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We discuss the binding of magnetic monopoles to nuclear and atomic systems. The energy 
spectrum is calculated, by assuming an interaction with a hard core. The formation process of 
monopole-nucleus bound states is analysed and it is shown that monopoles reaching Earth are 
most likely bound to a proton. We also discuss phenomenological implications of the existence of 
bound states in connection with the monopole catalysis of proton decay. 

1. Introduction 

The theoretical discovery of magnetic monopole-l ike solutions in gauge theory [1] 

and the report  of  the possible observation of  such a particle [2] have rekindled 
interest in the search of  magnetic monopoles.  

Monopoles  are expected to be very massive, m M - 1 0 1 6  GeV, and to reach Earth 

with very low velocity, v M _< 10 - 3c. As a consequence of  these unusual properties, 
negative results of  previous accelerator and cosmic ray searches are not to be 

regarded as discouraging [3, 4]. Indeed the full picture of  slow monopoles  interacting 

with matter  has to be developed, in order to plan for decisive searches of these 
particles. With this spirit we discuss here the possibility that slow magnetic  mono-  

poles bind to extended particles, such as nuclear and atomic systems. The idea is 

that  the interaction of  the monopole  with the magnetic moments  of  these systems 
can be strong enough to produce bound  states. Indeed we find that nucleons, as well 
as some nuclei and atoms, can bind to monopoles  and provide estimates of the 
binding energies. Other authors have previously considered this idea [5, 6]. With 

respect to their work, our treatment for the search of  bound  states is considerably 
simpler, thanks to the recent formalism of ref. [7]. Also, our  determination of  the 

energy spectrum of the monopole-nucleus system is more  accurate than in ref. [6], 
where the alleged values in several cases are incorrect. 

We also consider the reactions which lead to the format ion of  the bound  states. 
F rom a discussion of  this process, grounded in the similarity with the format ion of 
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mesic atoms [8, 9], it emerges that formation of the bound states is quite likely at the 

low velocities expected for magnetic monopoles. Also we find that if a monopole-atom 
bound state is formed, soon it squeezes into a system where the atomic nucleus is 
directly bound to the monopole provided that the nuclear magnetic moment  is 

sufficiently large. 
Next we consider the phenomenological consequences of the occurrence of nucleus 

monopole bound states*. We find that monopoles reaching Earth are most likely 
accompanied by a proton, a circumstance which has direct implications on the 

detection of magnetic monopoles. Bound states of monopoles and nuclei are also 
interesting in connection with Rubakov's  effect [11], i.e. the monopole catalysis of 

proton decay: 

M + p ~ M + e + + X .  (1.1) 

The Rubakov effect can be strongly enhanced if bound states are formed, as a 
consequence of the large overlap of the proton-monopole wave function. By using 
this consideration we derive bounds on the cross section for reaction (1.1) and on the 

monopole flux from data on proton decay experiments. 
Finally, we discuss the possibility that monopoles catalyse nuclear fusion reactions 

of light nuclei. 
We would like to remark on the exploratory spirit of this paper, the principal aim 

being to outline some consequences of the existence of monopole-nucleus bound 

states. 
It  is worth warning the reader about some crude approximations used in the 

paper. 
(i) We assume the monopole-nucleus interaction to have a hard core for distances 

less than the nuclear radius. This is clearly unphysical, in that the monopole has a 
colour gauge field surrounding it up to a distance of order 1 fm and yielding a highly 
non-trivial monopole-nucleus interaction at nuclear distances. Our approximation, 
however, is sufficient to establish the existence of monopole-nucleus bound states. 
The true potential, whatever it is, is more attractive than our approximate form. 
Thus, if we find that a nucleus binds to a monopole within our approximation, 
a fortiori it will bind when the correct interaction is taken into account. 

(ii) In the discussion of the Rubakov effect in the bound monopole-nucleus 
system, one needs to know the overlap between the nucleus and the monopole: 

iOeff = vNlfvydV I#~ (r)l 2, (1.2) 

'~ It is worth observing that we are concerned with electrically neutral magnetic monopoles. Binding of 
dyons to nuclei was discussed by us in a recent paper [10]. 
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where v N is the nuclear volume. Clearly the determination of  Pelf is beyond  the hard 
core approximation,  which obviously yields Pelf = 0. As an educated guess we will 

use peer = L ~  3, where L N is a typical dimension of the bound  system. One has to 

keep in mind, however, that  the actual value of  Peer could only be calculated by 
resorting to the exact potential. 

Our  work can be improved in many  respects. At  the end of  the paper  we briefly 

discuss some aspects which, in our opinion, deserve further investigation. 

2. Interaction of  monopoles  with extended particles 

2.1. INTERACTION ENERGY OF A MONOPOLE AND A MAGNETIC DIPOLE 

According to the Dirac quantizat ion condit ion [12] the magnetic charge qM of 

monopoles  can have values*: 

qM = n / 2 e ,  (2.1) 

where - e  is the electron charge and n is a relative integer. We will restrict ourselves 

to monopoles  with n = _+ 1, as we expect that only these can be stable on the scale of  

the universe's age: 

q~t = e / 2 e ,  e = + 1. (2.2) 

Consider a particle (say a nucleon, a nucleus or an atom) with electric charge 

qE = Z e ,  mass m, spin S and magnetic moment  

I s = e.___Kr S .  (2.3)  
m 

For  simplicity we will restrict to spin-½ particles. The interaction energy of  the 

magnetic momen t  with the field B of  the monopole  as a function of  the relative 
distance R is given by: 

= - i x . B =  - r e - ( S . R ) R  - 3  (2.4) /-/dip 

Clearly this description is adequate only for distances R larger than the size of the 
particle, a. When  R _< a, one has to take into account  the internal structure of  the 

particle and to replace (2.4) with an equation that takes into account  the interaction 
between the monopole  and the constituents. Generally this results in an interaction 

which is weaker than that which is given in eq. (2.4) and which is regular at the 
origin. Consider, for example, that  the particle is a nucleus and that its magnetic 

* We use units such that h = c = 1. mp and m e denote the proton and electron mass. 
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momen t /~y  arises from an unpaired nucleon. Eq. (2.4) has then to be replaced by 

the interaction with the nucleon magnetic moment  ~n (l~n = ( e x J m , ) S n  = I~N). This 
interaction has then to be averaged over the nucleon wave function, i.e. over the 
volume of the nucleus. In this way one gets, for R smaller than the radius a of the 

nucleus: 

H d i p , ~ , _ ( S . R  ) Ke (2.5) 
2ma  3 

One sees that the singularity of eq. (2.5) at R = 0 is avoided and a smooth behaviour 
of the interaction is obtained for R ~< a. Although a realistic calculation of the 

interaction at R _< a has to take into account the internal structure of the system, the 
above consideration suffices to get a prescription for the approximate evaluation of 
the energy levels and wave functions. In order to prove the existence of bound states 

we can replace eq. (2.4) by an infinite repulsive potential for R ~< a: 

V(R)  = + oc, for R ~< a.  (2.6) 

If  we find bound states for the hard core potential, a for t ior i  they will exist for the 
real potential. Indeed this latter is more attractive than the hard core potential. Also 
the fact that the true potential is regular at the origin guarantees that the hamilto- 
nian is a well-behaved operator (i.e. there is no fall onto the center). 

2.2. SCHRODINGER EQUATION 

If one does not consider the magnetic moment  interaction, the non-relativistic 
hamiltonian of a charged particle interacting with a heavy magnetic monopole is 

simply the kinetic energy operator*: 

1 )2.  
ncharge = ½ mv2 = ~ m  ( P - ZeA 

This operator can be written as: 

with 

1 0 2 O q2)} (2 .7 )  
Hcharg e 2 m R  2 { -  (L  2 - 

q = qMZe  = 1 Z e .  (2.8) 

The conserved vector L is the sum of the kinetic and field angular momenta:  

t. =R x ( e -  ZeA)-q . (2.9) 

* We refer to ref. [7] for a detailed discussion of the SchrSdinger equation following from eq. (2.7). We 
will follow the treatment of that paper. 
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As clearly implied by this equation, the eigenvalues of L 2, l(l + 1), are restricted to 
be: 

l >  Iql, l - I q l  = integer. (2.10) 

The eigenfunctions of (L z, Lz), the so called monopole harmonics, are described in 
ref. [7]. The hamiltonian (2.7) is always positive, as it represents the kinetic energy. 
Consequently the system described by (2.7) cannot have bound states. The magnetic 
moment interaction is taken into account by adding it to Hcha~g e. By using eqs. (2.4) 
and (2.7) we get the following hamiltonian, valid as long as R >/a: 

H 1 0 2 0 S " / ~ e } .  
2 m R  2 { _  ( L  2 _ q 2 )  _ 

= - -  -b- R (2.11) 

The prescription on the potential at R ~< a (eq. (2.6)) can be translated into a 
boundary condition on the wave function q~: 

~ b ( R = a ) = 0 .  (2.12) 

The total angular momentum of the system, 

J = L + S ,  (2.13) 

being a constant of the motion, eigenstates of j2  and Jz can be considered for the 
study of the eigenvalues and eigenvectors of (2.11). As the hamiltonian explicitly 
involves the L operator, (which is not conserved) it is convenient to analyze the l 
content of the (J,  Jz) states. Two different possibilities arise, which we will discuss 
separately in the following. 

(i) J = ]q] - 5- Note that this implies l =  [q[. We can separate the radial part of 
the wave function from the spin and angular part in the following way: 

1 
q~ ( R )  = ~ x ( R ) l q ,  l = l q I , J = l q l - 5 ) .  (2.14) 

J = l q l  

A straightforward calculation of the S .  R operator on the J = Iql - 5 states gives 
[131": 

S .~ lq ,  l= IqI,J= Iql-½) =5elq ,  l =  I q I , J =  I q l - 5 ) .  (2.15) 

All other operators acting trivially on the non-radial part of the wave function, one 

* It is worth observing that, different from spherical harmonics, monopole harmonics do not have 
definite parity. This corresponds to the fact that under the r ---, - r transformation the operator L has 
not a definite parity. 
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gets the following one-dimensional Schri3dinger equation for the function X: 

241 

1 ( d 2 lx~ 1__ ] 
2m - d R  ~ + ( I q l - 7  JR2] X=EX' (2.16) 

with the boundary condition: 

x ( a ) = 0 .  (2.17) 

Thus the monopole-particle interaction has been reduced to a one-dimensional 
problem in an effective potential: 

V ~-- h I (2mR 2 ) - 1  (2.18) 

Xx= Iql - ½~. (2.19) 

If h I is negative the magnetic moment monopole interaction is attractive. As shown 
in the appendix, the motion in the potential (2.18), subject to the boundary 
condition (2.17) has infinite (zero) bound states for h I < - ¼  (>/ - 1 ) .  Thus the 
condition for bound states is: 

r >  2lql ÷½. 

(ii) J > Iql - ½. States with definite (J,  Jz) are built up with two different values 
of l: 

l + = J _+ ½. (2.20) 

The state vector can then be written as: 

R-1x+(R)Iq, 1+, J, J~) + R-1x_(R)Iq, l , J ,  J~). (2.21) 

The eigenvalue problem of eq. (2.11) will consist of two coupled equations for the 
wave functions X +(R). In order to write down these equations one needs to know 
the matrix elements of the S-/~ operator in the I q,/ ,  J, Jz) basis. A straightforward 
calculation gives ( j  = J + ½) [13]: 

S.RIq, I+,J,J~)= +-~jlq, l+,J,J~) (ja-q2)1/2 - - 2 j  [q, l~:, J ,  J~). (2.22) 

From eq. (2.11) one can now derive a two-component SchrOdinger equation for the 
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d 2 A ~ 
a/~'-7~-~ X2 + ~SX = 2mE~. (2.23) 

The 2 x 2 matrix A is given by: 

A= rJ(J-1)-q2+qxe/2J (j2-q2)1/2K~/2J ] (2.24) 

( j2 _ qZ)1/2xe/2 j j ( j  + 1) - q2 _ qKe/Zj " 

From the system (2.23) one can get two decoupled equations by transforming to the 
basis where the matrix A is diagonal. The radial wave functions X1.2 in this basis are 
then given by: 

d2 
dR2Xi(R)+•i xi(R)=2mExi(R), (2.25) 

where ~ are the eigenvalues of the A matrix. The boundary condition (2.12) in the 
new basis is again: 

x,(a) = 0. (2.26) 

In this way the interaction with the magnetic monopole is reduced to a one-dimen- 
sional problem in a R - 2 potential. If the lower of the eigenvalues of A, say 2~ H, is 
negative, the potential in the corresponding channel is attractive*. In particular, if 
2~ ii < - ¼ we have again an infinite family of bound states. Explicit evaluation of the 
eigenvalue gives: 

Ai I = (j2 _ q2) _ ( j 2  _ Iql~ + 1/¢2) 1/2. (2.27) 

By taking into account also eq. (2.10) we find that bound states with total angular 
momentum J = j -  ½ can be formed if the following two conditions are simulta- 
neously satisfied: 

j2 >/(Iql + 1) 2, (2.28a) 

j2 < q2 + ~+ Ilql - ½•l- (2.28b) 

2.3. ESTIMATE OF THE ENERGY LEVELS 

As shown in the foregoing subsections, the search of bound states for the 
monopole-particle interaction is reduced to the study of an equation of the form: 

- - ~ + ~ - ~  x=-k2x  (2.29) 

* The trace of the matrix A being positive it is impossible that both the eigenvalues are negative. 
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with k 2= -2mE > 0. Eq. (2.29) holds for R > a and X is subject to the boundary 

condition 

x(a) = O. (2.30) 

As previously mentioned, and as discussed in the appendix, an infinite number of 

bound states exist provided that 

= - 0 2  < - ¼ .  (2.31) 

For the sake of having some analytical estimate of the eigenvalues one can resort to 
semiclassical approximations. By requiring the semiclassical wave function to vanish 
at R = a one gets a Bohr-Sommerfeld quantization condition: 

n >/1. (2.32) fgspRdR=(n-¼)~r ,  

R s = o/k (2.33) 

R s is the classical turning point: 

and PR is the radial momentum: 

p2 = _ k 2 + o2/R2. (2.34) 

The action integral is then: 

faRspRdR= - ° {  (1 -a2Xz /°2) ' /2 -1n l  +(1-a2k2/°2)1/2 . (2.35) 

Eqs. (2.32) and (2.35) provide an expression for the energy levels in the form: 

o 2 
E,= 2-~a2f2[(n-¼)~r/o]. (2.36) 

The function f ( y )  is shown in fig. 1. 
As is clear from eq. (2.35), at large y, f can be approximated by: 

f ( y )  = 2 e x p [ - 1  - y ] .  (2.37) 

For  any y > 0, f can be well-approximated by: 

f ( y )  = 0.74 exp[ - y ]  + 0.26 exp[ - 6 y l .  (2.38) 
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f 1 . 

0 1 2 3 4 5 6 7 
¥ 

Fig. 1. The func t i on f (y )  giving the semiclassical energy levels (eq. (2.36)). 

Thus one has an infinite family of energy levels. The typical energy scale is: 

E o = o 2 / ( 2 m a 2 ) ,  (2.39) 

and the energy levels tend exponentially to zero energy*: 

E,  = E,  _~exp[ - 27r /o] .  (2.40) 

So far we have used a non-relativistic approximation. To judge about its validity 
one needs to compare E 0 with the mass of the particle. We will see that in any case 
of interest one has: 

E o / m  << 1. 

So the non-relativistic approximation is well justified. On the other hand it is worth 
remarking that the condition of validity of the semiclassical approximation, 

* It is also interesting to have an estimate of the linear size L of the bound states. By computing 
L -  t = ( r  1) over the semiclassical wave function with energy E = k 2 / 2  m one gets L ~- o / k .  
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I(d/dR)I/PRI << 1, when applied to the point R = a gives: 

O(1  --  k 2 a 2 / a 2 )  3/2 >> 1 .  ( 2 . 4 1 )  

This implies small binding energies, (k2a2/o 2 << 1) as well as a >> 1. If these 
conditions are not satisfied one has to resort to the exact solution of eq. (2.29) with 
boundary condition (2.30). While deferring to the appendix for this discussion, we 

summarize here the relevant results. 
By writing the binding energy of the n th level as 

1 
E,  . 2 (2.42) 

2ma 2 Xn 

the values of x .  as a function of 

1 "~1/2 (2.43) / " =  ( 0"2-  41 ' 

are shown in fig. 2 for the first few n 's. For the higher n ' s  one can use the following 

recursion formula: 

Xn +1 = x . e x p  { - 2 ~r/v }. (2.44) 

The above equation, which can be proved for high n, actually works also for n = 2. 

- v  Iog lo  .~ 

10 

0 

-2 

-4 

-6  

- 8  

-10 

n = 3  

i i i I . ! 

0 1 2 3 4 5 6 7 8 9 10 

Fig. 2. Location of the first three zeroes of the function K~(x ) ,  as a function of v. The approximate 
parallelism of the three curves exhibits the property written in eq. (2.44). 
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The eigenfunction corresponding to energy E = - k  2/2 m is 

x ( R )  = (¢~Ki~(kR) ,  R > a  
0 R < a ,  

(2.45) 

where Ki~ js the modified Bessel function of order ip. 

As already mentioned, the introduction of a hard core at r = a is somewhat an 
artifice. Particularly, the choice of the core radius is to some extent arbitrary. 
However, one sees from eq. (2.42) that the qualitative features of the energy 
spectrum are independent of the value of a. The condition for the existence of bound 
states involves the giromagnetic ratio and not at all a (see eqs. (2.43), (2.31), (2.27) 
and (2.19)). On the other hand, the energy scale is fixed by a (see again eq. (2.42)). 

3. Energy levels of nuclear and atomic systems bound to monopoles 

We make use of the results of sect. 2 (particularly eqs. (2.19), (2.27) and (2.31)) to 
study the binding of monopoles to simple nuclear and atomic systems. 

3.1. NUCLEONS 

For the proton one has x = 2.8, q = ½e and the total angular momentum of the 
proton-monopole system is integer. From eq. (2.18a) one finds: 

)~i = - 0 . 9 .  (3.1) 

Thus protons can bind to magnetic poles in J = 0 states. As IXII = 1, the energy 
levels have to be calculated by solving the full Schr6dinger equation (2.29). The 
outermost zero of the modified Bessel function Kiv(x ) lies at x = 2.7 • 10 2 (see fig. 
3). For a = 1 fm one finds that the ground state has energy: 

E~ Mp) = - 15 keV. (3.2) 

The excited levels are at: 

E ~ M p ) = E ~ e x p ( - 7 . 8 } .  (3.3) 

The linear size of the ground state is: 

L (Mp)= ~r)  = 32 fm. (3.4) 

We do not find bound states with J > 0 as eqs. (2.28) cannot be fulfilled simulta- 
neously. 
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Fig. 3. The function Kiv(x) corresponding to the (Mp) bound state (1, = 0.804). The outermost zero lies 
atx=2.7.10 -2. 

For  the neutron one has g = 1.91, q = 0 and the total angular m o m e n t u m  is half 

integer. F r o m  eq. (2.28) one finds that bound  states can be formed for J = ½ only. 

F r o m  eq. (2.27) the eigenvalue of  the A matrix is: 

By taking a = 1 fm we get: 

X u = - 0 2  = - 0 . 3 9 .  (3.5) 

E[ Mn) = - 1.2 eV, (3.6) 

E ( M n )  _ ~ (Mn),~v~ [ _ 1 7  } 
n - -  ~ n  - -  1 ~ A I "  I • 

(3.7) 

The binding energy is considerably smaller than for the proton,  as a consequence of  

the fact that  o 2 is close to the critical value ¼. 
In  ref. [6] it was found that the binding energy for the ground state of  both  (Mp) 

and (Mn) are about  300 KeV. We believe that this result is wrong for the following 

reasons. 
(a) The location of  the zeroes of  the modified Bessel funct ion was determined by 

an asymptot ic  expansion, (eq. (4.14) of  ref. [6], x = ~,), which does not  hold in the 

region where the outermost  zero lies. This is clearly seen f rom fig. 3. 
(b) In ref. [6] the cutoff  was set at a = 6 fm, which is an unphysical  value. 
(c) For  calculating the binding energy of the neutron the author  of  ref. [6] used 

eq. (3.15) (the analog of  eq. (2.19) of  this paper) which only holds for q :~ 0. 
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3.2. NUCLEI 

For a spin-½ nucleus zN A, with magnetic moment /2y in units of the nuclear 
magneton, (eh/2mpc) one has Iql = ½Z, and x = biNA. One must consider sep- 

arately the cases J = [ql - ½ and that of higher J. 
For the first case, the condition for the existence of bound states is (from eq. 

2.18a): 

' (3 .8 )  h i  = 1(  Z -- #N A )  < 4 ,  

which requires nuclei with unpaired protons (/2 N > 0). In the second case, for the 
smallest value of J, Jm = (Iql + 1), the eigenvalue of the A matrix is, from eq. (2.27): 

..2~,1/2 
h i i = Z + l - ( Z + l +  l ( Z - ~ t N A )  ) . (3.9) 

The condition for the existence of bound states is, again: 

h l  I < -- 1 .  (3 .10)  

There are several stable spin-1 nuclei, which satisfy the above conditions. They are 
listed in table 1, where the relevant results for the energy levels are presented. The 
binding energy of the ground state is in the range 1-100 keV, the most stable system 
being (M19F) with E 1 = 380 keV. For a few nuclei (~H, 19w9 x, 203T181xi, 205Tlhslx,) two families 

of bound states exist, corresponding to  h I and hxi. In this case the first family is 
always more tightly bound, as can be inferred by the expression (3.8) and (3.9) of h I 

and h ii. These imply I hxl > Ihi, I and consequently the potential is more attractive 
for family (I). It is worth remarking that semiclassical expressions (eqs. (2.36) and 
(2.38)) yield a fair approximation also for the ground state, as long as Ih[ > 10. The 
values of the binding energy of 13C, 19F and 31p quoted in ref. [6] are in substantial 

disagreement with our results. The discrepancy is due to the following reasons. 
(a) In ref. [6] a finite value of the monopole mass, M M = 100rap was used. This 

affects the calculation of the h's, since, for a finite monopole mass: 

AM M 
XI=I(Z-~MM+Amp ) ' 

(b) As previously noted, the location of the zeroes of the modified Bessel function 

was determined too roughly. 
(c) The estimate of the nuclear radius is unphysical. 
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3.3. ATOMIC SYSTEMS 

As an illustrative example of monopoles interacting with an atomic system let us 
consider 4He ÷. The mass of the system is mile = 4mp, the total charge is Z = + e, its 
typical radius is aHe = 2.5 × 10 - 9 cm and the magnetic moment in the 1 s state fully 

arises from the electron spin: 

~,He+= ise. (3.11) 

The giromagnetic factor x is enormous: 

mile  r =  - - - =  - 7 4 0 0 .  (3.12) 
m e  

Since x is negative, only family (II) of bound states exist (see eq. (2.19)). Within this 
family one expects that states with very high values of J can be found. Indeed for eq. 
(2.28) one finds that the largest value of J is Jmax -- ~ -- 60. For J << "/max one 
finds, from eq. (2.27): 

0 2 = 11~. (3.13) 

In the semiclassical approximation the energy levels are then: 

-----~- ~ 0 " 5 5  ( 1) ~r23/2 / (3.14) 
E n - 4mea~leeXp[ - ( n -  vrx J" 

For not too high n, this is a value comparable to the binding energy of 4He+ 
(EHe = 1~2meade ). This shows that generally the coupling to the electron magnetic 
moment can be quite efficient to bind monopoles with atomic systems. On the other 
hand, the interaction with the electron being so strong its wave function will be 
drastically perturbed. Consequently this approach, which in essence relies on the 
discussion of the electron monopole interaction as a perturbation of the Coulomb 
interaction between e and a, can just be considered as indicative of the monopole 
atom interaction*. 

4. Formation and deexcitation of bound states 

We will consider in some detail the formation of the monopole-nucleus, (Mz NA), 
system. Several reactions which are important for this process will be discussed in 
the following. 

* In ref. [7] the interaction of magnetic monopoles with atoms was treated on a completely different 
footing. There, the author considers a repulsive interaction, and evaluates the electronic energies 
assuming that a monopole is located in the nucleus. 
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4.1. RADIATIVE COMBINATION 

The cross section for the reaction: 

M + N ~ (MN) + y (4.1) 

can be easily estimated by using semiclassical considerations. The amplitude of the 
radiation field A of M and N being proportional to the acceleration and to the 
(electric or magnetic) charge of the particle, 

A M / A N  rn N 1 << 1 (4.2) 
m M Zot 

one can limit to consider the coupling of the radiation field to the nucleus. Consider 
a monopole-nucleus collision at relative velocity v, impact parameter b, resulting in a 
velocity variation Av. 

The probability that the nucleus emits a photon in the frequency interval 

to, ~0 + dto is [14]: 

Z2a 2, for to < v / b  d P =  3--~-~ I avl 
dto 0, for to > v / b .  

(4.3) 

A bound state can be formed when the energy to of the emitted photon is larger than 
the kinetic energy of the impinging nucleus: 

to > tox = ½mN v2" (4.4) 

The probability w(b)  of forming an (MN) system is thus obtained by integrating eq. 
(4.4) in the useful frequency range: 

lmr~v2 < to < v / b .  

In this way one finds: 

w(b)= 
O, 

(4.5) 

for mNVb < 2 
(4.6) 

for mNvb > 2. 

In order to calculate Av, we approximate the monopole-nucleus interaction by a 
central potential: 

U( R ) = tin B = # N / ( 2 e R  z ) .  (4.7) 
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In this way one finds: 

?)2 
Izavl 2 --- m 2  o2b 4 ( - -  . ( 4 . 8 )  

It  is clear from eqs. (4.6) and (4.7) that only the s-wave (L  = mvb = ½) contributes 
appreciably to the cross section. By observing that the cross section in the s-wave is 

m 2 v  2 Wo' W o = W ( b = ( 2 m N U ) - x ) ,  

we get for the radiative combination cross section: 

Or equivalently: 

2 5 
o~ MN) -- Z2t~-~-~rln 4 = Z2~250.  (4.9) 

O ( M N )  ~--- Z2/£ X 0.3 X 10 - 28 cm 2, (4.10) 

where #N is the nuclear magnetic moment  in units of the nuclear magneton and Z 
the nuclear charge. In order to judge about the reliability o f  this estimate let us 
observe that for ( p ~ ) a t o m  formation through the reaction 

p + ~ ~ (p~) + y,  (4.11) 

a similar approach yields: 

a~p~) = 40a3mp- 2 v - 2, (4.12) 

whereas the result of the exact quantum mechanical calculation can be fitted as [9]: 

o = 40a3mp 2v- 21n(1 + a2v - 2), (4.13) 

i.e. the same expression as (4.12) but for the logarithmic correction. 

4.2. AUGER AND MOLECULAR PROCESSES 

In a hot plasma reaction (4.1) is the principal mechanism of the formation of 
(MN) states. In cold matter  other processes can lead to (MN) formation at a 
substantially higher rate. Indeed for the case of antiprotonic atoms the Auger 
process: 

+ n -~ (p~) + e -  (4.14) 
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at velocities v ~< v* = a(2me/mp) 1 / 2 .  - . has a cross section: 

OA (p~) ----- 2 0 a  lme3/2mpl/2t)-I uger (4.15) 

for v -  v* one gets a cross section of a few A 2, thus overwhelming the radiative 
recombination process (4.14) by a factor about 10 8. A similar process can occur for 
slow magnetic monopoles: 

M + H --* (Mp) + e. (4.16) 

As in antiprotonic atoms, in this process the (Mp) is formed in excited states, with 
dimensions of the order of the Bohr radius, a 0 = ec - lme  1, and then decays to the 

low-lying levels by emitting radiation. We estimate the cascade time to be very short, 
about 10-16 s. Also, if H is bound in some molecular complex (HX), the monopole 

could first bind to the H atom through the coupling of the electron magnetic 
moment  and by transferring the binding energy to the molecular excitations: 

M + ( H X )  ~ { (MH) ,X}*  (4.17) 

In the (MH) system the proton and the monopole are again at a distance - a o. The 
proton then can radiate and reach the deep (Mp) levels, 

(Mp)* ~ (Mp) + n~,. (4.18) 

Clearly similar reactions can occur also for interactions of monopoles with atomic 
species other than hydrogen. 

With experience of what occurs for antiprotonic atoms we expect that reactions of 
the type (4.16) and (4.17) are dominant over the radiative combination process when 

monopoles interact with cold matter, at monopole velocities v M _< v*. Thus in cold 
matter  the radiative combination cross section, eq. (4.10), has to be considered as a 
lower limit to the total (MN) formation cross section. 

5. Consequences of the existence of bound states 

In this section we discuss several phenomenological consequences of the existence 
of bound states of monopoles with nuclei, in connection with the possibility of 
monopole detection. 

5.1. ARE MONOPOLES BOUND TO NUCLEI WHEN REACHING EARTH? 

In order to study this problem, one has to examine the fate of monopoles since the 
early stage of the universe, starting from a hot era when protons have been formed, 
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say from a temperature T -  100 MeV [15]. The rate of (Mp) formation is: 
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A for = o(Mp)ppUp ' (5.1) 

% and Op are the proton velocity and density. These depend on temperature as: 

lop ~ aqT 3 , TI - 10 - 8-10 - lO, 

Vp = ( 2 T / m p )  1/2. (5.2) 

By using eq. (4.10) one gets: 

Aro r = ~lmp 5/2T5/2. (5.3) 

Formation of the (Mp) system takes place if A for is larger than the expansion rate of 
the universe, zt71, which is connected to the universe's temperature: 

~v = MP T - 2  , 

where Mp is the Planck mass. The condition A for% >/1 yields: 

T>~ Tfor = (101°r/) - 2/3 keV, (5.4) 

i.e. the (Mp) can be formed through the radiative combination process as long as the 
temperature of the universe is larger than a few keV, the proton density being too 
low when the temperature drops below Tfo r. On the other hand, in the hot universe 
the (Mp) system can dissociate by colliding with photons: 

(Mp) + 7 ~ M + p.  (5.5) 

The photodissociation cross section Odi s can be estimated by approximating the (Mp) 
system with a hydrogenic atom with an effective charge Z*. We take Z* = 0.8 since 
this fairly corresponds to the energy and size of the (Mp) system for a reduced mass 
equal to the nucleus mass. 

By using the well-known result for the photo-electric effect in hydrogenic atoms 
[16] we find: 

%i ~ 2 X 10_12rap21 . ~  , ~ 7 / 2  I, m p/Lv ) , (5.6) 

Ev being the photon energy, which has to exceed the binding energy of the (Mp) 
system, 

E b = 15 keV. 



254 L. Bracci, G. Fiorentini / Magnetic monopoles 

If  ny is the photon density, 

n v = 1 T 3 ,  (5.7) 

the density of photons which are effective for dissociation is, approximately 

n e f  f = nvexp( - E b / T  ) . (5.8) 

The photo dissociation rate, 

- 2 7 / 2  
adi  s = 2 . 1 0  - 1 2 n v e x p ( - E b / T ) m  p ( m p / E b )  (5.9) 

dominates over the formation rate for 

= Eb. (5.10) 

As Tdi s < T~o r, in the hot stage of the universe the (Mp) systems are quickly 
dissociated by collisions with photons. Next, when the universe's temperature drops 
below a few eV, atoms are stable and the Auger process (reaction (4.16)) becomes 
important. From the known values of the hydrogen density in the intragalactic and 
interstellar space [17], we find that (Mp) systems are formed provided that: 

OA~ger >__ 10 - 20 cm 2" (5.11) 

It is also clear that in the cold era the photodissociation process is not effective. Thus 

if (Mp) systems are formed, they are stable. 
Although we do not have an estimate of OAuwr, it is likely that the above condition 

(5.11) is satisfied on grounds of the experience with mesic atom formation [9], where 
the Auger cross section typically overwhelmes the radiative formation cross section 
by a factor of order 10 8. Thus we expect monopoles reaching the solar system to be 

accompanied by a proton. 
Let us consider, however, the case of a bare monopole reaching Earth's atmo- 

sphere. It is easy to see that it cannot bind to the nuclei of the most abundant atomic 
species (N, O). Binding to the rare species (for example 163C, H, Xe) requires a 
formation cross section larger than 1 0 -  20 cm 2. Clearly for so large an Auger cross 
section (Mp) formation would have occurred before reaching the atmosphere. In 
conclusion, the Earth's atmosphere is not important for the formation of nucleus- 

monopole bound states*. 
A detector close to the Earth's surface is attained by monopoles which come from 

above as well as from below. These latter most likely passed through the water of the 
oceans, where, if they were still free, they surely captured a proton. 

* It is worth observing that transfer reactions of the form: (Mp) + N ~ (MN) + p are unlikely, owing to 
the Coulomb repulsion between the two nuclei. 
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In conclusion, a monopole  reaching Earth is most  likely to be accompanied by a 

p ro ton  and behaves, in many  respects, as a dyon.  This has to be taken into account  

when planning an experimental search for magnetic  monopoles.  In particular, when 

discussing the energy loss of a slow monopole,  the energy loss of  a unit electric 

charge can be used as a lower limit*. 

5.2. RUBAKOV EFFECT 

The existence of  bound  (MN)  system is also interesting in connect ion with the 

Rubakov  effect [11], i.e. the reaction: 

M + p ~ M + e + + X .  (5.12) 

Indeed in the bound  (MN) state the Rubakov  effect is enhanced as a consequence of  

the large overlap of  the p ro ton  and monopole  wave function. Let us parametrize the 

cross section for the Rubakov  effect as: 

OR,, b = Wrap 2vr¢- l' (5.13) 

where ore 1 is the nucleus monopole  relative velocity and w is an unknown parameter.  
We want  to derive some experimental information on w. 

A monopole  passing through a medium with pro ton  density pp can directly induce 

reaction (5.12) with a rate 

- 2  
~k F = p p W m  p , 

or form a (MN)  bound  state, with a rate 

~kfo r = pNOfor  o , 

where ON is the density of  nuclei, and v is the relative nucleus monopole  velocity. 

After  formation of  the (MN) system proton  decay occurs at a rate: 

•B = ½AoafWmp 2. (5.14) 

Peff is defined in eq. (1.2). The wave function at short distances being unknown,  

tentatively we take: 

Pelf = L N  3 ,  ( 5 . 1 5 )  

* It is worth observing that a substantial and so far almost unnoticed mechanism for the energy loss of 
a slow monopole, in the velocity region (me/mp)l/Zac < v < ac arises from the interaction with the 
electron magnetic moment. By means of this interaction atoms can be adiabatically ionised. We 
expect the cross section for this process to be an appreciable fraction of atomic dimensions. 
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where L N is a typical d imens ion  of  the monopo le -nuc l eus  system. W e  use: 

L y  = 20 fm.  (5.16)  

The  effective rate of  catalysed proton  decay is then: 

XforXB (5.17) 
~kef f = ~k F "4- ~kfo r Jr ~'-""~ . 

A flux • o f  m o n o p o l e s  with velocity v M will catalyse proton decay with a rate: 

~p-t = Xe.. (5.18) 
VM0p 

We can use the present upper limit from proton decay experiment,  [8] ~'p > % = 3 • 10 30 
years, to derive a bound  on • and w. F r o m  (5.18) one  gets: 

Vg//£~>roWmp2{1 +(PNL 3 +0.5Awmp2OfortV t ) - l } .  (5 .19)  

We take A = 50, Z =A/2 as representative values for the nuclei  in the proton  
detector,  and assume a density PN = 1023 c m -  3. For v we take the value correspond-  
ing to the thermal velocity of  nuclei,  v = v T = 105 c m / s .  

~/VM (c m-3) 7 
10 -1 . 

10-18, 

10-19, 

10-20. 

lO-21 

10-22 

10-23 I I I I 

10 -8 10 -6 10 -4 10 -2 1 10 2 

W 

Fig. 4. Bounds on the flux ~ of monopoles  with velocity /)M and on  the parameter w of the Rubakov 
effect (eq. (5.13)), f rom data on proton stability. The allowed regions lie to the left of the curves, which 
are calculated according to the following hypotheses: (a) for the Rubakov effect in flight; (b) taking into 
account (MN) formation,  with the formation cross section as in eq. (5.20); (c) the same as in (b), but  for a 
formation cross section 104 times larger; (d) the same as in (b), with v M = l0  s c m / s  and a formation 

cross section as in eq. (5.20). 
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Fig. 4 shows the allowed regions in the (w, q~/vM) plane for some values of Ofo r. 
The straight line (a) corresponds to Ofo r = 0, i.e. Rubakov effect in flight eq. (5.13). 
This case was first discussed in ref. [10]. 

Curve (b) corresponds to (MN) system formation through the radiative process: 

Ofor ~ ay(MN) ~ Z2mp 2. (5.20) 

One sees that the formation of the monopole-nucleus bound states yields more 

stringent bounds. 
As already mentioned, Auger effect should give a value of Ofo r some orders of 

magnitude larger than in eq. (5.20). Curve (c) corresponds to ofo r = 104. ov~MN) and 

yields even more stringent bounds. One concludes that it is interesting to have more 

accurate determination of °for- 
It is worth observing that we have been very conservative when assuming v = v T. 

Generally one has v = ( v ~  + V~r) 1/2, and correspondingly (MN) formation occurs at 
a higher rate. Curve (d) corresponds to v M = 108 c m / s  and a formation cross section 
as in eq. (5.20). One concludes that for relatively fast monopoles the radiative 
formation of (MN) systems enables us to set rather strict bounds on monopole 
fluxes. 

A questionable point in the derivation of the above bounds is the use of eq. (5.15). 

Clearly the determination of Pelf is beyond the hard core approximation, which 
obviously yields perf = 0. 

To get some estimate of p~ff we replaced the hard core with a finite potential, 
V =  - ( h / 2 m a 2 ) y ,  for R < a. By fixing h = 10 as a typical value for several nuclei 

(see table 1), we found p¢fra 3= 0.01-0.1 when y is varied in the range - 1 - 1 .  For 
intermediate nuclei this means P¢u-  1 0 -  3 - 1 0 -  4 fro-3, to be compared with Peff- 
1 0 -  3 fm-3  from eqs. (5.15) and (5.16). Thus the uncertainty on p¢ff does not spoil 
the above discussion. 

5.3. CATALYSIS OF NUCLEAR FUSION REACTIONS 

It is interesting to consider the interaction of a (Mp) system with a light nucleus. 
For a suitable spin orientation, the attraction provided by the monopole magnetic 
field: 

U M = --t~N/eR 2, (5.21) 

can compensate the Coulomb repulsion: 

U c = Z e 2 / R ,  (5.22) 

at nuclear distances. Thus one expects an enhancement of the probability of nuclear 
fusion reactions. In principle this effect could provide a signature of the existence of 
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TABLE 1 

The table presents the binding energy E 1 for the stable nuclei with S = ½ and the first excited level, E 2 

Nucleus /i N X~ x I E l - E~ - E l .... X u xl '  - El '  - E2 u E[ t .... 

1H 1 2.79 0.90 0.027 15.1 0.006 
1 H3 2.98 2.97 0.28 112.0 2.5 2.21 0.184 48.4 0.54 
2He 3 -2 .13 1.54 0.097 13.4 0.05 
6 C13 0.70 1.57 0.102 1.8 0.008 3.42 
9 F19 2.63 20.47 2.05 383.0 88.0 378.0 10.72 1.18 126.0 17.2 129.0 
15P 31 1.13 10.04 1.11 49.0 6.3 50.7 
48Cd 113 -0 .62  10.48 1.16 6.3 0.84 6.3 
5oSn ll5 0.92 27.1 2.56 30.0 8.1 29.0 
5oSn 117 - 1.0 32.8 2.96 39.0 11.7 38.0 
5oSn ll9 - 1.05 36.54 3.21 44.0 14.0 43.0 
52Te 123 -0 .74  18.62 1.9 14.6 3.1 14.5 
52Te 125 -0 .89  28.77 2.88 28.3 8.0 27.8 
54Xe 129 -0 .78  22.46 2.21 18.2 4.4 18.0 
7oYb TM 0.49 7.15 0.80 1.48 0.13 1.58 
78Pt 195 0.61 20.09 2.02 7.6 1.7 7.6 
8oHg 199 0.50 10.02 1.1 2.2 0.28 2.3 
81T1203 1.61 123.1 7.4 95.0 47.5 97.0 41.42 3.52 21.7 7.4 21.3 
81T1205 1.63 126.3 7.53 99.0 50.0 99.0 44.64 3.71 23.8 8.3 23.4 
82Pb 2°7 0.59 20.0 2.01 6.9 1.5 6.8 

Bound states of both family (I) and (If) are reported, together with the semiclassical values Ei ' c  (left and 
right part of the table). The energies are in keV. For each family the value of the coupling constant 2, and 
the location of the outermost zero x I are also reported. The nuclear magnetic moments/~y are reported in 
the second column. The nuclear radii were calculated according to the rule a N = ro All3, r o = 1.3 fm, 
except for 1H l, 1H 3 and 2He 3, whose radii were taken to be 1 fm, 2.2 fm and 2.2 fm respectively. 

m a g n e t i c  m o n o p o l e s .  W e  h a v e  c o n s i d e r e d  t w o  p r o c e s s e s  w h e r e  t h e  e f f e c t  c o u l d  s h o w  

u p .  E v e n  i f  t h e  a n s w e r  is  n e g a t i v e ,  w e  t h i n k  i t  is  i n t e r e s t i n g  to  r e p o r t  o u r  a r g u m e n t s .  

W e  h a v e  c o n s i d e r e d  t h e  p o s s i b i l i t y  o f  h a v i n g  t h e  r e a c t i o n :  

( M p )  + d --* M + 2 H e  3 + 2¢, (5.23) 

w h e n  a m o n o p o l e  p a s s e s  t h o u g h  a l a r g e  h e a v y  w a t e r  d e t e c t o r .  T h e  i n t e r a c t i o n  

p o t e n t i a l  o f  t h e  d e u t e r i u m  n u c l e u s  as  a f u n c t i o n  o f  i t s  d i s t a n c e  f r o m  t h e  m o n o p o l e :  

Uee f = U N + U C = - t x N / e R  2 + e 2 / R ,  ( 5 . 2 4 )  

r e a c h e s  a m a x i m u m  a t  R - - 2 5  f m ,  w h e r e  i t  t a k e s  t h e  v a l u e  Urea x = 25 k e V .  T h e  

b a r r i e r  h e i g h t  b e i n g  c o n s i d e r a b l y  l a r g e r  t h a n  t h e  t h e r m a l  e n e r g y ,  t h e  p r o b a b i l i t y  w T 

o f  t u n n e l l i n g  t h r o u g h  t h e  b a r r i e r  t u r n s  o u t  t o  b e  v e r y  s m a l l .  W e  f i n d :  

w T --- e x p [  - 2 m a / r n  e ] .  ( 5 . 2 5 )  
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The  cross sect ion for (5.23) canno t  exceed the un i ta r i ty  l imit ,  
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o o =- ( m a o ) z  w x .  (5.26) 

Clear ly  this is too small  to al low for any  observab le  effect*. On  the other  hand,  

ins ide  the sun the t empera tu re  (T~u n - I  keV) is so large that  the presence of 

monopo le s  should  enhance  the rate  of  the chain  of nuclear  react ions,  par t i cu la r ly  the 

p + p ~ d + e + +  v, which is the slowest step of  the chain.  

I f  ¥ = n M / n  p is the ra t io  be tween  the number  of monopo le s  and p ro tons  inside 

the sun, the energy p roduced  by  the sun per  uni t  t ime is: 

Psun --- P~(°~ ( 1 + 7 a ) ,  (5.27) 

where  Ps~°~ ) is the energy p roduced  in the absence of  monopo le s  and a is an 

enhancemen t  factor.  W e  f ind that  the enhancement  fac tor  is a < 10 9. 

Since we bel ieve we unde r s t and  stel lar  energy p roduc t ion  wi thout  tak ing  into  

account  monopoles ,  i.e. Psun = P~On~, the m o n o p o l e  catalysis  of nuclear  react ions  

impl ies  a b o u n d  on m o n o p o l e  abundance :  

"t -< 10-10 (5.28) 

This  bound ,  however,  is qui te  poo r  as c o m p a r e d  to b o u n d s  which can be der ived by  

us ing other  a rguments** .  

6. Conclusions 

Let  us summar i se  the ma in  po in t s  of  our  discussion.  

(a) We f ind that  magne t ic  monopo le s  can form b o u n d  states with nucleons,  nuclei  

and  a toms  through  the in terac t ion  of  the magne t ic  d ipo le  m o m e n t  with the mono-  

pole  magnet ic  field. We  calcula te  the energies of  these systems. The  values we f ind 

(eqs. (3.6), (3.14) and  table  1) are to be  cons idered  as upper  l imits,  since the real  

in te rac t ion  with the m o n o p o l e  is more  a t t rac t ive  than the po ten t ia l  used throughout .  

" It is interesting to observe that two nuclei could bind to the same monopole, thus forming a sort of 
nuclear molecule. Our picture of the monopole-nucleus interaction is so rough that we cannot make 
an estimate of the binding energy of these systems. It is worth observing however that if these states 
exist the probability that they are formed is very small as a consequence again of the barrier. Eq. 
(5.26) can be used as an upper limit for the formation cross section. 

** For example, the known values of the sun's mass and size imply: -/< m o / m  M - 10-16. Also, it is 
reasonable to assume that only monopoles with magnetic charge of the same sign survive inside the 
sun. These monopoles will create a magnetic field which exceeds the value measured on the sun 
surface unless: 7 < 10 - 23. A similar bound can be derived by considering that monopoles are repelled 
by the sun when the magnetic repulsion exceeds the gravitational attraction. 
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(b) We have shown that the probability of forming these bound states can be 
quite large. A lower limit Ofo r >__ Z2mp 2 was obtained for the (MN) formation cross 
section. 

(c) We conclude that monopoles reaching Earth are most likely accompanied by a 
proton, thus behaving in many respects as dyons. 

(d) We consider the formation of (MN) systems in connection with the Rubakov 
effect. From data on proton stability we derive bounds for the monopole flux and 
the Rubakov cross section. These bounds could be significantly improved with a 
better knowledge of the (MN) formation process. 

(e) We discuss the possibility that monopoles catalyse fusion reactions of light 
nuclei. 

One can envisage several improvements of the present discussion. By taking into 
account the nucleon magnetic form factor a more quantitative description of (Mp) 
bound states can be provided*. In this frame the existence of nuclear molecules 
could also be discussed. It is worth investigating further the atomic and molecular 
physics processes involved in the formation of (MN) bound states, as this could 
provide stricter bounds on the parameters of the Rubakov effect. 

One of us (GF) is grateful to T.E.O. Ericson, G. Giacomelli, A. Martin and 
P. Rossi for fruitful conversations. He is also grateful to the CERN Theory Division 
for the kind hospitality while most of this work was done. 

Appendix 
The square integrable solution of the SchrOdinger equation, 

_ d 2 X )X = _ k 2 x  ' R > a,  (A.1) 

can be written as [6]: 

x ( R ) = R 1 / 2 K i ~ ( k R ) ,  (A.2) 

where K i is the modified Bessel function [19]. 
The boundary condition x (a )  = 0 (K~(ka )  = 0) can be satisfied only for real u [6], 

i.e. for 2, < - ¼. In this case Kg has an infinite sequence of zeroes, for which x = 0 is 
a limiting point, as can be seen from the following representation, valid for small 

* After this work was completed we became aware that this point has been recently discussed (ref. [21]). 
We thank the authors for sending us their preprint. 
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values of x: 

i~r { e ivln x /2  
Ki~(x) 

2si~-(~rv) F(1 + iv) 

(We recall that F(1 + iv) = F(1 - iv).) 
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e - ivln x /2  
? ~ -  _-- lv~--~) }. (1 .3)  

In fig. 3 we plot the ground state wave function for the case of a proton bound to 
a monopole, where the parameter v is v = 0.804. 

One finds that the largest zero of K~ is at x 1 = 2.7 × 10 - 2, a value rather different 
from that quoted in ref. [6]. 

For a given system, according to the above equations the energy levels are given 

by: 

E, = -xZ / (2ma2) ,  (A.4) 

where the x ,  are the zeroes of Ki,. In fig. 2 we report the first few zeroes of K~(x) as 

a function of v. 
The ratio between two consecutive x~ is approximately constant. This can be 

inferred from eq. (A.3). Indeed, by writing F(1 + iv) = p~e i~", the equation Kg~(x) = 0 
is equivalent to: 

(A.5) 

This latter yields: 

sin(vln ½ x -  6~) = O. 

and consequently: 

n~r + ~ ]  (A.6) x = 2 exp v ' 

(A.7) x,+ 1/x, = exp[ - ~r/v ]. 

Eq. (A.6), which is expected to hold for small values of x, is in fact a fair 
approximation of x n since the first values of n, at least for v ~ 10. 
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