
Time Series Analysis of Coulomb Collisions in a Beam
Dynamics Simulation

A. Vivoli 1∗, C. Benedetti ∗ and G. Turchetti ∗

∗Dipartimento di Fisica Università di Bologna and INFN, Bologna, Via Irnerio 46, 40126, Italy

Abstract. In this paper a time series analysis of collisional effects in a numerical simulation of a coasting beam transverse
dynamics is presented. The simulation performs a numerical integration of the Hamilton’s equations of a two-dimensional
system of particles describing the transverse dynamics of the beam. Then an analysis of the time series generated has been
applied in order to describe the dynamics of the system by means of the mean field equations with the addition of a stochastic
process in order to model Coulomb collisions.
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INTRODUCTION

Intra Beam Scattering (IBS), the study of the collisional
effects in beam dynamics, is getting object of many re-
searches in recent years, because of the importance of
this matter in new accelerators of high intensity beams at
moderate energy. The standard theory consists in intro-
ducing collisional effects as a Wiener stochastic process,
which adds to the mean field contribution to the dynam-
ics of the particles (see [1]) and leads to a Fokker-Plank
equation for the single particle distribution function in
the phase space.

In our approach the study of collisional effects is car-
ried out by studying the dynamics of a two-dimensional
system of interacting wires which can be shown to be
equivalent, under longitudinal coherence hypothesis, to
the transverse dynamics of a coasting beam [2]. Con-
sidering the beam composed by particles moving along
the z axis at constant velocity, satisfying the relation
|vx|, |vy| � |vz| = v0, makes it possible to assume the
curvilinear abscissa s to be equal to the z coordinate, ac-
cording to ds ' v0dt and taking s as the time variable of
the dynamical system. In this paper we study the dynam-
ics of a system of wires, assuming the equations of mo-
tion to be the mean field equations plus the contribution
of a stochastic process to the momentum derivative rep-
resenting the collisional effects of the system. Our aim
is to identify the probability distribution of the stochas-
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tic terms and write a stochastic equation describing from
a statistical point of view the dynamics of the system.
The analysis of the time series has been accomplished
according to the standard theory presented in any book
of statistics ( e.g. [5],[6]).

HAMILTONIAN OF THE SYSTEM

The (adimensional) total Hamiltonian describing the
transverse dynamics of a longitudinal coherent coasting
beam with a linear confining force, in a constant focusing
channel (see [2]), can be written in the form :
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where ξ is the perveance, ω0 is the phase advance per
unit length and N is the number of wires (from now on
we will refer to them as particles).

Note that ri and pi are the position and momentum
vectors of the i-th particle in the two-dimensional trans-
verse plane.

The Hamilton’s equations read:
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Let we consider the center of mass of the system
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we immediately recognize
{

ṙCM = pCM

ṗCM = −ω0
2 rCM .

(3)

If we take the coordinates and momenta of the parti-
cles in the center of mass frame:

r̃i = ri − rCM, p̃i = pi −pCM ,

we have the equations of motion of the i-th particle in the
form :
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˙̃pi = −ω0
2 r̃i +

ξ
N

N
∑
j=1
j 6=i

r̃i−r̃ j

|r̃i−r̃ j|2
. (4)

Thus, we can limit ourselves to study the total Hamil-
tonian :
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MEAN FIELD THEORY

In mean field approximation the electric field produced
by the (charged) particles of the beam is assumed to be
described by the field generated by a continuous charge
distribution in the single particle phase space:

ρ(r,p, t),
∫

ρ(r,p, t)d2pd2r = 1. (6)

The particle distribution of the beam results to be :

ρs(r, t) =

∫

ρ(r,p, t)d2p,

and the electric potential is taken to be :

φ(r, t) = −
∫

log(|r− r′|)ρs(r′, t)d2r′ . (7)

Note that φ(r, t) verifies the Poisson’s equation in two
dimensions ∆φ(r, t) = −2πρs(r, t).

The single-particle Hamiltonian becomes:
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p2
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0

2
r2 +ξ φ(r, t), (8)

which gives the following Hamilton’s equations :
{

ṙ = p
ṗ = −ω0

2 r+ξ
∫ r−r′

|r−r′|2 ρs(r′, t)d2r′. (9)

Finally, we have the Vlasov equation for the evolution of
the particle density:

∂ρ
∂ t

+
∂ρ
∂r

∂r
∂ t

+
∂ρ
∂p

∂p
∂ t

=
∂ρ
∂ t

+[ρ ,H] = 0. (10)

THE KV PARTICLE DISTRIBUTION

Consider the following space particle distribution:

ρs(r) =

{ 1
πR2 r ≤ R,

0 r > R,
(11)

with R > 0. By inserting (11) in (7) we get the follow-
ing electric potential (changing the additive constants) :

φ(r) =

{

− r2

2R2 r ≤ R,

− 1
2 log r2

R2 − 1
2 r > R;

and the single particle Hamiltonian can be written in the
form :
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Now define the values :
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and take the particle distribution in the phase space as
follows :

ρKV (x,y, px, py, t) =
1

2π2R2 δ
(

p2

2
+

ω2

2
r2 −E

)

. (13)

Note that the distribution (13) produces the space par-
ticle distribution (11) with all the particles having energy
E. In virtue of the definitions of E and R, we can write
the phase space density as a function of the single parti-
cle Hamiltonian (12):

ρKV (x,y, px, py, t) =
1

2π2R2 δ (H −E) .

and then ρKV is a stationary distribution :

∂ρKV

∂ t
+[ρKV ,H] = 0. (14)

The distribution (13) is known as Kapchinskij-
Vladimirskij particle distribution (see [3]).

SIMULATION

We performed a numerical simulation of a two-
dimensional system evolving according to the Hamil-
tonian (1), then we have analyzed the time series of
the differences between the momenta of the particles
calculated from the Hamilton’s equations and the mo-
menta obtained from the mean field ones. The initial



distribution of the particles is the ρKV in (13) and the
values of the other parameters are listed below.

Parameters of the simulation :

• Number of particles : N = 8192
• ω = 6.4 ·10−3rad/cm
• ω0 = 1 ·10−2rad/cm
• Radius of the beam : R = 1.8405 ·10−1cm
• Perveance : ξ = 2 ·10−6

• Temporal step : ∆s = 2 ·10−1cm
• Length of simulation in temporal steps: L = 49087

Note that the total length of the simulation corre-
sponds to 10 betatron oscillations.

We indicate the position and momentum of the i-
th particle at the k-th temporal step obtained by the
simulation in the following manner:

{

ri,k = ri(k∆s) = (xi(k∆s),yi(k∆s)),
pi,k = pi(k∆s) = (pxi(k∆s), pyi(k∆s));

for k = 0,1, . . . ,L and i = 1, . . . ,N.

MEAN FIELD APPROXIMATION WITH
STOCHASTIC CORRECTION

According to the previous notation we take :






r̃i,k = ri,k − rCM
i,k,

p̃i,k = pi,k −pCM
i,k ,

i = 1, . . . ,N; k = 0,1, . . . ,L.

From the single particle Hamiltonian (12) it is easy to
see that the equations of motion of a particle in the beam
in the mean field approximation are :

{ dr̃
ds MF = p̃MF,
dp̃
ds MF = −ω2r̃MF.

We assume the single particle equations of motion to
be:

{

dr̃ = p̃ds ,
dp̃ = −ω2r̃ds+dB ,

(15)

where B is a stochastic process. Equations (15) are the
mean field equations with the addition of a stochastic
term to the interaction with the other particles of the
beam. The finite difference equations for the motion of
the i-th particle turn out to be:







r̃i,k+1 = r̃i,k + p̃i,k∆s,
p̃i,k+1 = p̃i,k −ω2r̃i,k∆s+{B∆s}i,k,
i = 1, . . . ,N; k = 0,1, . . . ,L.

(16)

where {B∆s}i,k = {(B∆s,x,By∆s)}i,k are random vectors
which distributions depend on ∆s. In fig. 1 we show
the sample paths of the processes B∆s,x and By∆s for the
particle i = 500.

   0 4.9e+04
-2e-06

2e-06

2.5e+04

   0

k

B
∆s

,x

   0 4.9e+04
-2e-06

2e-06

2.5e+04

   0

k

B
∆s

,y

FIGURE 1. The time series {B∆s,x}500,k and {B∆s,y}500,k, for
k = 0,1, . . . ,L.

In order to identify the distributions of B∆s,x and B∆s,y,
we have assumed the following hypotheses :

• The process B is produced by the Coulomb colli-
sions between the particles.

• Every large value of {B∆s}i,k is due to a hard colli-
sion between only two particles.

• For simplicity, we consider the random variables
{B∆s,x}i,k and {B∆s,y}i,k to be independent and iden-
tically distributed.

First of all we have plotted the histograms of the time
series {B∆s,x}i,k and {B∆s,y}i,k in semilogarithmic scale;
the plots suggest to fit a probability density of the form :

p(b) =

{

c1 exp
(

− b2

2σ 2

)

|b| ≤ bth

c2|b|−α |b| > bth ;
(17)

in order to have a normalized distribution the follow-
ing condition must be satisfied:

1 =
√

2πσErf

(

bth√
2σ

)

c1 +2
b1−α

th

α −1
c2 .

We have chosen the values of the parameters in (17)
that minimize the χ2 value of the fit. As it can be seen,
we have reached a good agreement between the fitted
density and the simulated data, which differ for less than
10% in each bin.

A distribution of the form of (17) has been found
independently of us by Chavanis (see [4]) in calculation
of the total force acting on a particle in the center of mass
of a two-dimensional system of uniformly distributed
charged particles.

In fig. 2 and fig. 3 we show the histograms of the
processes {B∆s,x} and {B∆s,y} with the fitted distributions
obtained from the density (17) giving to the parameters
the values in table below.



Values of parameters in the distributions

Parameter B∆s,x B∆s,y

α 3.95 3.95

bth 7.5 ·10−8 7.5 ·10−8

σ 5.01 ·10−8 4.76 ·10−8

c1 7.55 ·107 7.89 ·107

c2 2.35 ·10−21 2.16 ·10−21
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FIGURE 2. Histogram of the time series {B∆s,x}i,k com-
pared with the fitted distribution (17).
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FIGURE 3. Histogram of the time series {B∆s,y}i,k com-
pared with the fitted distribution (17).

The density distribution (17) can be interpreted in the
following way: each particle in the beam moves sub-
jected to the mean field produced by the continuous dis-
tribution (11) plus the contribution from Coulomb col-
lisions with the other particles. Particles far away con-
tribute with small perturbations |B∆s,·| ≤ bth, with ap-
proximately Gaussian distribution while at certain times
a hard Coulomb collision with a very close particle takes
place, giving contribute |B∆s,·| > bth with power-law dis-
tribution.

DISTRIBUTION OF LOCAL MAXIMA
OF B∆s,x AND B∆s,y

According to our assumptions, large values of {B∆s}i,k
(in modulus bigger than bth) are mostly due to the in-
teraction, at the k-th time step, of the particle i with the
closest particle (say j), according to the equation:

{B∆s}i,k ≈
ξ
N

ri,k − r j,k

|ri,k − r j,k|2
∆s .

As a consequence, each string {B∆s,·}i,k , k =
n,n + 1, ...,n + m of consecutive values of {B∆s,x}i,k
or {B∆s,y}i,k such that |{B∆s,·}i,k| > bth for all k , is
produced by a single hard collision process (which takes
several time steps to complete) between the particle i
and the particle j. The local maximum of each string
occur at the minimum distance rMIN

i, j;k , :

rMIN
i, j;k ≤ ξ

N
∆s

(

BMAX
∆s,· i,k

)−1
.

Hence, the study of the distribution of the local max-
ima of the processes B∆s,x and B∆s,y gives us information
about the minimum distance at which a particle can be
found from the others along its motion.

We have considered each subsequence of the time
series {B∆s,x}i,k and {B∆s,y}i,k formed by consecutive
values obeying the condition {B∆s,·}i,k > bth and we have
calculated their local maxima BMAX

∆s,· i,k
.

Following the same procedure as before, we have plot-
ted the histograms of these local maxima in semilogarith-
mic scale, then we have fitted the (truncated) function :

f (b) = c
(

1+ (kb)2

n

)−( n+1
2 )

, for b > bth

c = 1.74 ·106, k = 1.06 ·107, n = 3.

(18)

The values of the parameters in (18) have been calcu-
lated by minimizing the χ2 value. The results are shown
in fig. 4 and fig. 5 where we show the histograms of the
series BMAX

∆s,· i,k
. The continuous line is the function (18),
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FIGURE 4. Histogram of BMAX
∆s,x with the fitted distribution
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FIGURE 5. Histogram of BMAX
∆s,y with the fitted distribution

which is related to the Student’s t distribution density
with n = 3 degrees of freedom :

tn(b) = Γ
(

n+1
2

)

1√
nπΓ

(

n
2

)

(

1+
b2

n

)−( n+1
2 )

.

CONCLUSIONS

In this paper the dynamics of a 2D system of charged par-
ticles confined by a linear restoring force in the constant
focusing case has been studied. A simulation of the sys-
tem evolution has been carried out by direct integration
of the Hamilton’s equations, then the data of the simula-
tion have been compared with the mean field dynamics,
considering the differences as a time series of a stochas-
tic process describing the Coulomb collisions between
the particles. The distribution of the time series has been
identified and an explanation of its properties has been
given. The distribution of the local maxima of the process
has also been identified, providing a starting point for the
study of the collisions process of the particles in the sys-
tem. Further research are needed to find a full theory of
the stochastic process describing Coulomb collisions in
more general cases and to write a general stochastic dif-
ferential equation for the system.
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