimage 19, 1033–1048.

Risacher, S.L., Shen, L., West, J.D., Kim, S., McDonald, B.C., Beckett, L.a., Harvey, D.J., Jack,
C.R., Weiner, M.W., Saykin, A.J., 2010. Longitudinal MRI atrophy biomarkers:
relationship to conversion in the ADNI cohort. Neurobiol. Aging 31, 1401–1418.

Saeys, Y., Abeel, T., Peer, Y.V.D., 2008. LNAI 5212 - Robust Feature Selection
Using Ensemble Feature Selection Techniques. Lecture Notes in Computer Science,
Vol. 5212/2008, 09/2008, pp. 313–325.

Schiavi, E., Hernandez, C., Hernandez, J.A., 2004. Fully 3d wavelets mri compression.
Biological andMedical Data Analysis. Lecture Notes in Computer Science, vol. 3337.
Springer, Berlin / Heidelberg, pp. 9–20.

Seber, G., 1984. Multivariate Observations. Wiley.
Shen, D., Moffat, S., Resnick, S.M., Davatzikos, C., 2002. Measuring size and shape of the

hippocampus in MR images using a deformable shape model. Neuroimage 15,
422–434.

Singh, R.K., Naik, S.K., Gupta, L., Balakrishnan, S., Pai, K.M., 2008. Hybrid SVM—Random
Forest Classification System for Oral Cancer Screening using LIF Spectra.
International Conference on Pattern Recognition (ICPR 2008), Tampa, Florida,
USA, December 2008.

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-
Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders,
J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M., 2004. Advances
in functional and structural MR image analysis and implementation as FSL.
Neuroimage 23 (Suppl. 1), S208–S219.

Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P., 2003. Random
forest: a classification and regression tool for compound classification and QSAR
modeling. J. Chem. Inf. Comput. Sci. 43, 1947–1958.

Thompson, P.M., Hayashi, K.M., Zubicaray, G.D., Janke, A.L., Rose, S.E., Semple, J.,
Herman, D., Hong, M.S., Dittmer, S.S., Doddrell, D.M., Toga, A.W., 2003. Dynamics of
gray matter loss in Alzheimer's disease. J. Neurosci. 23, 994–1005.

Thompson, P.M., Hayashi, K.M., Zubicaray, G.I.D., Janke, A.L., Rose, S.E., Semple, J., Hong, M.S.,
Herman, D.H., Gravano, D., Doddrell, D.M., Toga, A.W., 2004. Mapping hippocampal and
ventricular change in Alzheimer disease. Neuroimage 22, 1754–1766.

Vemuri, P., Gunter, J.L., Senjem,M.L., Whitwell, J.L., Kantarci, K., Knopman, D.S., Boeve,
B.F., Petersen, R.C., Jr, C.R.J., 2008. Alzheimer's disease diagnosis in individual
subjects using structural mr images: validation studies. Neuroimage 39,
1186–1197.

Vemuri, P., Wiste, H.J., Weigand, S.D., Knopman, D.S., Trojanowski, J.Q., Shaw, L.M.,
Bernstein, M.A., Aisen, P.S., Weiner, M., Petersen, R.C., Jack, C.R., 2010. Serial MRI
and CSF biomarkers in normal aging, MCI, and AD. Neurology 75, 143–151.

Walhovd, K.B., Fjell, a.M., Brewer, J., McEvoy, L.K., Fennema-Notestine, C., Hagler, D.J.,
Jennings, R.G., Karow, D., Dale, a.M., 2010a. Combining MR imaging, positron-
emission tomography, and CSF biomarkers in the diagnosis and prognosis of
Alzheimer disease. AJNR Am. J. Neuroradiol. 31, 347–354.

Walhovd, K.B., Fjell, a.M., Dale, a.M., McEvoy, L.K., Brewer, J., Karow, D.S., Salmon, D.P.,
Fennema-Notestine, C., 2010b. Multi-modal imaging predicts memory perfor-
mance in normal aging and cognitive decline. Neurobiol. Aging 31, 1107–1121.

Wang, Z., Bovik, A., 2009. Mean squared error: love it or leave it? a new look at signal
fidelity measures. Signal Process. Mag. IEEE 26, 98–117.

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., 2004. Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612.

Wang, Y., Fan, Y., Bhatt, P., Davatzikos, C., 2010. High-dimensional pattern regression
using machine learning: from medical images to continuous clinical variables.
Neuroimage 50, 1519–1535.

Waske, B., Van Der Linden, S., 2008. Classifying multilevel imagery from SAR and optical
sensors by decision fusion. IEEE Trans. Geosci. Remote Sens. 46, 1457–1466.

Waske, B., Van Der Linden, S., Benediktsson, J.A., Rabe, A., Hostert, P., 2010. Sensitivity of
support vector machines to random feature selection in classification of
hyperspectral data. IEEE Trans. Geosci. Remote Sens. 48, 2880–2889.

Whitwell, J.L., Przybelski, S.A., Weigand, S.D., Knopman, D.S., Boeve, B.F., Petersen, R.C.,
Jack, C.R., 2007. 3D maps from multiple mri illustrate changing atrophy patterns as
subjects progress from mild cognitive impairment to Alzheimer's disease. Brain
130, 1777–1786.

Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L., Nordberg, A.,
Bäckman, L., Albert, M., Almkvist, O., Arai, H., Basun, H., Blennow, K., de Leon, M.,
DeCarli, C., Erkinjuntti, T., Giacobini, E., Graff, C., Hardy, J., Jack, C., Jorm, A., Ritchie,
K., van Duijn, C., Visser, P., Petersen, R.C., 2004. Mild cognitive impairment—beyond
controversies, towards a consensus: report of the international working group on
mild cognitive impairment. J. Intern. Med. 256, 240–246.

Yoo, T.S., Ackerman, M.J., Lorensen, W.E., Schroeder, W., Chalana, V., Aylward, S.,
Metaxas, D., Whitaker, R., 2002. Engineering and algorithm design for an image
processing Api: a technical report on ITK–the Insight Toolkit. Stud. Health Technol.
Inform. 85, 586–592.

Zhu, X., Ambroise, C., Mclachlan, G.J., 2006. Selection bias in working with the top genes
in supervised classification of tissue samples. Stat. Method. 3, 29–41.

480 A. Chincarini et al. / NeuroImage 58 (2011) 469–480


