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Abstract—Pansharpening is a very debated spatio-spectral
fusion problem. It refers to the fusion of a high spatial resolution
panchromatic (PAN) image with a lower spatial but higher
spectral resolution multispectral (LRMS) image in order to
obtain an image with high resolution in both the domains.
In this paper, we propose a novel variational optimization-
based (VO) approach to address this issue incorporating the
outcome of a deep convolutional neural network (DCNN). This
solution can take advantages of both the paradigms. On one
hand, higher performance can be expected introducing machine
learning methods based on the training by examples philosophy
into VO approaches. On other hand, the combination of VO
techniques with DCNNs can aid the generalization ability of
these latter. In particular, we formulate a `2-based proximal
deep injection term to evaluate the distance between the DCNN
outcome and the desired high spatial resolution multispectral
image. This represents the regularization term for our VO
model. Furthermore, a new data fitting term measuring the
spatial fidelity is proposed. Finally, the proposed convex VO
problem is efficiently solved by exploiting the framework of the
alternating direction method of multipliers, thus guaranteeing
the convergence of the algorithm. Extensive experiments both
on simulated and real datasets demonstrate that the proposed
approach can outperform state-of-the-art spatio-spectral fusion
methods, even showing a significant generalization ability. Please
find the project page: https://liangjiandeng.github.io/Projects
Res/DMPIF 2020jstars.html.

Index Terms—Variational Approaches, Deep Convolutional
Neural Networks, Dynamic Gradient Sparsity, Gradient Intensity
Similarity, Pansharpening, Image Fusion, Remote Sensing.

I. INTRODUCTION

M ultispectral (MS) remote sensing images have become
widely exploited in many fields, such as environmental

monitoring, agriculture and classification. However, due to
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Fig. 1. Top row: the schematic of the PAN/MS fusion on a simulated Rio
data (source: WorldView-3). Bottom row: fused images by the MTF-GLP-
HPM [1], the PanNet [2] and the proposed method, respectively. The red,
green and blue channels of the shown images are extracted from the 5-th,
the 3-rd and the 2-nd bands, respectively. Note that, the HRMS image X
displayed in the top row is the ground-truth (GT) image.

constraints on the signal-to-noise ratio, many existing remote
sensing sensors, e.g., IKONOS, Pléiades, WorldView-2 and
WorldView-3, have to make a fundamental tradeoff between
the spatial and spectral resolutions [3], [4], [5], [6], [7], [8].
Generally, they almost simultaneously capture two images of
the same scene in pursuit of richer information, including a
panchromatic (PAN) image with a higher spatial resolution
but a unique spectral channel and an MS image with a
lower spatial resolution but a better spectral content. The
PAN/MS fusion (the so-called pansharpening) is committed to
integrating the spatial details contained in the PAN image and
the spectral information contained in the low spatial resolution
MS (LRMS) image to reconstruct a high spatial resolution
MS (HRMS) image. For the convenience of understanding
intuitively, the schematic of the PAN/MS fusion, as well as
several fused images, are presented in Fig. 1.

Spatio-spectral image fusion has aroused widespread inter-
est in academia and numerous methods have been proposed
so far [9], [10], [11], [12], [13], [14], [15]. Most of them can
be generally classified into four major categories [16], [17]:
1) Component substitution (CS) methods; 2) Multi-resolution
analysis (MRA) methods; 3) Variational optimization (VO)
approaches; and 4) Machine learning (ML) techniques.
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The CS methods are the earliest and the most widely used
methods due to their extremely low computational cost [17].
The principle of such an approach is the substitution of the
spatial component, which is derived by spectrally transforming
the LRMS image, with the PAN image. Among them, the
intensity-hue-saturation (IHS) [18], the principal component
analysis (PCA) [19], the Brovey transform [20], the Gram-
Schmidt (GS) spectral sharpening [21] and the partial re-
placement adaptive component substitution (PRACS) [22] are
very representative. These methods project first the upsampled
LRMS images (LMS) into a new transformation domain, then
replace the projected spatial component with the PAN image
and, finally, perform an inverse projection to get the HRMS
image. Compared to other approaches, the CS methods have
a reduced computational burden. However, they usually cause
severe spectral distortion [23].

In addition to CS methods, MRA approaches are other
popular fusion techniques, which inject the spatial structure
information extracted from the PAN image via spatial filtering
into the LMS image in order to get the HRMS image. Powerful
instances belonging to this class are the smoothing filter-based
intensity modulation (SFIM) [24], the modulation transfer
function generalized laplacian pyramid with full resolution
regression-based injection model (GLP-Reg-FS) [25], and the
modulation transfer function generalized Laplacian Pyramid
with high-pass modulation injection model (MTF-GLP-HPM)
[1]. The fused images provided by MRA approaches mainly
suffer from spatial distortion, whereas spectral information is
usually well-preserved. In general, MRA and CS methods can
obtain relatively satisfactory fusion results. Yet, despite the
advantages, neither of them establish an explicitly relational
model between the observed and the desired image, which
could reduce performance on certain data [17].

Different from the CS and MRA methods, the VO methods
describe an exact link among the LRMS image, the PAN
image, and the ideal HRMS image based on some observations
and assumptions, thus formulating an energy function. Then,
the desired HRMS image can be obtained by regularizing
this energy function and solving an optimization problem. For
instance, in [4], Fu et al. consider the gradient difference of the
PAN image and the HRMS image in different local patches and
bands rather than global constraints incorporating the spatial
preservation into the proposed variational model. Generally
speaking, VO methods can theoretically produce excellent
results, both spatially and spectrally, with a solid mathematical
foundation [17]. Unfortunately, they usually generate many
unpredictable deviations once some unreasonable assumptions
are made. Besides, the misalignment among spectral bands is
also a tricky issue, which can cause ghosting effects. Although
some algorithms with a high registration capability have been
proposed, e.g., [26], the fused image is usually formed by low
quality high frequency structures.

The ML methods have been proposed in recent years. In
particular, deep convolutional neural networks (DCNNs) show
an excellent capability for nonlinear mapping learning and
feature extraction [17], [27], see, e.g., [2], [28], [29], [30],
[31]. These methods can perfectly compensate the deficiencies
of the VO methods about nonlinear mapping and managing

misalignments getting state-of-the-art performance [32]. For
these methods, training the network to map information is a
necessary step before the fusion step. Afterwards, the fused
image can be obtained by inputting the LRMS image and PAN
image into the learned network. However, they are often over-
dependent on the training data [4], so that the generalization
of many DCNN methods is limited by their training data, i.e.,
they have excellent performance only on data similar to the
ones in the training set. In particular, because of the network
parameters are fixed once the training is finished, the accuracy
of DCNN-based methods cannot be further improved [4].

In this paper, we propose a novel VO approach for fusing
MS and PAN images using the proximal deep injection (PDI),
i.e., formulating the output of a DCNN as the proximal term
and integrating it into the proposed variational model for
further optimization. Specifically, the proposed model consists
of two data fitting terms (the spectral and the spatial ones) and
a DCNN-based proximal term, namely the PDI. The spectral
fidelity is imposed on the LRMS image and enables the desired
image to adequately receive spectral information. The spatial
counterpart is imposed by exploiting a `2,1 norm encouraging
dynamic gradient sparsity and group sparsity simultaneously,
i.e. the group dynamic gradient sparsity (GDGS) [26], between
the desired image and a reference PAN (RePAN) image.
Unlike the original work [26] that uses as RePAN a simple
replication of the PAN image along the spectral dimension, the
proposed RePAN is relied upon both the LRMS and the PAN
image in order to take into account of the spectral content of
the spatial details. This leads to the proposed gradient intensity
similarity constraints (GISC). Finally, we exploit the prior
knowledge provided by a DCNN into the proposed variational
model through the PDI that represents a regularization term
in our framework. This new variational optimization problem
is solved by designing an alternating direction method of
multipliers (ADMM)-based algorithm, which is guaranteed
to efficiently converge to the global minimum. Extensive
experiments both on simulated and real datasets confirm the
superiority of the proposed VO approach compared to other
state-of-the-art methods. The flowchart of the proposed model
is provided in Fig. 2.

The contributions of this paper are summed up as follows:
• The concept of PDI is proposed merging the outcome

of a DCNN-based method with a VO approach. PDI
represents a regularization term that can leverage on
the output of any DCNN to improve the results in the
proposed VO framework. Thus, this combination is able
to complement the benefits of the DCNNs improving
their generalization ability for the spatio-spectral fusion
problem.

• A new spatial fidelity term is proposed exploiting a
`2,1 norm encouraging simultaneously dynamic gradient
sparsity and group sparsity between the desired image
and the properly designed RePAN image.

• A new algorithm based on ADMM is presented to solve
the proposed optimization problem based on a classical
spectral fidelity term and the proposed spatial fidelity and
regularization terms.

• A broad experimental analysis both on simulated and real
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Fig. 2. The flowchart of our model. The GISC denotes the operation as in (5)-(6), see Sec. III-B. The acronym DCNN stands for deep convolutional neural
network.

datasets is conducted to assess the performance of the
proposed VO approach in different scenarios and with
different acquisition devices. Furthermore, a deep robust-
ness analysis about some crucial parameters has also been
provided to the readers together with an ablation study
and an assessment of the generalization abilities of the
proposed approach.

The remaining of the paper is organized as follows. In
Section II, the main notation and motivations will be briefly
introduced. The proposed VO model is described in Sec-
tion III. Afterwards, the solution of the proposed VO problem
is provided in Section IV. In Section V, the experimental
analysis is shown comparing the proposed method with some
state-of-the-art approaches. Finally, the conclusion is drawn in
Section VI.

II. NOTATION AND MOTIVATIONS

This section is devoted to the presentation of the notation
and the motivations under the developing of the proposed
method.

A. Notation

Before introducing the proposed model, it is necessary to
state the notation used in this paper. In particular, scalars
are denoted by lowercase letters, uppercase and lowercase
bold letters denote matrices and vectors, respectively, and
calligraphic letters denote tensor. Moreover, the main symbols
and acronyms used in this paper are listed below:
• High-resolution multispectral image (HRMS): the desired

HRMS image X ∈ RH×W×S with S spectral images
Xi ∈ RH×W , i = 1, 2, . . . , S.

• Low-resolution multispectral image (LRMS): the ob-
served LRMS image Y ∈ Rh×w×S with S spectral
images Yi ∈ Rh×w, i = 1, 2, . . . S. In particular,
h × r = H and w × r = W , where r denotes the scale
factor between Xi and Yi,

• Panchromatic image (PAN): the observed single channel
PAN image P ∈ RH×W .

• Reference panchromatic image (RePAN): the PAN image
P̃ ∈ RH×W×S used as reference for the spatial fidelity
term in the proposed model.

B. Motivations

DCNN methods have recently been attracted attention for
their ability in nonlinear mapping yielding competitive results
even for image fusion. However, they have also been shown
some drawbacks, as analyzed in Section I, because of the huge
data dependence and the use of network parameters that can be
hardly adjusted on data very different from the ones shown in
the training phase. Therefore, an optimization strategy needs
to be developed to compensate for these shortcomings and to
further improve the performance. For this reason, we propose
the concept of PDI, aiming to introduce the output of a
DCNN-based method into a VO framework. The PDI term
establishes a relationship between this output and the desired
HRMS image, thus transferring DCNNs into a variational
fusion framework.

Furthermore, there is a need to complete the variational
model including the data fitting terms relating the spectral and
the spatial data in input with the desired and unknown HRMS
data. In that model, the PDI plays the role of a regularization
term avoiding the use of other additional prior information
often used in the related literature, see, e.g., sparse priors [33]
and low-rank priors [34]. Having a look at most of the existing
VO methods, the design of the spectral fidelity term is almost
the same for all the techniques. Instead, a crucial choice
regards the selection of the spatial fidelity data fitting term
accounting for the spatial content into the PAN image. The
difficulty is to model the indirect and nonlinear relationship
between the PAN data and the unknown HRMS image. Hence,
an accurate design of the spatial fidelity term for VO models
can significantly improve the fusion outcomes, as shown in
this work.
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III. THE PROPOSED MODEL

In this section, the adopted model is presented. The general
framework for spatio-spectral fusion is as follows

min
X

fspec(X ,Y) + λfspat(X ,P) + αfPDI(X ,Xnet), (1)

where fspec(X ,Y) and fspat(X ,P) are the spectral and spatial
fidelity terms, respectively, fPDI(X ,Xnet), i.e. the PDI term,
plays the role of a regularization term, Xnet ∈ RH×W×S
represents the output of a generic DCNN method, λ is a
positive regularization parameter, and α is a crucial parameter
that links the VO model and the output of a DCNN. For the
convenience of discussion, (1) can be rewritten in matrix form
as

min
X

fspec(X,Y) + λfspat(X,P) + αfPDI(X,Xnet), (2)

where X, Xnet ∈ RS×HW and Y ∈ RS×hw denote the
mode-3 unfolding of X , Xnet and Y , respectively. Please refer
to [35] for more details about decompositions and applications
of tensors.

A. The Spectral Fidelity Term

Many existing fusion methods, e.g. [20], [22], [36], upsam-
ple the LRMS image and extract spectral information from
this upsampled image. However, inaccurate information could
be introduced using this simple approach, thus impacting on
the performance. Therefore, we consider in this paper the
downsampled version of the unknown HRMS image. This
operation is performed according to the point spread function
of the spaceborne sensor [37], [38] in order to design the
blurring operation. Thus, we have that

fspec(X,Y) = ‖XBS−Y‖2F , (3)

where B ∈ RHW×HW is the convolution matrix that blurs
each row of X, S ∈ RHW×hw denotes the decimation matrix
and ‖·‖F is the Frobenius norm. In particular, B is a block-
circulant-circulant-block matrix, where the periodic boundary
conditions for the rows of X are satisfied. This property for B
is at the basis of many fast deblurring algorithms [39], [40],
[41]. In this work, we do not estimate the kernel B, even in
the case of real data. A classical assumption is to have filters
matched with the MS sensor’s modulation transfer function
(MTF) to extract spatial details, which is also the way used in
the work. Usually, these filters are set exploiting some prior
information, as the gains at Nyquist frequency. Obviously, for
some reasons (e.g., aging) these values could be slightly wrong
and for these reasons some recent research has been focused
on this issue, see e.g., [42], [43]. Anyway, the estimation of
the convolutional blur B is out-of-scope of this paper, but it
can surely deserve future developments to slightly improve the
performance in particular at full resolution. More details about
the matrices B and S can be found in [37], [38], [41], [44],
[45].

The spectral fidelity term establishes a direct relationship
between X and Y. Thus, we can map the whole spectral
information of Y in X. Despite this, spatial structures are
still missing for the ill-conditioning of S. Thus, this term

alone is far from being able to reconstruct the missing spatial
information.

B. The Proposed Spatial Fidelity Term

It is well-known that the distribution of materials is locally
continuous, which tends to generate piecewise smooth data.
Therefore, the gradient of the desired HRMS image should be
sparse and the non-zero elements correspond to the positions
of the boundaries of the spatial structures. Besides, since the
PAN image and the LRMS image are captured over the same
scene, the boundary locations of the desired HRMS image
should be theoretically unified with the ones of the PAN image
and the same properties should be present across all the bands
of the HRMS image. Thus, this connection can be established
on the gradient domain. Chen et al. [26] assign the pixels with
the same spatial position across all the channels of X into one
group and constrain their sparsity using `2,1 norm defined as
follows

‖∇X −∇P‖2,1 =

=
∑

i

∑
j

√∑
k

∑
q

(∇qXi,j,k −∇qPi,j,k)
2 , (4)

where ∇q , q = 1, 2, denote the forward finite difference
operators on the first and second coordinates, respectively, and
P indicates the expansion of P by duplicating it along the S
bands. The `2,1 norm constrains the sparsity of each band
of X enforcing the same position of the structures as in the
PAN image. Furthermore, the grouping improves the spectral
correlation of the structures.

However, some shortcomings still exist when P is used. In
view of this, we propose a novel concept of gradient intensity
similarity constraints (GISC). In particular, it is worth to be
pointed out that the spectral response of any material to various
wavelengths is different. Hence, the gradient intensities of
the desired HRMS image are not usually constant along the
spectral bands, thus presenting a spectral content. However,
simply replicating the PAN image over the bands does not help
to support the last statement. Indeed, having a look at (4), we
can note that both the position and the gradient intensity of
X are forced to the P ones, thus impacting on the spatial
optimization. Therefore, a pivotal improvement making the
gradient intensity structures of P as similar as possible to
the desired ones (i.e., the ones of the target HRMS image) is
advisable.

The variation of the gradient intensity means along the
spectral bands is analyzed in Fig. 3. In particular, this figure
shows the mean intensity both on the original spatial and the
gradient domains on the simulated Rio dataset captured by the
WorldView-3 sensor. The analysis is conducted both on the
reference (high spatial resolution) MS image, see Fig. 3(a),
and the LRMS image, see Fig. 3(b). From Fig. 3(a), it is clear
to see that there is a positive correlation between the spatial
and the gradient domain curves. Therefore, we can reasonably
conclude that the desired gradient intensity structures can be
reconstructed along the spectral bands by exploiting the means
of the spectral bands in the spatial domain. Unfortunately,
the reference (ground-truth, GT) HRMS image is unavailable
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Fig. 3. Mean intensity on the spatial and the gradient domains for (a) the
ground-truth (reference) image and (b) the corresponding LRMS image on
the simulated Rio WorldView-3 dataset.

(because it is the goal of the fusion process). Thus, in Fig. 3(b),
the same analysis as in Fig. 3(a) is performed on the available
LRMS image. The same trend as in Fig. 3(a) can be pointed
out, thus suggesting the use of the means along the spectral
bands of the LRMS image Y to drive the reconstruction of
the desired gradient intensity structures. As a result, we can
adjust the spatial intensity mean of the i-th band of P (say
it Pi) to be equal to that of Yi, thus capturing the desired
gradient intensity structures. The improved RePAN image P̃
can be obtained as

P̃ = ψ(Y,P), (5)

where ψ represents a linear definition operator defined as
follows

P̃i :=
M(Yi)

M(Pi)
P, i = 1, 2, . . . , S., (6)

where P̃i denotes the i-th band of the P̃ and M· represents
the mean operator.

Based on the analysis above, the GDGS term with GISC
can be employed to enhance the spatial resolution of X.
Combining (5)-(6) with (4), the spatial fidelity term in matrix
form can be written as

fspat(X, P̃) =
∥∥∥∇X−∇P̃

∥∥∥
2,1
, (7)

where P̃ ∈ RS×HW is the mode-3 unfolding of P̃ .
The major difference between (7) and (4) proposed in [26]

is the used RePAN image. In particular, the proposed RePAN
image can transfer many more similar gradient intensity struc-
tures than the solution proposed in [26], thus achieving higher
performance. The effects of the new proposed spatial fidelity
term are assessed in Section V.

C. The PDI Term

As stated in Section II-B, we introduce the output of a
DCNN-based method into the proposed VO model through
the PDI term. Hence, we have that

fPDI(X,Xnet) = ‖X−Xnet‖2F . (8)

Therefore, the final optimization model can be formulated
as

min
X
‖XBS−Y‖2F + λ

∥∥∥∇X−∇P̃
∥∥∥
2,1

+ α ‖X−Xnet‖2F .
(9)

The proposed model explores the available spatial and
spectral information using the two data fitting terms. Fur-
thermore, with the PDI term viewed as a regularization, the
prior information acquired by any DCNN, see Section V for
details, through the training phase, is incorporating into the
VO approach improving the performance.

The objective function (9) is convex but non-smooth, which
fails to generate the derivative with respect to X as directly
as in [37], [44]. Therefore, we propose in the next section a
new ADMM-based algorithm to solve it in an efficient way.

IV. THE PROPOSED ALGORITHM

The proposed model can be solved by exploiting the
ADMM framework [46], [47], [48], [49], which separates
the Frobenius norm and `2,1 norm into two independent
subproblems that have closed-form and iterative solutions,
respectively. In our model, we can rewrite (9) as an equivalent
constrained problem through introducing the auxiliary variable
W = X− P̃, namely, we have that

min
X,W

‖XBS−Y‖2F +λ ‖∇W‖2,1 + α ‖X−Xnet‖2F

s.t. W = X− P̃.
(10)

The augmented Lagrangian function of the constrained
model (10) can be expressed as

Lη(X,W,Θ) = ‖XBS−Y‖2F + λ ‖∇W‖2,1 + α ‖X−Xnet‖2F

+
η

2

∥∥∥∥X− P̃−W +
Θ

η

∥∥∥∥2
F

+ const,

(11)

where Θ denotes the Lagrange multiplier, η > 0 is a penalty
parameter, and const represents a generic constant. After-
wards, the minimization problem (11) can be solved iteratively
and alternatively via updating the following three simpler
subproblems:

1) The X-subproblem can be accurately updated by
solving the following function:

Xk+1 = arg min
X

‖XBS−Y‖2F + α ‖X−Xnet‖2F

+
η

2

∥∥∥∥X− P̃−Wk +
Θk

η

∥∥∥∥2
F

,

(12)

which is a least squares problem and has the following
closed-form solution,

Xk+1 = ZkH−1, (13)

where

Zk = ηP̃ + ηWk −Θk + 2Y(BS)
T

+ 2αXnet, (14)

H = 2BS(BS)
T

+ (2α+ η)I. (15)

and ·T is the transpose operator.
It is worth to be remarked that the matrix BS(BS)

T

is semi-positive, and the identity matrix I is positive,
hence, the matrix H is invertible.
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2) The W-subproblem can be updated by minimizing the
following problem:

Wk+1 = arg min
W

η

2

∥∥∥∥Xk+1 − P̃−W +
Θk

η

∥∥∥∥2
F

+ λ ‖∇W‖2,1 .
(16)

Defining the following intermediate variable

Tk = Xk+1 − P̃ +
Θk

η
, (17)

the problem (16) can be rewritten as

Wk+1 = arg min
W

η

2

∥∥W −Tk
∥∥2
F

+ λ ‖∇W‖2,1 .
(18)

The W-subproblem (18) is well-known as the vectorial
total variation (VTV) denoising problem [50], [51].
Different from the X-subproblem, it has no closed-form
solution. For the purpose of solving this subproblem
more conveniently, the W, Tk and Θk are now re-
shaped to the tensors W , T k and Θk ∈ RH×W×S ,
respectively, and theW-subproblem can be solved by the
VTV denoising algorithm [51] accelerated by the FISTA
framework [52]. We follow the previous work [52] using
similar symbols without causing confusion.
Assuming three third-order tensors R ∈ R(H−1)×W×S

and S ∈ RH×(W−1)×S and N ∈ RH×W×S , a linear
operator Γ with respect to R, S is defined as

Γ (R,S)i,j,k = Ri,j,k −Ri−1,j,k + Si,j,k − Si,j−1,k ,
(19)

where i = 1, 2, . . . ,H , j = 1, 2, . . . ,W and k =
1, 2, . . . , S. In particular, all the variables defined in (19)
have a zero padding boundary, e.g., R0,j,k = 0 and
RH,j,k = 0. The inverse linear operation corresponding
to Γ is defined as

ΓT (N ) := (R,S) , (20)

where

Ri,j,k = Ni,j,k −Ni+1,j,k, Si,j,k = Ni,j,k −Ni,j+1,k.
(21)

In addition, the projection operator P utilized to force∑S
k=1

(
R2
i,j,k + S2i,j,k

)
≤ 1, |Ri,W,k| ≤ 1 and

|SH,j,k| ≤ 1 is employed to constrain the fused image
to be in a given set. More details can be found in [53].
Based on the above notations and definitions, we can
summarize the solution of the W-subproblem in Algo-
rithm 1. Note that, we need to re-unfold the solution
Wk+1 into a matrix Wk+1 along the third dimension
after executing Algorithm 1.

3) According to the ADMM framework, the Lagrangian
multiplier Θ can be updated by

Θk+1 = Θk + η
(
Xk+1 − P̃−Wk+1

)
. (22)

The stopping criterion of the proposed algorithm is based
on the relative change (relcha) between two successive fused

Algorithm 1 Algorithm for updating W
Input:

(
U1,V1

)
=
(
R0,S0

)
=
(
0(H−1)×W×S ,0H×(W−1)×S

)
,

η, λ, T k = X k+1 − P̃ + Θk

η
, t1 = 1.

1: for p = 1 to maxitertion do
2: (Rp,Sp) = P

[
(Up,Vp) + η

8λ
ΓT
(
T k − λ

η
Γ (Up,Vp)

)]
3: tp+1 =

1+
√

1+4(tp)2

2

4:
(
Up+1,Vp+1

)
= (Rp,Sp)+ tp−1

tp+1

(
Rp −Rp−1,Sp − Sp−1

)
5: end for
Output: Wk+1 = T k − λ

ηΓ (Rp,Sp)

Algorithm 2 The ADMM-based algorithm for the proposed
model (9).
Input: LRMS image Y, PAN image P, proximal image Xnet,

λ, α, η, r, pmit, kmit.
Initialization: X0 = Φ(Y, r),W0 = Θ0 = 0

1: while relcha > ε and k < kmit do
2: Generate P̃ via (5) - (6).
3: Update X via (13) - (15).
4: Update W via Algorithm 1.
5: Update Lagrange multiplier Θ via (22).
6: end while
Output: Fused HRMS image X

images. In particular, this latter should be less than a tolerance
value, ε, i.e.,

relcha =
∥∥Xk+1 −Xk

∥∥
F
/
∥∥Xk

∥∥
F
< ε. (23)

The proposed algorithm to solve the problem in (9) is
summarized in Algorithm 2. The convergence of the proposed
iterative approach is guaranteed [46]. In Algorithm 2, pmit
and kmit are the maximum iterations of the inner and the
outer layers, and Φ indicates the upsampling operation using
bicubic interpolation.

V. EXPERIMENTAL RESULTS

This section is devoted to the comparison between the
proposed method and some state-of-the-art approaches using
several datasets acquired by different sensors. A true color
representation is selected for the qualitative analysis of the
fused results. Furthermore, all the methods are run in MAT-
LAB (R2016a) on a computer of 16Gb RAM and Intel(R)
Core(TM) i5-4590 CPU: @3.30 GHz.

In order to assess the quality of the different methods,
some popular quality indexes are adopted. In particular, the
dimensionless global error in synthesis (ERGAS) index [54],
the spectral angle mapper (SAM) index [55], the Q2n (Q8 for
8-band datasets and Q4 for 4-band datasets) index [56], the
peak signal-to-noise ratio (PSNR), and the structural similarity
index (SSIM) [57] have been selected. According to the
statistics in [16], the first three metrics are the most widely
used in pansharpening studies. However, even the PSNR and
SSIM are widely used to evaluate the similarity between two
images in the image processing literature. The ideal values for
SAM and ERGAS are 0, for Q2n and SSIM are 1, whereas
+∞ for PSNR. Furthermore, the scale factors for all the
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datasets are 4, i.e., r = 4 and the tolerance value is set to
ε = 2 × 10−4. A deeper discussion on the parameters tuning
can be found in Section V-E.

In order to have a more compact experimental analysis,
we need to fix a specific DCNN approach that generates
the Xnet. Many state-of-the-art DCNN-based methods for
pansharpening can be found, e.g. [2], [28], [29], [30]. In
our experiments, the PanNet proposed by Yang et al. [2] is
selected to determinate the PDI term. More DCNN options
are discussed in Section V-E.

A. Datasets

In our experiments, different datasets are exploited to
demonstrate the superiority of the proposed approach. Some
datasets are freely available at the website 1. The exploited
datasets are: i) the Rio and the Tripoli datasets both captured
by the WorldView-3 sensor with an MS image with 8 spectral
bands and a PAN image at spatial resolution of 0.3 m, ii) the
WashingtonDC and the Stockholm datasets acquired by the
WorldView-2 sensor including an MS image with 8 spectral
bands and a PAN image with a spatial resolution of 0.4 m, iii)
the Toulouse dataset acquired by the IKONOS sensor over the
city of Toulouse (France) with an MS image consisting of 4
spectral bands and a PAN image at spatial resolution of 1.0 m,
and iv) the Pléiades2 dataset acquired by the Pléiades sensor
with an MS image consisting of 4 spectral bands and a PAN
with a spatial resolution of 0.5 m.

B. Benchmark

The following state-of-the-art methods are used for compar-
ison:
• EXP: MS image interpolation, using a polynomial kernel

with 23 coefficients [58].
• MTF-GLP-HPM: modulation transfer function - gen-

eralized laplacian pyramid with high pass modulation
injection model [1].

• GLP-Reg-FS: modulation transfer function - generalized
laplacian pyramid and a new full resolution regression-
based injection model [25].

• CVPR19: variational pansharpening approach with local
gradient constraint [4].

• DiCNN: pansharpening method via detail injection-based
convolutional neural networks [30].

• PanNet: a DCNN method for pansharpening [2].
It is worth to be remarked that the source codes of the

approaches into the benchmark are available either at the
website 2 or the authors’ homepages. In order to have a fair
comparison, we adjust the parameters of these methods to get
their best performance.

C. The Reduced Resolution Assessment

Reduced resolution (simulated) data are obtained according
to Wald’s protocol [59], i.e. by filtering with filters designed to

1http://www.digitalglobe.com/samples?search=Imagery
2http://openremotesensing.net/kb/codes/pansharpening/

match the MS sensor’s MTFs and decimation [23], [60]. We
consider the degraded PAN image as the input PAN image,
similarly, the original LRMS and its degraded version play
the role of the reference (ground-truth) HRMS image and the
input LRMS image, respectively.

1) The Reduced Resolution Rio Dataset: In this experiment,
λ, α, and η are empirically set to 0.011, 0.50, and 0.1,
respectively. Fig. 4 shows the visual results and the related
mean absolute error (MAE) maps for all the methods. In
Fig. 4, we clearly observe that our approach achieves excellent
performance. The traditional methods, i.e., MTF-GLP-HPM,
GLP-Reg-FS, and CVPR19, preserve the spectral information,
but loosing many spatial details. Although DiCNN and PanNet
achieve excellent results, our approach shows its superiority
obtaining a better residual map. This analysis is corroborated
by the calculation of the quality indexes reported in Table I-(a).
Our method clearly obtains the best results for all the quality
indexes.

2) The Reduced Resolution Tripoli Dataset: In this exper-
iment, the reduced resolution (simulated) Tripoli dataset is
employed to further verify the superiority of our model on
WorldView-3 data, the same parameters as for the reduced
resolution Rio experiment are exploited. Table I-(b) summa-
rizes the quantitative results showing the best performance of
the proposed approach whatever the quality index. The average
running time is also reported in Table I. The MTF-GLP-HPM
and the GLP-Reg-FS are classical approaches, thus showing
a limited computational burden. Even the PanNet and the
DiCNN, belonging to the ML class, have a reduced compu-
tational effort during the test phase. However, our approach
compared to another one in the same (VO) class, i.e., the
CVPR19, shows a reduced running time. Thus, this analysis,
computed on a patch of 256 × 256 pixels, demonstrates
that the computational burden of the proposed approach can
be considered acceptable for addressing a real image fusion
problem.

3) The Reduced Resolution WashingtonDC Dataset: In this
experiment, λ, α and η are empirically set to 0.003, 0.43, and
0.1, respectively. Fig. 5 shows the visual performance and the
corresponding MAE maps. It is clear that the proposed method
preserves details in a better way than the other methods, which
have evident spatial blurring. From the MAE maps, we can
find that only our method restores the vertical stripe structure.
In Table II-(a), the quality indexes are calculated. Our method
still outperforms the other approaches into the benchmark.

4) The Reduced Resolution Stockholm Dataset: In this
experiment, the set of the parameters is slightly adjusted. In
particular, λ and α are equal to 0.012 and = 0.44, respectively.
Instead, η is the same as in the previous test case. The
performance of all the methods are reported in Table II-(b).
Our method shows its clear superiority with respect to all the
other techniques, in particular, even compared to the PanNet
and the DiCNN. Finally, the computational analysis in Table II
is in line with the previously obtained results.

Finally, the MAEs calculated for each spectral bands of the
fused products obtained by the methods into the benchmark
are depicted in Fig. 6 for the four simulated test cases.
The horizontal lines indicate the average along the spectral
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Fig. 4. The fusion results on the reduced resolution (simulated) Rio dataset (source: WorldView-3). Top row: the visual performance of the EXP, MTF-GLP-
HPM, GLP-Reg-FS, CVPR19, DiCNN, PanNet, Proposed method, and the ground-truth (GT) image, respectively. Bottom row: the corresponding MAE maps
using the GT image as reference. For a better visualization, we doubled the intensities of the MAE maps and added 0.5.

TABLE I
QUALITY METRICS FOR ALL THE COMPARED APPROACHES ON THE REDUCED RESOLUTION (SIMULATED) RIO AND TRIPOLI DATASETS, RESPECTIVELY.

(BOLD: BEST; UNDERLINE: SECOND BEST)

Method
(a) Rio (b) Tripoli Average

ERGAS SAM Q8 PSNR SSIM ERGAS SAM Q8 PSNR SSIM time(s)
EXP 8.9481 6.3662 0.6775 29.3264 0.7872 4.8097 4.1088 0.8173 27.7309 0.7104 0.03

MTF-GLP-HPM 6.3748 5.7967 0.7996 31.0209 0.8867 2.9489 3.9725 0.9301 31.9819 0.8876 0.29
GLP-Reg-FS 6.6462 6.2046 0.7867 31.7901 0.8746 2.9339 3.8925 0.9312 31.9857 0.8900 0.38

CVPR19 7.0125 5.6664 0.7681 31.4024 0.8701 3.5465 3.8256 0.9017 30.4052 0.8515 20.26
DiCNN 3.8738 4.2262 0.8600 36.4007 0.9526 2.0734 3.1568 0.9649 34.8528 0.9390 0.22
PanNet 3.8588 4.4518 0.8643 36.3447 0.9529 2.1272 3.1887 0.9648 34.5557 0.9367 0.41

Proposed 3.6266 4.0229 0.8718 36.7143 0.9556 1.9491 3.0014 0.9694 35.1881 0.9413 4.22
Ideal value 0 0 1 +∞ 1 0 0 1 +∞ 1 -
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Fig. 5. The fusion results on the reduced resolution (simulated) WashingtonDC dataset (source: WorldView-2). Top row: the visual performance of the EXP,
MTF-GLP-HPM, GLP-Reg-FS, CVPR19, DiCNN, PanNet, Proposed method, and the ground-truth (GT) image, respectively. Bottom row: the corresponding
MAE maps using the GT image as reference. For a better visualization, we doubled the intensities of the MAE maps and added 0.5.

dimension of the MAE values for each method. The lower the
value, the better the performance. For all the test cases, it is
clear to see that the proposed approach gets the best results, i.e.
the smallest average of the band-dependent MAEs indicating
a fused image close to the reference (GT) image.

D. The Full Resolution Assessment

To corroborate the results obtained at reduced resolution,
the proposed model is tested on real dataset at full resolution,
i.e. without degrading the original MS and PAN data according
to Wald’s protocol. For these experiments, the full resolution
Tripoli and Stockholm datasets are employed. Unlike reduced
resolution (simulated) experiments, where a reference (GT)
image is available, in this case, no reference can be exploited to

assess the performance. Fortunately, metrics without reference
have been proposed in the related literature. In particular, the
quality with no reference (QNR) [61] consisting of a spectral
distortion index Dλ and a spatial distortion index Ds is often
adopted to this aim.

1) The Full Resolution Tripoli Dataset: In this experiment,
we use the same parameters as for the reduced resolution Rio
experiment, i.e., λ = 0.011, α = 0.50 and η = 0.1. Fig. 7
shows the fusion results and the MAE maps comparing the
degraded version (based on the MTF filtering [60]) of the
fused image with the original LRMS image in order to have
a quick look about the consistency of the fusion products. In
Fig. 7, we can note that the proposed model achieves similar
details compared to the PAN ones. Furthermore, from the
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TABLE II
QUALITY METRICS FOR ALL THE COMPARED APPROACHES ON THE REDUCED RESOLUTION (SIMULATED) WASHINGTONDC AND THE STOCKHOLM

DATASETS, RESPECTIVELY. (BOLD: BEST; UNDERLINE: SECOND BEST)

Method
(a) WashingtonDC (b) Stockholm Average

ERGAS SAM Q8 PSNR SSIM ERGAS SAM Q8 PSNR SSIM time(s)
EXP 6.7945 6.6693 0.7305 24.2532 0.5367 10.5392 7.6555 0.6536 24.8813 0.6398 0.03

MTF-GLP-HPM 4.4810 6.1534 0.8950 27.9970 0.8059 7.3327 6.8871 0.8339 27.8446 0.8338 0.23
GLP-Reg-FS 4.2127 5.8836 0.9090 28.5064 0.8321 7.3569 7.0824 0.8399 28.2198 0.8392 0.26

CVPR19 4.9324 5.9979 0.8651 27.1235 0.7688 8.1130 6.9643 0.7939 27.2945 0.7987 20.17
DiCNN 5.9310 7.0829 0.8200 25.4925 0.6852 6.7927 6.9590 0.8586 28.6846 0.8608 0.22
PanNet 4.0688 5.4871 0.9138 28.7873 0.8415 6.4703 6.4899 0.8657 29.1310 0.8700 0.41

Proposed 3.8175 5.2298 0.9260 29.4152 0.8562 6.2653 6.2571 0.9062 29.6430 0.8776 4.08
Ideal value 0 0 1 +∞ 1 0 0 1 +∞ 1 -
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Fig. 6. The spectral MAE curves for all the methods on the reduced resolution (simulated) datasets: (a) Rio dataset, (b) Tripoli dataset, (c) WashingtonDC
dataset, and (d) Stockholm dataset. The horizontal lines represent the average value of the MAEs calculated for all the spectral bands. The lower the value,
the better the performance.
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(a) EXP (b) MTF-GLP-HPM (c) GLP-Reg-FS (d) CVPR19 (e) DiCNN (f) PanNet (g) Proposed

Fig. 7. The fusion results on the full resolution Tripoli dataset (source: WorldView-3). Top row: the PAN image, the visual performance of all the methods:
(a) EXP, (b) MTF-GLP-HPM, (c) GLP-Reg-FS, (d) CVPR19, (e) DiCNN, (f) PanNet and (g) Proposed method. Bottom row: the MAE maps between the
degraded fusion outcome (by filtering with MTF-based filters and decimation) and the LRMS image. For a better visualization, we doubled the intensities of
the MAE maps and added 0.5.

MAEs in Figs. 7(a)-(g), we can note a good consistency of our
approach with respect to the compared methods. The metrics
Dλ, Ds and QNR are reported in Table III-(a). We can remark
that our method yields the best performance in terms of Ds
and QNR metrics making an excellent trade-off between the
spectral fidelity and the spatial enhancement.

2) The Full Resolution WashingtonDC Dataset: In this
experiment, we slightly tune the parameters λ, α and η. Thus,
the used values are λ = 0.025, α = 0.57 and η = 0.1.
The visual performance and corresponding MAE maps are
depicted in Fig. 8. Our method together with the MTF-GLP-
HPM obtain the lowest values in the related MAE maps, thus
getting generally good performance from a spectral point of

view. The CVPR19 and the GLP-Reg-FS outcomes are highly
distorted from a spatial point of view. The DiCNN and PanNet
outcomes suffer from both spatial and spectral distortions. The
quality indexes at full resolution are reported in Tab III-(b).
The GLP-Reg-FS gets the best Dλ index, whereas the proposed
method has the best performance in terms of Ds and the
overall QNR index. This means that the proposed approach
has comprehensive advantages with respect to the benchmark.

In summary, the broad experiments on datasets both at
reduced resolution (simulated) and at full resolution show
that the proposed method gets very high performance, both
qualitatively and quantitatively, with respect to the benchmark.
In particular, for the Rio and the Tripoli datasets, although the
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(a) EXP (b) MTF-GLP-HPM (c) GLP-Reg-FS (d) CVPR19 (e) DiCNN (f) PanNet (g) Proposed

Fig. 8. The fusion results on the full resolution Stockholm dataset (source: WorldView-2). Top row: the PAN image, the visual performance of all the methods:
(a) EXP, (b) MTF-GLP-HPM, (c) GLP-Reg-FS, (d) CVPR19, (e) DiCNN, (f) PanNet and (g) Proposed method. Bottom row: the MAE maps between the
degraded fusion outcome (by filtering with MTF-based filters and decimation) and the LRMS image. For a better visualization, we doubled the intensities of
the MAE maps and added 0.5.

TABLE III
QUALITY METRICS ON THE FULL RESOLUTION (A) TRIPOLI AND (B)
STOCKHOLM DATASETS. (BOLD: BEST; UNDERLINE: SECOND BEST)

Method
(a) Real Tripoli (b) Real Stockholm Average

Dλ Ds QNR Dλ Ds QNR time(s)
EXP 0.0008 0.0332 0.9660 0.0042 0.0902 0.9060 0.03

MTF-GLP-HPM 0.0130 0.0194 0.9678 0.0213 0.0216 0.9576 0.26
GLP-Reg-FS 0.0008 0.0320 0.9673 0.0018 0.0582 0.9401 0.25

CVPR19 0.0031 0.0230 0.9740 0.0103 0.0266 0.9634 20.10
DiCNN 0.0065 0.0167 0.9770 0.0283 0.0364 0.9363 0.22
PanNet 0.0039 0.0084 0.9878 0.0186 0.0155 0.9661 0.41

Proposed 0.0037 0.0048 0.9915 0.0135 0.0060 0.9806 4.93
Ideal value 0 0 1 0 0 1 -

PanNet method achieves very high performance, the proposed
approach is still able to improve them. Instead for the Wash-
ingtonDC and the Stockholm datasets, where the performance
of the PanNet is not outstanding, high performance of the pro-
posed framework is still obtained. It is worth to be remarked
that the fine-tuning of the parameters of the proposed method
on the WorldView-3 datasets can lead to better results, but a
fixed set of parameters has been selected in order to show the
robustness of the proposed method.

E. Discussion

This section is devoted to some discussions about the
proposed approach, such as the parameter tuning and the
ablation study. For the sake of brevity, all the discussions
(except for the generalization analysis) are related to the
reduced resolution Rio dataset exploiting the main quality
metrics, i.e., the EGRAS, the SAM, and the overall quality
index Q8.

1) The Parameter Tuning: Five parameters are related to
our approach, i.e., λ, α, η, pmit and kmit. In particular,
kmit is used to prevent the algorithm from iterating endlessly,
thus it can be appropriately set to a high number. Fig. 9
depicts the performance varying the other parameters. All the
parameters are fixed except for the parameter that we want

to analyze. Figs. 9(a)-(b) show that only slight changes can
happen varying both λ and α demonstrating the robustness of
our method with respect to these parameters. Fig. 9(c) shows
that the proposed method is almost insensitive to the penalty
parameter η in the adopted range of values 10−2 ≤ η ≤ 101.
Finally, Fig. 9(d) depicts a sharply convergence by increasing
the number of the inner iterations p. However, the higher the
number of iterations, the higher computational burden. For this
reason, we set pmit to 10 in our study considering the balance
between computation and performance.

2) The Ablation Study: In order to have deeper insights
about our approach, we conducted an ablation study on the
proposed model generating the following three corresponding
sub-models,

min
X

∥∥∥∇P̃−∇X
∥∥∥
2,1

+ α ‖Xnet −X‖2F , (24)

min
X
‖XBS−Y‖2F + α ‖Xnet −X‖2F , (25)

and
min
X
‖XBS−Y‖2F + λ

∥∥∥∇P̃−∇X
∥∥∥
2,1
. (26)

Based on these models, we design the algorithm, again,
performing the tests using optimal parameters for a fair
comparison. The performance are reported in Table IV. We can
observe that the model (25) is the second best approach (after
the proposed one), even obtaining optimal spectral features.
Furthermore, the fusion performance of the model (26) is
competitive to that of the traditional methods in Tab I-(a).
Finally, the advantages in using the PDI term can be also
assessed by having a look at the performance of the PanNet,
which is used to determinate the PDI term of the proposed
approach.

3) The Generalization Analysis: In order to assess the abil-
ity of generalization of the proposed approach, we performed
additional experiments using both an IKONOS dataset and a
Pléiades dataset. In these tests, the PanNet is trained on the
2-nd (blue), the 3-rd (green), the 5-th (red) and the 7-th (near
infra-red) bands of a WorldView-3 dataset, thus considering
the spectral responses of both the IKONOS and the Pléiades
sensors and the WorldView-3 ones. The fusion results are
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depicted in Fig. 10 and the quantitative outcomes are reported
in Table V. It is clear to show that the proposed method
achieves the best performance in all the cases and by using all
the indexes. Thus, the generalization ability of the proposed
approach is clearly demonstrated with respect to an approach
based on a training by example philosophy as the PanNet (i.e.,
a DCNN).

4) The GISC Effect: In order to assess the improvement in
using the proposed GISC, we show in Fig. 12 the curves over
the outer iterations of the quality indexes ERGAS, SAM, and
Q8 using P̃ and P , i.e., with and without GISC, respectively.
The advantages in using the proposed approach based on P̃
are clear. Thus, the rationale of using the proposed term relied
upon P̃ is experimentally proved.

5) The Xnet Generalization: In this section, the output
of the PanNet has been used to feed the PDI term showing
high performance. However, all the fused results coming from
ML approaches can be theoretically used in the proposed VO
framework. This is based on the idea that in the output of an
ML-based approach the prior knowledge learned during the
training phase is present. Thus, this latter can be exploited by
the proposed approach. In order to corroborate the last state-
ment, the proposed VO framework is also used with the output
of the DiCNN method. We call this fusion result DiCNN-based
from hereon. The quantitative results are reported in Table VI
showing that both the approaches based on two different PDI
(regularization) terms achieve higher performance than the
DCNN-based ones. Furthermore, the two outcomes obtained
by feeding our framework with different prior information
have comparable performance. This proves the possibility to
generalize with respect to various proximal DCNNs.

6) The Algorithm Relation: It is worth to be noted that the
sub-problem of X in Section IV can be encoded based on
diagonalizing matrix B and exploiting the characteristics of S
for higher computational efficiency [62], [63], [64]. In [41],
Wei et al. proposed a new methodology, named FUSE 3, via
analytically and efficiently solving a Sylvester equation. Start-
ing from this consideration, a comparison with the approach
in [41] should be performed both from a performance and
a computational points of view. Fig. 11 and Tab VII report
the results. As can be seen from the pan-sharpened products
and the quality indexes, the fused image provided by FUSE
demonstrates a better quality than almost all the traditional
methods. However, some flaws, e.g. a clear spectral distortion
which may be caused by a biased estimate of the spectral
response function, are evident. Therefore, our scheme is still
very promising.

VI. CONCLUSIONS

In this paper, we have proposed a variational model re-
quiring a regularization based on the proposed PDI term in
order to address the pansharpening problem. In particular, the
novelty of our model is that we make a link between VO
approaches and DCNN methods, thanks to the formulation of
the PDI term. Furthermore, the use of MTF-based filters and
a new RePAN image exploiting GISC have been introduced in

3http://dobigeon.perso.enseeiht.fr/publis.html

TABLE IV
QUALITY METRICS OF THE DIFFERENT MODELS ON THE REDUCED

RESOLUTION (SIMULATED) RIO DATASET. (BOLD: BEST; UNDERLINE:
SECOND BEST)

Method ERGAS SAM Q8
Model (24) 3.8396 4.3530 0.8661
Model (25) 3.7174 4.2823 0.8708
Model (26) 6.5851 5.6281 0.7945

PanNet 3.8588 4.4518 0.8643
Proposed 3.6266 4.0229 0.8716

Ideal value 0 0 1
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Fig. 9. The ERGAS, SAM, Q8 curves for: the regularization parameters (a)
λ and (b) α, (c) the penalty parameter η and (d) the inner iteration pmit. The
best points are pointed out with a black star. Note that for better comparisons,
we process the obtained indexes by (index − M(index))/S(index),
where M(·) and S(·) represent the mean and standard deviation operations,
respectively. Besides, the real mean and standard deviation for ERGAS, SAM
and Q8 are (a) 3.6479 ± 0.0156; 4.0454 ± 0.0131; 0.8714 ± 0.0021; (b)
3.7763±0.3106; 4.1580±0.2309; 0.8667±0.0124; (c) 3.6747±0.0392;
4.1331±0.1090; 0.8706±0.0027; (d) 3.6400±0.0008; 4.0346±0.0094;
0.8720± 0.0004; respectively.

this paper to improve the spatial fidelity data fitting term. An
efficient ADMM-based algorithm has been developed to solve
the proposed problem guaranteeing the convergence to a global
optimum. A broad experimental analysis conducted on several
acknowledged datasets both at reduced resolution and at full
resolution has demonstrated the superiority of the proposed
approach with respect to a benchmark consisting of several
state-of-the-art approaches. In particular, the robustness with
respect to the selection of the algorithm’s parameters and the
generalization abilities of the proposed VO framework have
been pointed out together with a detailed ablation study.

Future developments go towards the extension of the pro-
posed approach to the hyperspectral image superresolution
problem and the development of techniques to determinate
regularization parameters, thus reducing the complexity of the
parameters setting phase and, at the same time, improving the
performance in real practical cases.
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(a) EXP (b) PanNet (c) Proposed (d) GT

Fig. 10. Top row: the fusion results on the reduced resolution (simulated)
Toulouse dataset (source: IKONOS). Bottom row: the fusion results on the
reduced resolution (simulated) Pléiades2 dataset (source: Pléiades).

TABLE V
QUALITY METRICS ON THE REDUCED RESOLUTION (SIMULATED)

TOULOUSE AND PLéIADES2 DATASETS. (BOLD: BEST; UNDERLINE:
SECOND BEST)

Dataset PAN size Method ERGAS SAM Q4

Toulouse 512× 512
PanNet 5.8152 5.5342 0.7180

Proposed 3.1948 3.5488 0.8943

Pléiades2 256× 256
PanNet 5.5887 5.9802 0.8417

Proposed 2.6649 4.0249 0.9522
Ideal value 0 0 1
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