On the Í unreasonablel effects of ELF magnetic fields upon a system of ions

E. Del Giudice^{1,*}, M. Fleischmann², G. Preparata^{3,∗}, G. Talpo⁴ Bioelectromagnetics, Volume 23, Issue 7, pages 522Ë530, October 2002

Abstract

A recent experiment on a physical, nonbiological system of ions at room temperature has proved that microscopic ion currents can be induced by applying simultaneously two parallel magnetic fields, one rather weak static field, \vec{B}_{0} and one much weaker alternating field, \vec{B}_{ac} , $[B_{ac} \sim 10^{-3}B_{0}]$ whose frequency coincides with the cyclotron frequency $v = qB_{0}/2\pi m$ of the selected ion. As a result, ionic bursts lasting up to 20 s and with amplitude up to 10 nA arise. The much larger exchanges of energy induced by thermal agitation (the %T-problem+) appear to play no role whatsoever. We have analyzed this problem in the framework of coherent quantum electrodynamics, reaching the following conclusions: (a) as has been shown in previous articles, water molecules in the liquid and solute ions are involved in their ground state in coherent ordered configurations; (b) ions are able to move without collisions among themselves in the interstices between water coherence domains; (c) because of coherence, ions can follow classical orbits in the magnetic fields. A full quantitative understanding of the experiments is thus reached.