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Invited paper

In this article we present a detailed investigation of the microscopic electron/radiation evolution m a high-gain free electron laser
(FEL). Both the steady-state and in particular the superradiant regimes are investigated. Solutions of the one-dimensional FEL
evolution equations are represented dynamically by animated computer graphics to produce "movies" of the electrons/radiation
evolution . We believe this form of representation of the FEL process provides a clearer, intuitive picture of the underlying
mechanisms involved . This has been of particular importance in the understanding of more complex FEL mechanisms such as
superradiant phenomena.

1. Introduction

This article describes by means of animated com-
puter graphics (subsequently referred to as "movies")
the microscopic gain mechanisms in a high-gain free
electron laser amplifier in the Compton regime . The
main body of this text describes the movies as presented
at the 12th International Free Electron Laser Con-
ference. As such, a copy of the video tape containing
the movies should be obtained . This can be done by
following the instructions at the end of this article .

No new analytical results are presented in this article .
We simply provide "visual solutions" to the governing
1D FEL equations and present our understanding of
these solutions in the hope that a more intuitive under-
standing of the FEL mechanisms may be gained by the
reader/viewer. As such, we refer the reader to the
literature for a full description of the underlying theory.
(For single particles see ref. [1], for steady state see ref.
[2], for superradiance see refs . [3-4]).
We begin with a look at the single-particle model of

the Maxwell-Lorentz equations. With no coupling be-
tween particle and field there is no field evolution and
the equation of motion of the particle is that of a simple
pendulum [1] . With field/particle coupling (no matter
how weak) the field may evolve and the particle evolu-
tion is not that of a pendulum, indeed it may have very
tin-pendulumlike trajectories .
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We then introduce many particles and look at the
familiar high-gain steady-state regime [2] . In particular
we investigate the region around the detuning threshold
above which there is no exponential steady-state insta-
bility.

The introduction of pulse effects (slippage) changes
the coupled ordinary differential equations describing
the steady-state FEL evolution into a set of coupled
partial differential equations in two independent varia-
bles [3] . In describing the length of an electron pulse we
introduce the cooperation length 1, where 1, is the
slippage distance between the radiation and a resonant
electron in one gain length . An electron pulse is then
defined to be long or short with respect to this cooper-
ation length [3] .
We first look at the short electron pulse, which gives

rise to weak superradiance (superradiant behaviour is
defined when the radiation intensity scales as n2, the
electron density squared) and then look at long electron
pulses which give rise to steady-state behavior and
strong superradiance.

2. The single-particle model

The Maxwell-Lorentz equations for a single particle
may be written, with the usual approximations [2], in
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where the field and particle variables appear here as
dimensionless variables scaled with respect to the
fundamental FEL parameter, p, of ref. [2] .

If we decouple the field evolution from the set of
eqs. (1)-(3) then a and (p are constants and the equa-
tion of motion of the particle has the same form as that
of a pendulum [1] . The force on the particle may be
described m terms of its position within a ponderomo-
tive potential (P( - dO/d9=d2B/dz2 ), wluch is, from
eq . (3),

1~ = -2a cos(0+ -~ ) .

	

(4)

We show in movies M1-M3 this pendulum evolution
of the uncoupled system to familiarize the viewer with
the movie layout .

In all pendulum movies to be shown the angles 0
and 4, are measured from the downward vertical, anti-
clockwise. The green arrow points in the direction of the
force of the effective gravitational field as determined
by q) (this is also the position in 0 of the bottom of the
ponderomotive well). The height of the bar at the right-
hand side of the screen gives the effective gravitational
field strength (the field intensity) .

The initial conditions of the first three movies (Ml-
M3) are :

M1 :

	

0, =1 ; 6, =0 ; a=2 ; $0=0,

M2:

	

Bo =2 ; do =0 ; a=2; $0=5,

M3 :

	

0,=0 ; do =0; a=2 ; (P0=0.

where d --- dB/dz.
In Ml we see a single pendulum oscillating, the

direction of gravity pointing down . By changing the
field phase ¢ we change the direction of the gravita-
tional field, as seen in M2 . In the third movie M3 we see
the pendulum in a state of stable equilibrium, simply
hanging down . We show this as, as will be seen in the
next movie M4, with these initial conditions the pendu-
lum is unstable if we couple the pendulum evolution to
the field .

The source of this instability is seen immediately
from eqs. (1)-(3) . As Ba(z -_- 0) =i~o(z =0) =0, we see
that sin(BO + (po) = 0, there is no initial field amplitude
evolution or angular force on the pendulum (the particle
is at the bottom of the potential well) . However, cos(BO
+ $o ) = 1, so that the rate of change of the field phase
(p is maximum. For small values of a(z = 0) the phase
of the field can change rapidly until 0+ q) = iT/2, where
cos(B + q)) =0. The pendulum now falls towards the
direction of gravity losing energy to the field as it does
so . The pendulum then begins to reabsorb the radiation
energy until the field phase changes rapidly again. (The
reader will recognize this emission and reabsorption of
the field as the synchrotron oscillatory regime of the
single-particle system .)
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In order to demonstrate further the un-pendulumlike
motion of the coupled system we now show two movies
(M5 and M6) with the following initial conditions :

M5 :

	

Bo=iT; do =5 ; a=10-1 ; 4),=0,

M6 :

	

00 =m; 60 =1 .8 ; a=10- ' ; J)o=0.

If both sets of initial conditions for M5 and M6 were
assigned to a normal uncoupled pendulum, it would
simply librate . When coupled to the field, we see in M5
that the pendulum drives the phase in such a way that it
oscillates about the "top" of a normal pendulum swing
- i .e . it "stands on end" in the rotating gravitational
field . In terms of the potential well the particle is
oscillating about the top of the well . This motion is
around the additional elliptic point in the coupled-
pendulum phase space as described in ref. [5] .

The initial conditions used for M6 are different from
those of M5, namely there is a reduction m the initial
condition B(z = 0) . The resulting pendulum/ field
evolution is very different : the pendulum now has insuf-
ficient angular velocity (d(z = 0)) to drive the field
phase/amplitude m a way which allows it to perform
an oscillation about the top of the well . Instead the
pendulum becomes trapped by the well, falling into it
and giving energy to the field, The pendulum then goes
on to perform synchrotron oscillatory-type motion as in
movie M4 .

These two coupled-pendulum evolutions correspond
to the evolution above (M5) and just below (M6) the
critical value of the detuning as defined in ref. [21 (d

3
=

	

27/4 ). This is also the threshold value of the elec-
tron detumng parameter below which there exists the
high-gain exponential instability in the many-particle
model which we will now go on to discuss.

3. The many-particle model in the steady state

The 1D evolution equations of the field and electron
distribution in a FEL with the steady-state approxima-
tion have the same form as eqs. (1)-(3) except that now
we must follow the evolution of many particles and
average the rhs of the field evolution eqs. [21 :

_da
dz = (sin(B + o)),

d~ = a (cos(B+4))),

	

(6)

d201

dz2

	

-2a sin( 0, +

where ) = 1,

	

-, Ne, and
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The solution to these equations in the linear regime
[21 gives rise to an exponentially growing field ampli-
tude with maximum growth rate a(z) = ao exp(>3z/2)
for z > 1 and the detuning S = 6(z = 0) = 0 .

Numerical simulations show saturation (for S = 0) of
the dimensionless field intensity aâ, - 1 .4. The emitted
power scales as né/3 .

Increasing S from zero, the dimensionless length of
the wiggler z required to saturate increases (lethargy),
however, the saturated field intensity also increases .
This increase in the lethargy and saturated field inten-

sity continues with increasing S until S > ST =
3
27/4

where the exponential instability stops and there is no
appreciable exchange of energy between radiation and
electrons .
We begin with movie M7, which shows the salient

features of steady-state evolution with zero electron
detuning. The bottom left-hand image shows the elec-
tron phase-space evolution, and the right-hand images
show from top to bottom the intensity a2(z), the aver-
age electron detuning (p(i)) and the bunching param-
eter b . p --- 6 is proportional to the average electron
energy [2] . Each electron in phase space is represented
by a green cross (there is one larger blue reference
electron) and is plotted in the phase space 0, 6, with
- iT < 0 < m . The instantaneous separatrix is plotted in
red . This would define the phase-space trajectories of
each electron if the field evolution were to stop at that
instant (each electron would then evolve as a simple
pendulum) . The two green horizontal lines define the
maximum height of the separatrix at saturation for
S = 0 (= ±2 2asat ) . The initial conditions of the elec-
trons spread them uniformly in phase 0, the initial field
amplitude is a o = 10 -2 and the initial field phase 0 = 0 .

After a period of lethargy the field intensity rises
exponentially until nonlinear effects dominate and the
evolution of the system saturates, with intensity aac _-_
1 .4 . The system then enters the synchrotron oscillatory
phase of evolution in which the electrons reabsorb
energy from the field . Notice the conserved quantity
a 2 + ( p) corresponding to energy conservation .
We now look in more detail at the electron phase-

space evolution for the three cases of detuning :

M8 :

	

S = 0 (maximum growth rate),

M9 :

	

S < - ST (maximum saturation intensity/long

lethargy),

M10 :

	

S > - ST (outward the steady-state exponen-

tial instability regime) .

In M8-M10 the (p) marker on the right-hand axis
gives the average of pJ .

The three quantities given at the top of M8-M10 are
the dimensionless distance down the wiggler, z, the
dimensionless field intensity a2 and the field phase 0 .
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We shall discuss the electron trajectories in terms of
their motion in the potential well . The bottom of the
well is at the elliptic point (at the center of the sep-
aratrix) while the hyperbolic points of the separatrix
correspond to the top of the potential well .

An increase/ decrease in the field phase (p will cause
the separatrix to move to the left/right .

For zero detuning, S = 0, (M8) the electrons fall into
the potential well and begin to bunch around 0 + q) = 0 .
This bunching, as can be seen from eqs . (5)-(7), does
not initially drive the field amplitude as (sin(B + (p)) =
0 . The quantity (cos(B + 0)), however, is positive, and
for small initial field amplitude the phase is increasing
(d(p/dz > 0) . The separatrix/potential well then moves
to the left in the (0, 6) space allowing the bunching
electrons to give energy to the field as they fall into the
potential well (da/dz = (sin(B + 0)) > 0) . The elec-
trons then begin to reabsorb the energy from the field
and perform synchrotron oscillations in the well. Notice
that the phase do/dz is always greater than zero (for
S=0) .

In the next movie, M9, we can see the phase-space
evolution for an initial electron detuning just below the
threshold value ST . Here we see the electrons moving to
the right and a small bunching occurring in the region
just before the top of the potential well . It may be seen
from eqs. (5)-(7) that a bunching around this part of
the well causes do/dz to be negative, so that the
separatrix also moves to the right . It may be easily
shown that in this driving of the radiation phase, if we
assume a constant ~ . the radiation frequency may be
rewritten as w' = w + ~. In this way we see that it
appears that the electrons are trying to drive the radia-
tion frequency to that with the maximum growth rate.
This bunching also allows energy exchange to the field,
so that the field amplitude grows. This growth, however,
is slower than in the case of zero detuning. Eventually
the bunched electrons become trapped within the well
and are seen to be trapped by the separatrix whence
they lose energy rapidly to the field . Note also that the
phase evolution has effectively stopped (the separatrix
is stationary) . The electrons then go into synchrotron
oscillatory motion .

The next movie, M10, shows the evolution for S > ST .
The picture, at the beginning, looks very similar to M9,
but this time the electron detuning is too great to allow
sufficient bunching near the top of the well to drive
either the phase or the amplitude of the field suffi-
ciently to allow trapping of the bunched electrons .
Hence in this case there is no exponential growth of the
field .
We note the obvious similarities in the dynamics of

the single-particle evolutions with the many-particle
model through the movies M4 and M7/8 ; M5 and
M10 ; M6 and M9.

VI . 1D FEL THEORY
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4. Slippage and superradiance

=
a(z'1

z2)
(COs(0(z,, z2) +¢(z,, z2))),

a2
0,('11 z2)

az2

z = 2k,,pz = 41rpN,
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The steady-state (s.s .) model discussed in the previ-
ous section does not take into account the slippage of
the electrons and radiation due to their relative velocity
difference . In the s.s . model the electrons within one
radiation wavelength of the beam evolve self-con-
sistently with the radiation they emit . Inclusion of the
effect of slippage allows electrons in one part of the
beam to interact with the radiation emitted by other
electrons from another part of the beam many radiation
wavelengths distant . If these electrons (and the inter-
mediate electrons) have evolved identically we retain the
s.s . picture of evolution . If, however, they have not
evolved identically (for example if they evolved at the
trailing edge of the electron pulse into which no radia-
tion is propagating) then there is no s.s . evolution and a
different evolution of both electrons/ radiation is ex-
pected. Thus type of evolution leads to superradiant
processes where the intensity of the radiation scales as
né . The coupled Maxwell-Lorentz equations now take
on a partial differential form :

aa(z,, z2) = (sin( 0(z,, zj +$(z� zJ)),	(8)az,

z2)

= -2a(z� z2) srn(9i (z� z2) + 'P(z� z2)) .

	

(10)

We refer the reader to ref. [3] for further discussion
and method of numerical solution of this system of
equations and to ref . [4] for solutions of the linearised
system .

The fundamental parameter governing the effects of
slippage between the electron/radiation in the high-gain
FEL is the "cooperation length", 1., which may be
defined as the distance a photon will travel with respect to
a resonant electron to one gain length . A gain length is
the distance corresponding to the dimensionless dis-
tance through the wiggler of z = 1. The cooperation
length is then the minimum distance between which
electrons may interact cooperatively within the beam.
The cooperation length is easily calculated from the
definition of z:

whereN is the number of wiggler periods. The number
of wiggler periods required to produce a slippage of one

cooperation length is then NN,, = 1/41rp . From the reso-
nance condition follows

lc_ XN_ = X/4Trp .

We define electron pulses to be long or short with
respect to the cooperation length . For short electron
pulses we are in the regime of weak superradiant phe-
nomena where there is no s.s . evolution and the radia-
tion intensities scale as né (as opposed to n" in the
s.s.) . For long electron pulses we may have both s.s . and
superradiant effects . The superradiance arises from the
radiation emitted by the trailing region of the electron
pulse (which has short pulse dynamics), which, we hy-
pothesise, is subsequently amplified on propagating
through the electron pulse to produce spikes of strong
superradiance with peak intensities much greater than
the saturated s.s . value and which scale as n2 . We now
use the movies to look at both short- and long-pulse
evolution .

The first of the pulse movies, M11, shows a typical
short-pulse evolution of the radiation intensity with
parameters
length of electron pulse (in units of radiation wave-

length) = 3;
total z of wiggler = 30.0 ;
number of wiggler periods _-_ 180;
initial dimensionless intensity aô = 10-2 .

The movie shows a window traveling at velocity c of
the radiation. At the top of the window we show the
relative position and dimensions of the electron pulse
(the x-axis is in units of radiation wavelength) . As the
velocity of the electrons vs < c, the electron pulse is seen
to slip relative to the radiation window from right to
left. As the electron pulse slips, the radiation emitted by
the pulse escapes and propagates in vacuum . It is clear
that the maximum distance in which the radiation may
interact with the electron pulse is the slippage distance
through the pulse, and this corresponds to an interac-
tion length 2 < 1 as the length of the electron pulse is
smaller than 1. . Thus there are no cooperative effects
within the electron pulse and the electrons effectively
radiate spontaneously, but coherently, and without any
saturation mechanism - if we increase the length of the
wiggler the electron pulse continues to radiate at the
average electron spontaneous frequency. The radiation
intensity scales as n 2 and with peak intensities less than
the s.s . saturated intensity, hence we term this type of
dynamics "weak superradiance" .

In the next movie, M12, we show a similar short-pulse
evolution in more detail . The form is the same as that of
M7 with the additional top left-hand image of the
electron pulse in a frame traveling at the resonant
electron velocity . The radiation intensity is plotted as it
escapes from the pulse. The blue region of the electron
pulse is the position within the pulse at which all other
quantities in the movie are plotted. The saliant points to
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notice are that the electrons are not trapped by the
separatrix and continue to fall m phase space. Also note
that the quantity a2( z� z2) + (p(zt, z2)) is no longer a
conserved quantity as it is in the s.s. [3] .
We now look at the evolution of radiation and

electrons in the long pulse limit. We show two sets of
four movies : M13-MI6 and M17-M20. The first set is
for zero detuning of the electrons and the other set for
detuned electrons such that 6 > S T , i .e, the electrons are
outward the exponential instability regime of the s.s . .
Each set is shown in the following order:
a) radiation intensity m c velocity window,
b) radiation phase, (p, in c velocity window,
c) electron phase-space evolution,
d) general overview movie.
The parameters common to both sets were :
length of electron pulse (in units of radiation wave-

length) = 100 ;
total z of wiggler = 30.0 ;
number of wiggler periods = 100;
initial dimensionless intensity aô = 10-2 .

We begin with the first set of four for zero electron
detuning . We see in M13 that as the electron pulse/
radiation evolves, it is clear there are three distinct
regions of evolution : the radiation which propagates
forward out of the electron pulse into vacuum ; the flat
region whose evolution is that of the s.s . ; and the
slippage region where there is no s.s . evolution . It is in
the latter region in which we see the evolution of the
spiking which we have defined as strong superradiance.

In order to better understand this spiking mecha-
nism, it is instructive to look at the phase evolution of
the radiation (M14). We use the same movie format as
the previous and plot the phase of the radiation in the
linuts 0 < o _< 2,rr . As discussed in the previous section
we observe the monotonically increasing phase in the
s.s . region . Note, however, the phase evolution in the
slippage region . As the electrons enter this region from
the s.s. they experience a radiation field whose phase is
increasing at a rate greater than that of the s.s . . We have
already seen that this increase in the radiation phase
corresponds to a lower frequency of radiation, implying
a type of self-tapering of the radiation frequency in the
slippage region .

This phase mechanism may be seen in the next
movie, M15, as the increase in the separatrix drift
velocity to the left as the electrons enter the slippage
region from the s.s . at z = 10.0 . Note also the large
increase in the separatrix height as the electrons pass
through the spike. After passing through the spike the
separatnx decreases and the electrons become de-
trapped.
A general overview of the above processes is shown

in the next movie, M16. Note the nonconservation of
the quantity a 2 (zi, z2) + <P(zr, z2)) once the electrons
have left the s.s . and entered the slippage region .

Finally we show the same set of movies as the last
four but with S = 2.0 (> ST).

We see from the first movie, M17, that there is now
no s.s .-type evolution of the field intensity as the elec-
trons are detuned above the exponential threshold .
Notice, however, the growth of the large spike in the
slippage region. The fact that this spiking exists above
the detuning threshold of the s.s . and its intensity scales
as n2 implies that this is a type of exponential instabil-
ity distinct from that of the s.s.

As with the previous resonant case the clue to the
spiking mechanism lies in the evolution of the radiation
phase, which is shown in M18.

As expected from the s.s . results from the previous
section we see that the phase is decreasing in the s.s .
(flat) region of evolution . In the slippage region the
electrons see a further decreasing phase due to the
spatial profile of the phase. This further decrease is
equivalent to an increase in the radiation frequency -
the electrons can then become resonant with the radia-
tion leading to the exponentially growing field .

This decreasing phase is seen clearly in the electron
phase-space movie M19, where on entering the slippage
region the radiation separatrix moves more rapidly to
the right allowing the radiation to trap the electrons
within the separatrix . Again thus process is a type of
self-tapering of the radiation field - this time to a
higher frequency to allow resonance with the electrons.
A summary of the detuned case is shown in the last

movie, M20.

5. Conclusions
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We have tried in this article to give an intuitive
"feel" for the microscopic gain mechanisms in a high-
gain FEL by using movie representations of the numeri-
cal solutions to the 1D FEL equations.

It is clear that the phase evolution of the radiation
field is crucial to the understanding of both the single-
particle, steady-state and superradiant gain mecha-
nisms.

In the superradiant regime the extra degree of free-
dom introduced by the relative slippage of the electron/
radiation pulses allows a "self-tapering" of the radia-
tion field . This self-tapering is seen over the spiked
regions of the radiation pulses in strong superradiant
phenomena.

6. Video ordering

In order to obtain a video of the movies described in
thus paper, please send a blank VHS videocassette to the
authors, with the full return address within six months
of the publication date of these Proceedings .
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