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Föhringer Ring 6, 80805 München, Germany

3Zentrum für Mathematische Physik
DESY und Universität Hamburg

Notkestr. 85, 22607 Hamburg, Germany

4University of Belgrade, Faculty of Physics

Studentski trg 12, 11000 Beograd, Serbia and Montenegro

5Dipartimento di Scienze e Tecnologie Avanzate
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Abstract

Gauge theories on a space-time that is deformed by the Moyal-Weyl product
are constructed by twisting the coproduct for gauge transformations. This way
a deformed Leibniz rule is obtained, which is used to construct gauge invariant
quantities. The connection will be enveloping algebra valued in a particular repre-
sentation of the Lie algebra. This gives rise to additional fields, which couple only
weakly via the deformation parameter θ and reduce in the commutative limit to
free fields. Consistent field equations that lead to conservation laws are derived
and some properties of such theories are discussed.
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1 Introduction

The aim of this work is to construct and investigate gauge theories on deformed space-
time structures that are defined by an associative but noncommutative product of C∞

functions. Such products are known as star products; the best known is the Moyal-

Weyl product [1, 2]. In this letter we shall deal with this product exclusively.
From previous work [3, 4, 5] we know that the usual algebra of functions and the

algebra of vector fields can be represented by differential operators on the deformed
manifold. The deformed diffeomorphisms have been used to construct a deformed

theory of gravity. Here we shall show that along the same lines a deformed gauge
theory can be constructed as well. The algebra, based on a Lie algebra, will not

change but the comultiplication rule will. This leads to a deformed Hopf algebra. In
turn this gives rise to deformed gauge theories because the construction of a gauge

theory involves the Leibniz rule that is based on the comultiplication.
Covariant derivatives can be constructed by a connection. Different to a usual gauge

theory the connection cannot be Lie algebra valued. The construction of covariant

tensor fields (curvature or field strength) and of an invariant Lagrangian is completely
analogue to the undeformed case. Field equations can be derived and it can be shown

that they are consistent. This leads to conserved currents. It is for the first time that it
is seen that deformed symmetries also lead to conservation laws; note that the Noether

theorem is not directly applicable in the noncommutative context.
The deformed gauge theory has interesting new features. We start with a Lie(G)-

valued connection and show that twisted gauge transformations close in Lie(G), how-
ever consistency of the equation of motion requires the introduction of additional,

new vector potentials. The number of these extra vector potentials is representation
dependent but remains finite for finite dimensional representations. Concerning the
interaction, the Lie algebra valued fields and the new vector fields behave quite differ-

ently. The interaction of the Lie algebra valued fields can be seen as a deformation
of the usual gauge interactions; for vanishing deformation parameters the interaction

will be the interaction of a usual gauge theory. The interactions of the new fields
are deformations of a free field theory for vector potentials; for vanishing deformation

parameters the fields become free. As the deformation parameters are supposed to be
very small we conclude that the new fields are practically dark with respect to the

usual gauge interactions.
Finally we discuss the example of a SU(2) gauge group in the two dimensional

representation.
The treatment introduced here can be compared with previous ones. In [6] the non-

commutative gauge transformations for U(N ) have an undeformed comultiplication.

The action is the same as in (4.2) if we restrict our discussion, valid for any compact Lie
group, to U(N ) in the n-dimensional matrix representation. In other terms we show

that noncommutative U(N ) gauge theories have usual noncommutative gauge trans-
formations and also twisted gauge transformations. In [7, 8, 9, 10, 11] the situation is

different because we consider field dependent transformation parameters.
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2 Algebraic formulation

A noncommutative coordinate space can be realized with the help of the Moyal-Weyl
product [1, 2]. On such a space we are going to construct gauge theories based on a
Lie algebra.

We start from the linear space of C∞ functions on a smooth manifold M, Fun(M).
To define an algebra Aθ we shall use the associative but noncommutative Moyal-Weyl

product. The algebra defined with the usual, commutative point-wise product we refer
to as the algebra of C∞ functions.

The Moyal-Weyl product is defined as follows

f, g ∈ Fun(M)

f ⋆ g = µ{e
i
2
θρσ∂ρ⊗∂σf ⊗ g} (2.1)

µ{f ⊗ g} = f · g,

where θρσ = −θσρ is x-independent. The ⋆-product of two functions is a function again

µ⋆ : Fun(M) ⊗ Fun(M) → Fun(M),

µ⋆{f ⊗ g} = f ⋆ g. (2.2)

Derivatives are linear maps on Fun(M)

∂ρ : Fun(M) → Fun(M),

f 7→ ∂ρf. (2.3)

The Leibniz rule extends these maps to the usual algebra of C∞ functions

(∂ρ(f · g)) = (∂ρf) · g + f · (∂ρg). (2.4)

This concept can be lifted to the algebra Aθ [12]

∂⋆
ρ : f 7→ ∂⋆

ρf ≡ ∂ρf

∂⋆
ρ(f ⋆ g) = (∂⋆

ρf) ⋆ g + f ⋆ (∂⋆
ρg). (2.5)

The last line is true because θµν is x-independent.

Analogously to differential operators acting on the usual algebra of functions we
define differential operators on Aθ

D⋆ ⋆ f =
∑

n

dρ1...ρn ⋆ ∂⋆
ρ1
. . .∂⋆

ρn
f. (2.6)

This is well defined, ⋆ and ∂⋆
ρ always act on functions. The product of such differential

operators can be computed with the help of the Leibniz rule.

We can now define the ⋆-product as the action of a bilinear differential operator

f ⋆ g = µ{F−1 f ⊗ g}, (2.7)
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with

F−1 = e
i
2
θρσ∂ρ⊗∂σ . (2.8)

This differential operator can be inverted

f · g = µ⋆{F f ⊗ g}. (2.9)

Equation (2.9) can also be written in the form [3]

f · g =
(

∞
∑

n=0

(

−
i

2

)n 1

n!
θρ1σ1 . . . θρnσn

(

∂ρ1
. . .∂ρn

f
)

⋆ ∂⋆
σ1
. . . ∂⋆

σn

)

⋆ g. (2.10)

Equation (2.10) shows that the point-wise product f · g can also be interpreted as the

⋆-action of a differential operator X⋆
f on g

f · g = X⋆
f ⋆ g = (X⋆

f ⋆ g), (2.11)

where

X⋆
f =

∞
∑

n=0

1

n!

(

−
i

2

)n

θρ1σ1 . . . θρnσn(∂ρ1
. . . ∂ρn

f) ⋆ ∂⋆
σ1
. . . ∂⋆

σn
. (2.12)

From the associativity of the ⋆-product follows immediately

f · g · h = X⋆
f ·g ⋆ h = X⋆

f ⋆ X
⋆
g ⋆ h. (2.13)

The differential operators X⋆
f represent the usual algebra of functions

X⋆
f ⋆ X

⋆
g = X⋆

f ·g. (2.14)

3 Gauge transformations

Ordinary gauge transformations are Lie algebra-valued

α(x) = αa(x)T a, [T a, T b] = ifabcT c . (3.1)

The gauge transformation of a field is

δαψ(x) = iα(x)ψ(x) = iαa(x)T aψ(x), (3.2)

i.e. δαψ = iα · ψ. This can be viewed as a ⋆-action

δ̂αψ = iX⋆
αa ⋆ T aψ = iX⋆

α ⋆ ψ = iα · ψ. (3.3)

When we deal with a gauge theory in physics we not only use the Lie algebra but also
the corresponding Hopf algebra obtained from the comultiplication rule

∆(δα)(φ⊗ ψ) = (δαφ) ⊗ ψ + φ⊗ (δαψ),

∆(δα) = δα ⊗ 1 + 1 ⊗ δα. (3.4)
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The transformation of the product of fields is

δα(φ · ψ) = δαµ{φ ⊗ ψ} = µ∆(δα)(φ⊗ ψ). (3.5)

But there are different ways to extend a Lie algebra to a Hopf algebra. A convenient
way is by a twist F , that is a bilinear differential operator acting on a tensor product

of functions. A well known example is

F = e−
i
2
θρσ∂ρ⊗∂σ . (3.6)

It satisfies all the requirements for a twist [13, 14] and therefore gives rise to a new co-
product (the dual description of twisted gauge transformations was already introduced
in [15]; see also [16])

∆F(δ̂α)(φ⊗ ψ) = iF (α⊗ 1 + 1 ⊗ α)F−1(φ⊗ ψ) (3.7)

=
∑

n

(
−i

2
)n θ

µ1ν1 · · ·θµnνn

n!
(δ̂∂µ1

···∂νnα ⊗ ∂ν1
· · ·∂νn

+ ∂µ1
· · ·∂µn

⊗ δ̂∂ν1
···∂νnα)(φ⊗ ψ) .

This coproduct defines a new Hopf algebra, the Lie algebra is extended by the deriva-

tives, the comultiplication is deformed. This twist can also be used to deform Poincaré
transformations [15, 12, 17, 3] respectively diffeomorphisms [3, 4, 5]. In [18] gauge the-

ories consistent with twisted diffeomorphisms where constructed without deforming
the coproduct for gauge transformations.

We now look at the transformation law of products of fields based on the deformed
coproduct (3.7).

δ̂α(φ ⋆ ψ) = µ⋆{∆F(δ̂α)(φ⊗ ψ)}, (3.8)

where µ⋆ is defined in (2.2) and δ̂α in (3.3). We obtain

δ̂α(φ ⋆ ψ) = iX⋆
αa ⋆

(

(T aφ) ⋆ ψ + φ ⋆ (T aψ)
)

. (3.9)

Note that the operator X⋆
αa is at the left of both terms, this is due to the coproduct

∆F . Formula (3.9) is different from

δ̂α(φ ⋆ ψ) = (δ̂αφ) ⋆ ψ + φ ⋆ (δ̂αψ). (3.10)

It is exactly the requirement that the ⋆-product of two fields should transform as (3.9)
that leads to the twist F . It is by the twisted coproduct that the ⋆-product of fields

transforms like (3.3) again. The commutator of two gauge transformation closes in the
usual way

δ̂αδ̂β − δ̂β δ̂α = δ̂−i[α,β] . (3.11)

To construct an invariant Lagrangian we have to introduce covariant derivatives

Dµψ = ∂µψ − iAµ ⋆ ψ. (3.12)

From

δ̂αψ = iX⋆
αa ⋆ (T aψ)
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we find

δ̂α(Dµψ) = iX⋆
αa ⋆ (T a(Dµψ)) (3.13)

if we use the proper comultiplication for the term Aµ ⋆ ψ in the covariant derivative
and if the vector field transforms as follows

δ̂αAµ = ∂µα+ iX⋆
αa ⋆ [T a, Aµ]. (3.14)

This can also be written in the familiar way 1:

δ̂αAµ = ∂µα+ i[α, Aµ]. (3.15)

The transformation would take Lie algebra-valued objects to Lie algebra-valued ob-
jects. For reasons that will become clear in the following we will assume the hermitian

field Aµ to be n × n matrix valued where n is the dimension of the Lie algebra repre-
sentation. Formula (3.14) will still be true in that case.

The field-strength tensor can be obtained as usual

Fµν = i[Dµ
⋆, Dν],

= ∂µAν − ∂νAµ − i[Aµ
⋆, Aν ]. (3.16)

Using the deformed coproduct and the gauge variation of the potential we derive the
following transformation law,

δ̂αFµν = iX⋆
αa ⋆ [T a, Fµν] (3.17)

= i[α, Fµν].

4 Field equations

With the tensor Fµν and the covariant derivatives we can construct invariant La-
grangians. Starting from the usual invariant Lagrangians we replace the point-wise

product by the ⋆-product and the comultiplication (3.5) with (3.7). We convince our-
selves that we can construct an invariant Lagrangian under the deformed Hopf algebra.

The expression Fµν ⋆ Fµν transforms as follows

δ̂α(Fµν ⋆ Fµν) = iX⋆
αa ⋆ [T a, Fµν ⋆ Fµν ] (4.1)

= i[α, Fµν ⋆ Fµν ].

This leads to an invariant and real action

Sg = c1

∫

d4x Tr(Fµν ⋆ Fµν). (4.2)

1Equations (3.15) and (3.17) were already introduced in a similar way in [16]. However, in [16] the
gauge field was chosen to be Lie algebra valued which does not lead to consistent equations of motion.
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The integral introduced in (4.2) has the trace property

∫

d4x (f ⋆ g) =

∫

d4x (f · g) =

∫

d4x (g ⋆ f). (4.3)

Therefore we obtain the field equations by writing the varied field to the very left.
Varying with respect to the matrix algebra-valued field Aµ leads to the field equations

(∂µF
µρ)AB − i([Aµ

⋆, Fµρ])AB = 0. (4.4)

Here A and B are matrix indices.

From the field equations and the antisymmetry of Fµν in µ and ν follows the
consistency requirement

∂ρ

(

i[Aµ
⋆, Fµρ]

)

= 0. (4.5)

To show (4.5) we have to use the equation of motion (4.4). We calculate

∂ρ

(

i[Aµ
⋆, Fµρ]

)

= i[∂ρAµ
⋆, Fµρ] + i[Aµ

⋆, ∂ρF
µρ]. (4.6)

In the second term we insert the field equation (4.4). In the first term we complete

∂ρAµ to the tensor Fρµ by adding and subtracting the respective terms. We then use

[Fµρ
⋆, Fµρ] = 0, (4.7)

and obtain

+
(i)2

2
[[Aρ

⋆, Aµ] ⋆, Fµρ] +
(i)2

2
[Aµ

⋆, [Aρ
⋆, Fµρ]] −

(i)2

2
[Aρ

⋆, [Aµ
⋆, Fµρ]] = 0

for the right hand side of equation (4.6). That it vanishes follows from the Jacobi

identity. Thus, we obtained a conservation law

Jρ = i[Aµ
⋆, Fµρ], (4.8)

∂ρJ
ρ = 0.

From (3.16) follows that Fµν is enveloping algebra valued if Aµ is. From the field
equation follows that Aµ and Fµν will remain enveloping algebra valued in the n-

dimensional representation of the Lie algebra. Thus, we try to replace matrix algebra
valued by enveloping algebra valued for Aµ. As an example we treat the case SU(2)

in the two-dimensional representation. In this representation the generators T a of the
Lie algebra satisfy the relations

[T a, T b] = iǫabcT c (4.9)

and

{T a, T b} =
1

2
δab . (4.10)
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Note that (4.9) is valid for any representation. The anticommutator is representa-

tion dependent. Equation (4.10) is only true in the two dimensional representation. In
our example we can write Aµ as follows:

Aµ = Bµ + Ad
µT

d .

This is consistent with the gauge transformations; the field equations are a consequence
of (4.9) and (4.10).

The tensor Fµν is easy to calculate following (3.16):

Fµν = Gµν + F̃ d
µνT

d ,

where

Gµν = ∂µBν − ∂νBµ − i[Bµ
⋆, Bν ] −

i

4
[Ad

µ
⋆, Ad

ν ]

F̃ d
µν = ∂µA

d
ν − ∂µA

d
ν − i[Bµ

⋆, Ad
ν ] − i[Ad

µ
⋆, Bν ] +

1

2
{Aa

µ
⋆, Ab

ν}ǫ
abd . (4.11)

Varying the Lagrangian (4.2) with respect to Bµ and Ad
µ leads to the field equations

∂µGµν − i[Bµ ⋆, Gµν] −
i

4
[Aµa ⋆, F̃ a

µν ] = 0

∂µF̃ d
µν − i[Aµd ⋆, Gµν ] − i[Bµ ⋆, F̃ d

µν ] +
1

2
ǫabd{Aa

µ
⋆, F̃ b

µν} = 0 . (4.12)

These field equations are consistent. They describe a triplet of vector fields Ad
µ as

expected and a singlet Bµ. In the limit θ → 0, Bµ becomes a free field; it interacts only
via θ and higher order terms in θ. The triplet Ad

µ satisfies the usual field equations

of SU(2) gauge theory in the limit θ → 0. For θ 6= 0 both the triplet and the singlet
couple to conserved currents but the current of Bµ has no θ-independent term.

We discover that the field equations (4.11) with four conserved currents also have a
larger symmetry structure, i.e. the gauge transformations (3.1) can also be enveloping

algebra valued.

Remarks

In [19] the authors misinterpreted our definition of the twisted coproduct (3.7) as

it was given in the preprint version of this paper. This lead to the conclusion that
twisted gauge transformations violate the gauge principle. In order to avoid further

misunderstandings we added in this version a more explicit formula for twisted gauge
transformations in (3.7). We also present some more details about coproducts in an

appendix. It can now be seen from the explicit expression for gauge transformations
that the gauge principle is not violated.

Note furthermore that we do not treat in this letter the quantum field theory
aspects of our noncommutative gauge theories (with twisted coproduct) and therefore

we have not referred to the relevant literature.
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A Notations on coproduct

We might rewrite the first part of Section 3 (up to formula (3.8)) using a more mathe-

matically oriented language. We consider (the semidirect product of) the Lie algebra of
the local gauge group α(x) = α(x)aT a and of translations. The undeformed coproduct

on the generators is

∆(α) = α ⊗ 1 + 1 ⊗ α = α1 ⊗ α2 (A.1)

∆(∂ν) = ∂ν ⊗ 1 + 1 ⊗ ∂ν (A.2)

where α1⊗α2 is a convenient notation for α⊗1+1⊗α. In α1⊗α2 a sum is understood
so that α1 respectively assumes the values α and 1 (and similarly for α2).

The action of α and ∂ν on fields is given by the gauge transformation δαφ and by
the usual derivative action ∂νφ. From the coproduct ∆ we have the action of α on the

product of fields

δα(φ · ψ) = δαµ{φ⊗ ψ} = µ{(δα1
φ) ⊗ (δα2

ψ)} = (δα1
φ)(δα2

ψ) , (A.3)

and the usual Leibniz rule for partial derivatives.

We now deform the coproduct ∆ by using the twist F , and obtain the new coprod-
uct

∆F (α) = F (α⊗ 1 + 1 ⊗ α)F−1 (A.4)

=
∑

n

(

−i

2

)n
θµ1ν1 · · ·θµnνn

n!
(∂µ1

· · ·∂µn
α⊗ ∂ν1

· · ·∂νn

+∂µ1
· · ·∂µn

⊗ ∂ν1
· · ·∂νn

α)

= α1F ⊗ α2F

where in the convenient notation α1F ⊗ α2F sum over n is understood.
Since F satisfies all the requirements for a twist, we obtain that the universal

enveloping algebra generated by derivatives ∂ν and gauge parameters α(x) = α(x)aT a

has been equipped with a new coproduct, the twisted coproduct ∆F . This coproduct

defines a new Hopf algebra.
We now consider the noncommutative action of α and ∂ν on fields and on ⋆-

products of fields. The noncommutative action of partial derivatives is undeformed,
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see (2.5). Our noncommutative gauge principle is implemented by defining noncom-

mutative gauge transformations as

δ̂αψ = iX⋆
αa ⋆ T aψ = iX⋆

α ⋆ ψ = iα · ψ (A.5)

and

δ̂α(φ ⋆ ψ) = µ⋆{(δ̂α1F
φ) ⊗ (δ̂α2F

ψ)},

= µ⋆{
∑

n

(

−i

2

)n
θµ1ν1 · · ·θµnνn

n!
(∂µ1

· · ·∂µn
α)φ⊗ (∂ν1

· · ·∂νn
ψ)

+(∂µ1
· · ·∂µn

φ) ⊗ (∂ν1
· · ·∂νn

α)ψ}

= iX⋆
αa ⋆

(

(T aφ) ⋆ ψ + φ ⋆ (T aψ)
)

. (A.6)

where µ⋆ is defined in (2.2). The Hopf algebra structure obtained with the twisted

coproduct ∆F insures the consistency of the noncommutative gauge transformation δ̂α
on ⋆-products of fields.
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