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In this paper we consider the eigenfunction expansions associated with Fredholm
integral equations of first kind when the data are perturbed by noise. We prove
that these expansions are asymptotically convergent, in the sense of L2-norm, when
the bound of the noise tends to zero. This result allows us to construct a
continuous mapping from the data space to the solution space, without using any
constraint or a priori bound. We can also show a probabilistic version of this result,
which is based on the order]disorder transition in the Fourier coefficients of the
noisy data. From these results one can derive algorithms and in particular statisti-
cal methods able to furnish approximations of the solution without any use of prior
knowledge. Q 1996 Academic Press, Inc.

1. INTRODUCTION

The signal recovery problem can be formulated in the language of
communication channel theory: to determine the identity of an input

Ž .signal from the knowledge within a certain noise of the output signal and
the identity of the channel. In several problems of interest a linear channel
may be described as an operator of the Hilbert]Schmidt class, i.e., an
operator of the form

b
Af x s K x , y f y dy s g x a F x F b , 1Ž . Ž . Ž . Ž . Ž . Ž . Ž .H

a

Ž .where K x, y is supposed to be a Hermitian and square integrable kernel;
i.e.,

K x , y s K y , x 2Ž . Ž . Ž .
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EIGENFUNCTION EXPANSIONS 189

and
b b 2< <K x , y dx dy - `. 3Ž . Ž .H H½ 5

a a

2Ž . 2Ž .Then A: L a, b ª L a, b is a self-adjoint compact operator.
For the sake of simplicity we shall suppose hereafter that the kernel K,

the function g, and the unknown function f are real-valued functions;
w xmoreover we assume that the interval a, b is a bounded and closed subset

of the real line. These assumptions do not limit the generality of our
reasoning.

The Hilbert]Schmidt theorem guarantees that the integral operator A
� 4̀admits a set of eigenfunctions c and accordingly a countably infinitek 1

� 4̀set of eigenvalues l . The eigenfunctions form an orthonormal basis ofk 1
the orthogonal complement of the null space of the operator A and

2Ž .therefore an orthonormal basis of L a, b , when A is injective. For the
sake of simplicity we consider hereafter only this case. The Hilbert]Schmidt
theorem guarantees also that lim l s 0. Furthermore we shall sup-k ª` k
pose hereafter that the eigenvalues are ordered as follows: l ) l )1 2
l ) ??? . The reason for all these assumptions, which can be simply3
removed, is to make more transparent all the arguments below. We could
suppose, for instance, that the supports of the data and those of the
solutions belong to intervals which do not coincide; i.e., we could assume

2Ž .that the operator A transforms functions which belong to L a, b into
2Ž . w xfunctions which belong to L c, d , where the interval c, d does not

w xcoincide with the interval a, b . In this case we can work out the problem
Žin terms of singular values and singular functions of the operator A see

w x.BDV and all the results obtained below can be easily reformulated.
Ž .We can associate with integral equation 1 the eigenfunction expansion

` gk
f x s c , 4Ž . Ž .Ý kž /lkks1

Ž . ŽŽ . 2Ž ..where g s g, c ?, ? denotes the scalar product in L a, b . Thek k
Ž . 2series 4 converges in the sense of L .

As we said above, in the signal recovery problem we must take into
account the ‘‘disturbance’’ which can be represented by an additive noise
Ž . Ž .n x . Then, instead of Eq. 1 , we have

Af q n s g , 5Ž .
Ž . Ž . Ž . Ž .where g x s g x q n x . Therefore instead of expansion 4 we have to

deal with an expansion of the type
` gk

c x , 6Ž . Ž .Ý kž /lkks1
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Ž . Ž .where g s g, c . The expansion 6 is generally diverging because gk k
does not belong, in general, to the range of the operator A. This is a
manifestation of the ill-posedness of the Fredholm integral equation of the
first kind.

Several methods of regularization have been proposed; all of them
� 4modify one of the elements of the triplet A, X, Y , where A is the

Ž .integral operator defined by Eq. 1 , and X and Y are, respectively, the
Ž 2Ž ..solution and the data space in our case X ' Y ' L a, b . Among these

methods, the procedure which is probably the most popular consists in
admitting only those solutions which belong to a compact subset of the
solution space X. The key theorem used in this method reads as follows:
let s be a continuous map on a compact topological space into a
Hausdorff topological space; if s is one-to-one, then its inverse map sy1

w xis continuous Ke . The condition of compactness can be realized by the
w xuse of a priori bounds Jo , which require some prior knowledge or some

constraints on the solution. Then the procedure works taking into account
Ž . Ž w x.two bounds, one on the solutions, the other on the noise n x see TA ,

5 5 2Bf F 1 7Ž .L Ža , b.

5 5 2n F e , 8Ž .L Ža , b.

where B is a suitable constraint operator. Let us suppose that the
� 4̀eigenfunctions c diagonalize the operator B*B; in such a case we havek 1

` 2 Ž . 2B*Bf s Ý b f c , where f s f , c and b are the eigenvalues ofks1 k k k k k k
B*B. The constraint operator B has a compact inverse iff lim b 2 s q`;k ª` k

Ž .under such a condition, the solution obtained, by truncating expansion 6
at the largest integer k such that l ) eb , converges to the solution f , ask k
e ª 0, in the sense of L2 -norm. In several cases a much milder constraint

Ž .is used, i.e., B s I b s 1, ;k . In this case the compactness condition isk
Ž .not satisfied and the approximation obtained, by truncating expansion 6

at the largest integer k such that l ) e , is only weakly convergent to thek
w xsolution f as e ª 0 BDV .

At this point we must stress the remarkable difference between synthe-
sis problems and signal recovery: whereas in the first class of problems

Žsuitable constraints on the solutions enter in a natural way consider, for
.instance, the constraint on the ohmic loss in the antenna synthesis , this is

not always the case in signal recovery. Furthermore truncations of expan-
Ž .sion 6 , as those illustrated above, obtained comparing the eigenvalues lk

with the bound e on the noise, appear quite unnatural from the viewpoint
of experimental or physical science. It would seem much more appropriate
that a truncation be obtained by comparing the Fourier coefficient of the
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Ž .data i.e., g with the noise. Therefore the following question arises quitek
naturally:

Problem. Is it possible to find a regularization procedure for Fredholm
integral equation of first kind, with Hilbert]Schmidt kernel, that does not
require any a priori information?

We can give a positive answer to this question if we are able to exhibit a
continuous mapping of the noisy data into the solution space X without
any requirement of compactness or any use of a priori bounds on the
solution. We shall prove the existence of this continuous mapping in

Ž .Section 2 by showing that even if expansion 6 is divergent when n does
not belong to the range of the operator A, it is nevertheless asymptotically
convergent, in the sense of L2 -norm, as the noise tends to zero. Unfortu-
nately from this result a general algorithm able to furnish approximations
of the unknown solution f does not necessarily follow. As we shall discuss
in Section 2, these approximations can be obtained only in some specific
and very peculiar situations. However, in Section 3 we shall show that the
main result proved in Section 2 admits a probabilistic version. From this

Žfact it follows that some probabilistic and statistical methods like that of
.correlogram can be used for an approximate determination of the solu-

tion f , without any specific and a priori information on f.

2. ASYMPTOTIC CONVERGENCE OF
EIGENFUNCTION EXPANSIONS

In this section the only assumption we use is that the disturbance is
Ž .represented by a bounded and integrable function n x . For the sake of

simplicity we will assume the simplest and very realistic bound

< < w xsup n x F e , x g a, b 9Ž . Ž .

We do not require hereafter in this section an explicit knowledge of e .
Then we can prove the following lemma.

LEMMA 1. The following statements hold true:

2` gk 2
25 5i s f s C 10Ž . Ž .Ý L Ža , b.ž /lkks1

2` gk
ii s `, if g f Range A 11Ž . Ž . Ž .Ý ž /lkks1
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iii lim g s g , ;k 12Ž . Ž .k k
eª0

iv If k e is defined asŽ . Ž .0

2m gk
k e s max m g N : F C 13Ž . Ž .Ý0 ½ 5ž /lkks1

then lim k e s q`. 14Ž . Ž .0
eª0

Ž . Ž . Ž .Proof. Statements i and ii are obvious; in particular statement i is
simply the Parseval equality associated with the eigenfunction expansion
Ž . Ž .4 . For what concerns statement iii it is an immediate consequence of

Ž .the bound 9 ; indeed we have

b
g s g x q n x c dx. 15Ž . Ž . Ž .Hk k

a

Since

b b
< <n x c dx F e c dx , 16Ž . Ž .H Hk k

a a

Ž .lim g s g , ;k. Finally we can prove statement iv as follows. Let use ª 0 k k
Ž . Ž . Ž .introduce k e s k e q 1. Then from definition 13 it follows that1 0

2Ž .k e1 gk
) C. 17Ž .Ý ž /lkks1

ŽHereafter, for the sake of simplicity and without loss of generality, we
Ž Ž ..shall suppose that the Fourier coefficients g k G k e are not zero.k 0

Indeed if g is zero, then it is sufficient to replace the sum at the l.h.s.k Že .1
Ž . Ž Ž ..of 17 by a similar sum extended up to a Fourier coefficient g k ) k ek 1

. Ž .different from zero. Now statement iv is proved if we are able to show
Ž . � 4that lim k e s `. We claim that for any sequence e tending toe ª 0 1 i

Ž .zero, we have that lim k e s `. Suppose that this is not the case;e ª 0 1 ii

then there should exist a finite number M which does not depend on e
Ž . � 4and such that k e F M even if the sequence e tends to zero. Then1 i i

Ž .from inequality 17 it follows that

2 2Ž .k e M1 i g gk k
C - F . 18Ž .Ý Ýž / ž /l lk kks1 ks1



EIGENFUNCTION EXPANSIONS 193

Ž .But as e ª 0, we have for statement iiii

2 2M `g gk k
C - F s C , 19Ž .Ý Ýž / ž /l lk kks1 ks1

Ž .which leads to a contradiction, and statement iv is proved.

Now we introduce the following approximation:

Ž .k e0 gkŽe .f x s c . 20Ž . Ž .Ý0 kž /lkks1

Then we can prove the following theorem.

THEOREM 1. The following equality holds true:

5 Že . 5 2lim f y f s 0. 21Ž .L Ža , b.0
eª0

Proof. From the Parseval equality it follows that

2Ž .2 k e` 0g g y gk k k2Že . 25 5f y f s q . 22Ž .Ý ÝL Ža , b.0 ž / ž /l lk kŽ . ks1k e q10

Ž . ` Ž .2Since lim k e s q` and Ý g rl converges,e ª 0 0 ks1 k k

2` gk
lim s 0.Ý ž /leª0 kŽ .ksk e q10

Ž .Concerning the second term at the r.h.s. of formula 22 , let us introduce
the functions

` gk
GG u s I u 23Ž . Ž . Ž .Ý w k , kq1wž /lkks1

` gk
GG u s I u , 24Ž . Ž . Ž .Ý w k , kq1wž /lkks1
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where I is the characteristic function of the set A. We haveA

2`` gk2
GG u du s s C 25Ž . Ž .ÝH ž /l0 kks1

2`` g2 k
GG u du s s ` 26Ž . Ž .ÝH ž /l0 kks1

Ž .and at each fixed value of u u G 0

GG u ª GG u for e ª 0. 27Ž . Ž . Ž .
U 2Ž . w Ž .xLet us denote by U e the unique root of the equation H GG u du s C0

U 2Ž w Ž .xindeed 0 F U ª H GG u du is a continuous function which is zero for0
U s 0, and q` for U ª q`; furthermore let us recall that we have

.assumed that all the coefficients g are different from zero . Fromk
Ž . Ž .statement iv of Lemma 1, it follows that lim U e s q`. Next wee ª 0

have

Ž . 2U e
GG u y GG u duŽ . Ž .H

0

` Ž .U e2s GG u du y 2 GG u GG u y GG u du. 28Ž . Ž . Ž . Ž . Ž .H H
Ž .U e 0

Ž .Concerning the first term at the r.h.s. of formula 28 , we have

` 2lim GG u du s 0. 29Ž . Ž .H
eª0 Ž .U e

Concerning the second term, we introduce the following function:

Že .H u s GG u y GG u if 0 F u F U e 30Ž . Ž . Ž . Ž . Ž .

H Že . u s 0 if u ) U e . 31Ž . Ž . Ž .

Using Schwartz inequality we obtain

` 2Že .H u du F 4C e ) 0 ; 32Ž . Ž . Ž .H
0

moreover we have the following limit

lim H Že . u ª 0 u G 0 . 33Ž . Ž . Ž .
eª0
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Že .Ž . 2Ž .The family of functions H u is bounded in L 0, ` ; then it has a
2Ž .subsequence which is weakly convergent in L 0, ` . The limit of this

� Že .4subsequence is zero. We claim that the whole family H converges
2Ž .weakly to zero in L 0, ` . In fact, if this statement were not true, then

there would exist two subsequences weakly convergent to different limits.
But this case can be excluded, since the weak limit of any subsequence of
� Že .4H is necessarily zero. Therefore it follows that

`
Že .lim GG u H u du s 0. 34Ž . Ž . Ž .H

eª0 0

Ž .Then from formula 28 we derive

Ž . 2U e
lim GG u y GG u du s 0 35Ž . Ž . Ž .H
eª0 0

and therefore

2Ž .k e0 g y gk k
lim s 0 36Ž .Ý ž /leª0 kks1

and the theorem is proved.

Ž .Let us note that the operator defined by Eq. 1 maps the space
2Ž . 2Ž . Ž .Ž .X ' L a, b into the space Y ' L a, b , but the elements Af x do not

Ž . Ž .fill up Y. Adding to the noiseless data g x the noise n x , we have the
Ž .functions g x which do not belong in general to the range of A, but still

belong to Y if the noise satisfies some appropriate bound, like that
Ž .expressed by inequality 9 . The set of functions g, which does not

2Ž .necessarily fill up the space Y ' L a, b , shall be denoted hereafter by
Ž . Ž .Y Y : Y . Then we can associate to the approximation 20 an operator B

defined as follows:

Ž .k e0 gk
Bg s c . 37Ž .Ý kž /lkks1

The operator B maps Y into X. If e s 0, then

2` gk2 2
2 25 5 5 5Bg s Bg s s C ; 38Ž .ÝL Ža , b. L Ža , b. ž /lkks1
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Ž .if e ) 0, then k e - ` and0

2Ž .k e0 gk2
25 5Bg s F C , 39Ž .ÝL Ža , b. ž /lkks1

2Ž .and therefore Bg g L a, b .
Then we have the following corollary of Theorem 1:

Ž .COROLLARY. The mapping B: Y ª X of Y into X is continuous.

Proof. Let us recall that continuous mappings of one metric space into
another are precisely those which send convergent sequences into conver-
gent sequences or, in other words, which preserve convergence. Then let
us consider a sequence of elements of Y, i.e., a sequence g g Y, whiche i

tends to g g Y for e ª 0, in the norm of Y. This amounts to saying thati
5 5lim g y g ª 0. To the sequence g we can associate the se-Ye ª 0 e ei i i

Ž .quence Bg through equality 37 .e i

Then by Theorem 1 it follows that

5 5lim Bg y Bg s 0 40Ž .Xe ie ª0i

and the Corollary is proved.

Unfortunately this result does not furnish a numerical algorithm able to
determine the unknown function f. Indeed we do not know the constant C
Ž .i.e., the square of the norm of the function f , and therefore we are not

Ž .able to find the truncation number k e and accordingly to determine the0
Ž .approximation 20 . It is possible, however, to work out different methods

which are able to solve this problem in several situations of practical
interest. One of this procedures is a probabilistic method and it shall be
illustrated in the next section; the other is of deterministic nature and it is
essentially based on the following remarkable fact: the asymptotic behavior
of the eigenvalues l , for large k, is strictly related to the regularityk

Ž . w xproperties of the kernel K x, y . Hille and Tamarkin HT have systemati-
cally explored the relationship between the regularity properties of the
kernel such as integrability, continuity, differentiability, analyticity, and the
like, and the distributions of the eigenvalues of the Fredholm integral
equation of the first kind. We will limit ourselves to illustrating the
situation with two examples of opposite types:
Ž . Ž . Ž . Ž .a let there be K x, y s sin x y y r x y y , and a s y1, b s 1 in
Ž . Ž .Eq. 1 ; K x, y is an entire analytical function and the corresponding
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eigenvalues l are characterized by an asymptotic behaviour of thek
Ž Ž .. Ž .following type: l s O exp yDk log k D s const .k

Ž .b let there be

K x , y s 1 y x y 0 F y F x F 1 41Ž . Ž . Ž . Ž .

K x , y s x 1 y y 0 F x F y F 1 42Ž . Ž . Ž . Ž .

Ž .and a s 0 and b s 1 in Eq. 1 ; in this case we can explicitly evaluate the
Ž 2 2 .eigenvalues l , which are given by l s 1r k p and decrease only ask k

the inverse of a power.
In conclusion we can say that, as the regularity of the kernel increases

passing from the class of functions C 0 to C` and then to the class of
analytic entire functions, accordingly the eigenvalues l decrease morek

and more rapidly for k ª `. The Hille]Tamarkin analysis allows us to
elaborate a method which, in some cases, can be used in order to find out

Ž . Ž .the truncation number k e introduced in the approximation 20 . To this0

purpose we need to explore the properties of the following function
m 2Ž . Ž .M m s Ý g rl . The relevant properties of M are:ks1 k k

Ž .1 It is an increasing function of m.
Ž . Ž 5 5 22 If e is sufficiently small practically e is smaller than g forL Ža, b.

. < <several orders of magnitude , and the values of g are decreasing fork
Ž .increasing values of k, then M m presents a plateau when it reaches the

Ž . Ž .value C i.e., the square of the norm of f . Indeed from statement iv of
Ž Ž . . Ž .Lemma 1 i.e., lim k e s ` it follows that M m remains constante ª 0 0

Ž .or nearly constant when it attains the value C.
Ž . Ž .3 The plateau discussed under point 2 corresponds to the order]

bŽ Ž . Ž . .disorder transition in the coefficients g s g q n n s H n x c x dx .k k k k a k

For k F k the ‘‘data’’ g are prevailing on the Fourier coefficients of the0 k
Ž .noise n ; for k ) k e the ‘‘noise’’ n is prevailing on the Fourierk 0 k

coefficients of the noiseless data. This property will play a relevant role in
the next section.

Now let us suppose that the kernel K has such analytical properties that
the eigenvalues l decrease asymptotically like an exponential, i.e., l sk k
Ž Ž ..O exp yk , while the noise coefficients decrease like the inverse of a

Ž y1 . Ž .power, for instance n s O k . Then the behaviour of M m for m )k
Ž .k e is dominated by the asymptotic behaviour of the eigenvalues. In the0

specific example mentioned above, we have for m ) k0

M m ; C q C exp 2m r m2 C , C s const . 43Ž . Ž . Ž . Ž . Ž .1 2 1 2
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Therefore from the analytical properties of the kernel K we can discover,
Ž . Ž .plotting numerically M m versus m, the plateau of M m corresponding

to C and therefore determine the truncation number k . Worked-out0
numerical examples of this procedure have been given by one of the

w xauthors in Refs. Vi, SV1 . This method, however, requires a few words of
Ž .comment. First let us observe that the numerical plot of M m versus m

can still present one or several plateau for m ) k . This is essentially due0
to the erratic behaviour of the noise and accordingly of the Fourier
coefficients n . This fact could obscure a clear-cut separation between thek

Ž .plateau of M m , corresponding to the value C, and the others. Further-
more the procedure requires that the eigenvalues l decrease rapidly fork

Ž . Ž .k ª `; therefore for a kernel K x, y , like that of example b , the method
could be inappropriate. In all the cases when this procedure fails, we have
to consider a statistical method like that illustrated in the next section.

Ž . Ž .REMARKS. i Let us recall that as was remarked in the Introduction
the truncation methods suggested by the standard regularization tech-
niques are obtained by comparing the eigenvalues l with the error boundk
e , and this procedure is rather unsatisfactory from the viewpoint of
experimental sciences. On the contrary, in our case, if one is able to

Ž . Ž .determine the number k e , it does correspond to the plateau of M m ,0
which is attained when the Fourier coefficients of noiseless data g arek

Ž Ž . Ž . Ž ..comparable in magnitude with n see properties 2 and 3 of M m . Ink
other words the true data are compared with the noise and this is exactly
what is done in the analysis of experimental data.
Ž . Ž .ii Let us observe that the behaviour of k e is related to the0

behaviour of the ratio n rl as a function of k and therefore that itk k
depends essentially on the type of noise and on the properties of the

Ž .kernel K x, y . Returning once more to the results of Hille and Tamarkin
w xHT relating the regularity of the kernel to the behaviour of the eigenval-
ues l , we must distinguish between the following two situations:k

Ž .a The kernel is an analytic function and the eigenvalues l decreasek
very rapidly for k ª `. In such a case n rl may increase very fast, for kk k
sufficiently large, and even if we were able to decrease considerably the

Ž .value of e , the increase of k e would be nonetheless quite small. We say0
that the restored continuity is weak.

Ž . 0b The kernel is of class C and accordingly the eigenvalues l dok
Žnot decrease rapidly for k ª ` but, for instance, like the inverse of a

. Ž .power . In this case the increase of k e , for e ª 0, could be rather fast0
and the restored continuity is more robust. In this case the number of
Fourier coefficients which transmit information increases in a significant

Žway as we lower e see also the next section for an interpretation of these
.results from the point of view of information theory .
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3. PROBABILISTIC APPROACH AND
INFORMATION THEORY

Now we want to formulate a probabilistic version of Theorem 1; there-
fore we must regard f , n, and g as values of random variables in
appropriate Hilbert spaces. To this purpose let us briefly fix our notations

Žand ideas on the introduction of random variables and weak random
. Ž w x.variables in Hilbert spaces see Ba .

Ž .Let us consider the triplet V, FF, P , where V is an abstract point set
Ž .e.g. the set of outcomes v of an experiment , FF is a s -algebra of subsets

Ž .of v, and P is a measure on FF with P V s 1. This triplet is a
probabilistic space. Let HH be a separable Hilbert space: then a Hilbert

Ž .space random variable h is an application of V on HH; h: V ª HH; i.e., h v
is an element of HH.

In order to include processes like white noise, one has to consider weak
Ž .random variables w.r.v. . To this purpose we must introduce the cylinder

sets in Hilbert spaces. Let us consider any finite-dimensional subspace HHm
in HH. By a cylinder set we mean any set of the form B q HH H , where B is am
Borel subset of HH and HH H is the orthogonal complement of HH . Then am m m

Ž . Ž .function h v v g V , which maps V into HH, is a weak random variable
Ž .if i the inverse image of any cylinder set of HH is a set of the s -algebra of
Ž .FF; ii the probability measure induced on the Borel sets of an arbitrary

finite dimensional subspace of HH is countably additive. In other words if
� 4̀ Ž . Ž .u is a basis in HH, then h, u k s 1, 2, . . . , m , for each m definesk 1 k HHm

an ordinary random variable.
We shall denote by m the cylinder probability measure induced by h onh
Ž . Ž . Ž .C HH , where C HH is the class of the cylinder sets of HH; i.e., if G g C HH ,

Ž . � Ž . 4then m G s P v : h v g G .h
Ž .A w.r.v. h: V ª HH is called Gaussian or normal if, for any element

Ž .w g HH, the random variable h s h, w is Gaussian. A Gaussian w.r.v. isw HH

uniquely defined by its mean element m and covariance operator R .h hh
The mean element is the unique vector of HH such that, for any w g HH,

m , w s E h , w s h v , w P dv . 44� 4Ž . Ž . Ž . Ž . Ž .Ž .HHHh HHHH
V

The covariance operator R is the unique, bounded, linear, self-adjoint,hh
non-negative operator on HH such that, for any w g HH,

2 2R w , w s E h y m , w s h v y m , w P dv .Ž . Ž . Ž . Ž .Ž .� 4 Hhh h hHH HH HH
V

45Ž .
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The Gaussian cylinder measure m can be extended to be countablyh
Ž . Ž Ž . .additive on B HH where B HH is the class of Borel sets of HH iff R is anhh

operator of the trace class, i.e.,

`
25 5E h y m s Tr R s R u , u - `, 46Ž . Ž . Ž .� 4 ÝHHh hh h h k k HH

ks1

� 4̀where u is an arbitrary orthonormal basis in HH. Any cylindrical mea-k 1
sure with this property will be termed countably additive.

As a typical example of w.r.v. we keep in mind the white noise, a
Gaussian process, which we denote by z . Its covariance operator R iszz

given by R s e 2I, I being the identity operator in HH. Each Fourierzz

Ž . � 4̀component z s z , u , u being an orthonormal basis in HH, is ank k HH k 1
ordinary random variable of zero mean and e 2 variance.

As we said above, we regard f , n, and g as values of the w.r.v. j , z , and
Ž .h, respectively. Then Equation 5 must be written as

Aj q z s h . 47Ž .

We assume hereafter that the w.r.v. j and z are Gaussian and indepen-
dent and that they have zero mean. Recall now that the eigenfunctions
� 4̀ 2Ž .c of the operator A form an orthonormal basis of L a, b . Then thek 1

Ž . Ž .2 2Fourier components j s j , c and z s z , c are ordi-k k L Ža, b. k k L Ža, b.

nary random variables with zero mean and variance r 2 and e 2n 2, respec-k k
tively. At this point let us remark that in the following we shall essentially

Ž .work with the trace of operators like the covariance operators , which is
independent on the particular basis chosen. Therefore we can very well

� 4̀use as a basis the eigenfunctions c of the operator A. From thek 1
assumption that j and z are uncorrelated and have zero mean it follows

Ž w x.that the convariance operator R of h is given by see also Frhh

R s AR A q R , 48Ž .hh jj zz

where R and R are the covariance operators of j and z , respectively.jj zz

Moreover the w.r.v. j and h are not independent and their cross-
Ž w x.covariance operator is given by see Fr

w x w xR s E j , h* s E j , j *A* q z * s R A* s R A. 49Ž .jh jj jj

Finally we write R in the formzz

R s e 2N , 50Ž .zz
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Ž .where N is a given operator it is the identity I in the case of white noise
and e is a parameter that tends to zero when the noise vanishes. Now we
are faced with the following problem.

Problem. Given a value g of the w.r.v. h find an estimate of the
w.r.v. j .

We solve this problem under the additional assumption that the covari-
ance operator R is of the trace class; i.e.,jj

` `
2Tr R s R c , c s r s G - `. 51Ž .Ž .Ý Ýjj jj k k k

ks1 ks1

Remark. Let us focus our attention on the following point: we are
obliged to assume that Tr R is finite; nevertheless we do not require ajj

Ž .knowledge of the constant G, which plays a role similar but not identical
5 5 2

2to that of the constant C s f introduced in Section 1.L

2Ž . 2Ž .If B: L a, b ª L a, b is any linear continuous operator, we call
j s Bh a linear estimate of the random variable j . Then the reliability ofB
the estimate is measured by

5 5 2E j y Bh s Tr R y R AB* y BAR q BR B* , 52Ž .� 4 Ž .jj jj jj hh

Ž .where Eq. 49 has been used.
ˆ 2Ž .Now let us consider the class of linear bounded operators B: L a, b ª

2Ž .L a, b defined by

gk
B̂g s c , 53Ž .Ý klkkgI

Ž . 2where g s g, c and I is an arbitrary finite set.k k L
Next we introduce the set I , which is defined asa

I k F k e , 54� 4Ž . Ž .a a

where

m 2 2e n k2k e s max m g N: r q F G . 55Ž . Ž .Ýa k 2½ 5ž /lkks1
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ˆ ˆ ˆŽ .When B is given by B i.e., the operator B associated with the set I ,a a

Ž .Eq. 52 reads

Ž . 2k e` a en k2 2ˆ5 5E j y B h s r q , 56Ž .� 4 Ý Ýa k ž /lkŽ . ks1ksk e q1a

Ž .where Eq. 49 has been used.
Now we may prove the following lemma.

LEMMA 2. The following equalities hold true:

i lim k s q` 57Ž . Ž .a Že .
eª0

Ž . 2k e` a en k2ii lim r q s 0. 58Ž . Ž .Ý Ýk ž /½ 5leª0 kŽ . ks1ksk e q1a

Ž . Ž .Proof. i The proof of i is strictly similar to the proof of statement
Ž .iv of Lemma 1. Indeed if we assume that this statement is not true, we
have a contradiction. In fact let us denote by k the sum k s k q 1. Ifa a a1 1

Ž .equality 57 is not true, then there should exist a finite number M, which
� 4does not depend on e and such that, for any sequence e converging toi

Ž . Ž .zero, k e - M. From formula 55 it follows thata i1

Ž .k e 2 2 2 2a i M1 e n e nk k2 2G - r q F r q . 59Ž .Ý Ýk k2 2ž / ž /l lk kks1 ks1

For e ª 0, we havei

M `
2 2G - r F r s G 60Ž .Ý Ýk k

ks1 ks1

and the contradiction is explicit.
Ž . Ž . ` 2ii Since lim k e s `, and Ý r - `,e ª 0 a ks1 k

`
2lim r s 0. 61Ž .Ý k

eª0 Ž .ksk e q1a

kaŽe .Ž .2Regarding the term Ý en rl we can proceed as follows: fromks1 k k
Ž .formula 55 we have

Ž . Ž .2k e k e `a aen k 2 2q r F G s r 62Ž .Ý Ý Ýk kž /lkks1 ks1 ks1
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and therefore

Ž . 2k e `a en k 2F r . 63Ž .Ý Ý kž /lkks1 Ž .ksk e q1a

` 2 k Že . 2a Ž .Since lim Ý r s 0, we have also Ý en rl s 0.e ª 0 ksk Že .q1 k ks1 k ka

We are looking for a truncation point, which shall be denoted hereafter
by k , which corresponds to the order]disorder transition point in thet

Ž Ž . Ž .Fourier coefficients g see property 3 of the function M m in Sectionk
.2 . Unfortunately we do not have any evidence that the truncation point ka

coincides with k . A quantitative criterium can be derived from thet
information theory. Indeed we know that the amount of information

Ž .contained in the random variable h s h, c regarding the variablek k
Ž . w xj s j , c is given by GYk k

1 2J j , h s y log 1 y r , 64Ž . Ž .Ž .k k k k2

where

22< <w xE j , h l rŽ .k k k k2r s s 65Ž .k 2 22 2< < < <E j E h l r q enŽ . Ž .k k k k k

and finally

2
l rŽ .k k1J j , h s log 1 q . 66Ž . Ž .k k k 2 2ž /enŽ .k

1Ž . Ž .From 66 it follows that if l r - en , then J j , h - log 2 and thek k k k k k 2

amount of information on j contained in h is very small. Therefore wek k
can conclude that the transition point k is the value of k such thatt

for k F k : l r ) en 67Ž .t k k k

for k ) k : l r - en . 68Ž .t k k k

The Hilbert]Schmidt theorem guarantees that this value certainly does
Ž .exist in the case of white noise i.e., n s 1, ;k , supposing that not onlyk

the eigenvalues l but also the terms r are ordered in a monotonousk k
sequence. We can say that this transition point exists also in the case of
colored noise and more generally even if the covariance operator of the
noise is of trace class, if lim l r rn s 0, assuming once more thatk ª` k k k
also the terms n are ordered in a monotonous sequence.k



MAGNOLI AND VIANO204

Now we can associate with the transition point k a set I defined ast t

ˆ� Ž .4I s k F k e . Accordingly we can introduce the operator B which cant t t
be defined in the following way:

gk
B̂ g s c . 69Ž .Ýt klkkgIt

ˆ 2w 5 5 xThen we can compute the estimate E j y B h , obtainingt

2k` t en k2 2ˆ5 5E j y B h s r q . 70Ž .Ý Ýt k ž /lkksk q1 ks1t

Next we prove the following theorem.

THEOREM 2. The following limit holds true:

Ž . 2k e` t en k2lim r q s 0. 71Ž .Ý Ýk ž /½ 5leª0 kŽ . ks1ksk e q1t

Proof. The proof proceeds in two steps
Ž . ` 2a We want to prove that lim Ý r s 0. Now either k G ke ª 0 ksk Že .q1 k t at

or k - k . In the first case the statement follows from the fact thatt a

lim Ý` r 2 s 0. On the contrary if k - k , then we havee ª 0 ksk q1 k t aa

Ž . 2k e` ` a en k2 2r F r qÝ Ý Ýk k ž /lkŽ . ksk q1 Ž .ksk e q1 ksk e q1at t

Ž . 2k e` a en k2F r q . 72Ž .Ý Ýk ž /lkksk q1 ks1a

Ž .But in Lemma 2 we have proved that the r.h.s. of formula 72 tends to
zero as e ª 0, and then the statement follows.
Ž . k tŽe . Ž .2b We want to prove that lim Ý en rl s 0. Now againe ª 0 ks1 k k

either k F k or k ) k . In the first case the statement follows from thet a t a
kaŽe . Ž .2fact that lim Ý en rl s 0, as proved in Lemma 2. If, on thee ª 0 ks1 k k

Ž .contrary, k ) k , then we have, for k F k , r G en rl , and thereforet a t k k k

Ž . Ž .2k e k e `t ten k 2 2F r F r . 73Ž .Ý Ý Ýk kž /lkksk ksk kska Že .q 1 a Že .q 1 a Že .q 1
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Since lim Ý` r 2 s 0, it follows thate ª 0 ksk ka Že .q 1

Ž . 2k et en k
lim s 0.Ý ž /leª0 kkska Že .q 1

kaŽe .Ž .2Now the statement follows, recalling that lim Ý en rl s 0, ase ª 0 ks1 k k
proved in Lemma 2.

Theorem 2 can be regarded as the probabilistic version of Theorem 1,
ˆand accordingly the operator B corresponds to the operator B introducedt

in Section 2. This fact allows us to use statistical methods for the identifi-
Ž .cation of the plateau of M m which corresponds to the order]disorder

transition in the coefficients g . Indeed we can separate the coefficients gk k
into two classes:
Ž . Ž .a the Fourier coefficients g k F k , from which a significant amountk t

of information can be extracted;
Ž . Ž .b the Fourier coefficients g k ) k , which can be regarded ask t

random numbers, since the noise is prevailing on the information.
A remarkable statistical method which can be used is the so-called

‘‘correlogram method.’’ Let us suppose that we know a certain number N
of Fourier coefficients g . Then we can compute the correlation betweenk

w xpairs of them, n units apart, as KS

NynÝ g y g g y gŽ . Ž .k kqnks1 k kqn
d s , 74Ž .n 1r22 2Nyn NynÝ g y g Ý g y gŽ . Ž .½ 5k kqnks1 k ks1 kqn

where n s 0, 1, 2, . . . , N y 1 and

Nyn1
g s g 75Ž .Ýk kN y n ks1

Nyn1
g s g . 76Ž .Ýkqn kqnN y n ks1

< <Then one plots d versus n. In a series of uncorrelated randomn
numbers all the terms d , apart from d s 1, are equal to zero withinn 0
sampling limits. Therefore one can use the departure of the correlation
from zero to test the departure of the terms g from the randomness. Onlyk '< < Žthose values of d that are lying outside a strip of width 2r N N s totaln

.number of sampling data must be regarded as different from zero. Let us
assume that d drops to zero, within statistical accuracy, for a certainn

' 'Ž < < < < .value n of n i.e., d ) 2r N for n - n , d - 2r N for n ) n ;0 n 0 n 0
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Ž .then we can identify the truncation point k e with n q 1. This methodt 0
w xhas been illustrated in SV2 , with several numerical examples in the

specific case of an integral equation whose eigenvalues l are decreasingk
Ž Ž 2 2 ..as the inverse of a power i.e., l s 1r k p : the kernel of this equationk

Ž Ž ..is exactly that considered in Section 2 see example b . Let us stress once
more that this statistical procedure does not require any a priori informa-
tion on the solution f.
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