This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3014389, IEEE Access

IEEE Access

Multidisciplinary * Rapid Review * Open Access Joumal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Reducing User Perceived Latency in
Smart Phones Exploiting IP Network

Diversity

JAMSHEED MANJA PPALLAN', SWETA JAISWAL', KARTHIKEYAN ARUNACHALAM',
PASQUALE IMPUTATO?, STEFANO AVALLONE2?, DRONAMRAJU SIVA SABAREESH', and

MADHAN RAJ KANAGARATHINAM',

'Mobile Communication R&D, Samsung R&D Institute India - Bangalore (e-mail: {jamsheed.mp, sweta.j, karthikeya.a, s.sabareesh, madhan.raj} @samsung.com)
Computer Engineering Department, University of Naples Federico II, Italy (e-mail: {pasquale.imputato, stefano.avallone} @unina.it)

Corresponding author: Jamsheed Manja Ppallan (e-mail: jamsheed.mp @ samsung.com).

ABSTRACT The Fifth Generation (5G) wireless networks set its standard to provide very high data rates,
Ultra-Reliable Low Latency Communications (URLLC), and significantly improved Quality of Service
(QoS). 5G networks and beyond will power up billions of connected devices as it expands wireless services
to edge computing and the Internet of Things (IoT). The Internet protocol suite continues its evolution from
IPv4 addresses to IPv6 addresses by increasing the adoption rate and prioritizing IPv6. Hence, Internet
Service Providers (ISP’s) are using the address transition method called dual-stack to prioritize the IPv6
while supporting the existing IPv4. But this causes more connectivity overhead in dual-stack as compared
to the single-stack network due to its preference schema towards the IPv6. The dual-stack network increases
the Domain Name System (DNS) resolution and Transmission Control Protocol (TCP) connection time that
results in higher page loading time, thereby significantly impacting the user experience. Hence, we propose
a novel connectivity mechanism, called NexGen Connectivity Optimizer (NexGenCO), which redesigns
the DNS resolution and TCP connection phases to reduce the user-perceived latency in the dual-stack
network for mobile devices. Our solution utilizes the IP network diversity to improve connectivity through
concurrency and intelligent caching. NexGenCO is successfully implemented in Samsung flagship devices
with Android Pie and further evaluated using both simulated and live-air networks. It significantly reduces
connectivity overhead and improves page loading time up to 18%.

INDEX TERMS Domain Name System, TCP/IP, Wireless Communication, Mobile Networks, Connectiv-

ity, Page Loading Time, Android Platform,

I. INTRODUCTION
HE Next Generation Networks (NGN) expand wireless
T services beyond mobile internet to critical communica-
tions segments such as edge computing and the Internet of
Things (IoT). With the advent of 5G networks and beyond,
the number of connected devices will upsurge in the coming
years. The emerging 5G technology empowers these con-
nected devices, including smartphones, with a wide range
of application scenarios from low latency communications
to very high data rate communications. As low network
latency is one of the Key Performance Indicator (KPI) for
5G networks, it is relevant to reduce the network latency
overhead of Internet protocol suite as much as possible.
Internet protocol suite has started to evolve to meet the

VOLUME 4, 2016

future needs of NGN. The Internet Engineering Task Force
(IETF) began in 1999 to define the need for larger addressing
space and, the effort went in the definition of the newer
IPv6. The IPv6 provides a vast addressing space with added
advantages such as support for device security, mobility, and
configuration. According to [1], the number of connected
IoT devices will reach around 42 billion units by 2022, and
hence, relying on IPv6 addresses is inevitable. Also, Google’s
data [2] presents a fast IPv6 network adoption rate, which
is doubling every six months and following an exponential
curve, as shown in Fig. 1.

Mobile Network Operators (MNQO’s) are expanding their
networks using IPv6 address space. At the same time, they
are assuring the existing IPv4 compatibility using the address

1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.3014389, IEEE Access

Jamsheed Manja Ppallan et al.: Reducing User Perceived Latency in Smart Phones Exploiting IP Network Diversity

_ = N NN W
S v o wnm O

IPv6 Adoption Rate (%)
wn

Source : Google

(=)

2011 2013 2015 2017 2019

FIGURE 1. IPv6 adoption rate since 2011. The IPv6 adoption rate is doubling
every six months and following an exponential curve.

transition method called dual-stack network architecture. The
need to support IPv4 network arise since a relevant number
of resources are reachable only through the IPv4 network.
Indeed, the World IPv6 Launch Day in 2012 [3] encouraged
several notable content providers to start providing services
over both IPv6 and IPv4. Currently, the fraction of websites
among the top 1 million websites by Amazon’s ALEXA
ranking [4] that have AAAA (IPv6) entries in the DNS servers
is about 22.5% as of May 2020 [5] (refer to Fig. 2). Also, even
though IPv6 addresses adoption is exponentially increasing,
the fraction of web page elements over IPv6 that fails to
load is still significant. Studies show that 27% of websites
with AAAA entries have web page elements that fail to load
in IPv6 [6]. Hence, any algorithm that prioritizes the path
selection in favor of IPv6 may end up in connecting to the
slower path, which needs to be revised.

The dual-stack network architecture leads to support both
IP versions (IPv4/IPv6) and leaves the implementation to
Operating System (OS) for a possible preference schema
towards an IP version. For instance, Android and iOS-based
mobile devices support IPv4/IPv6 domain name resolution
and server connection with a preference schema towards
IPv6. In Android devices, the dual-stack architecture is sup-
ported through a priority resolution of a domain name for
an IPv6 host and then for an IPv4 host. Then Android lets
the application to create a connection with the resolved host.
However, for dual-stack network-supported Android devices,
the DNS lookup and TCP connection establishment take
more time compared to single stack (IPv4-only) devices. For
instance, in case of DNS fails over IPv6, the application
waits a long time before it falls back to IPv4. Apple tried
to solve this problem in iOS devices by implementing the
IETF proposed algorithm known as Happy Eyeballs (HE) [7].
The HE algorithm triggers both Type-AAAA (IPv6) and
Type-A (IPv4) DNS queries in parallel and establishes TCP
connections simultaneously. HE introduces delay timers (to
wait) in favor of IPv6 when an IPv4 resolution/connection
is available before an IPv6 resolution/connection. The idea
is to introduce by design a preference schema towards IPv6
to support the IPv6 adoption. However, currently, it is not

2

ALEXA® Top 1M - Type-AAAA Entries

N
v

22.49%

N
o

-
wn

-
o

(@]

% of AAAA (IPv6) records

Source : Dan Wing - AAAA Statistics

0
2012 2013 2014 2015 2016 2017 2018 2019 2020

FIGURE 2. Top 1 million websites by Amazon’s ALEXA ranking with AaAA
DNS records. The fraction of websites among the top 1 million websites by
Amazon’s ALEXA ranking that have AAAA entries in the DNS servers reached
about 22.5% as of May 2020.

clear if a preference schema towards IPv6 can keep the user-
perceived latency under control (or even improve it).

We conducted an experimental campaign to highlight
possible unfavorable points towards a pure IPv6 preference
schema in the connection phase. We tested the top 300 web-
sites, with A and AAAA entries in the DNS server (among
the 21% of websites which have both entries), from Alexa
ranking over 100 trials per day for 10 days. The idea was
to resolve the domain name with IPv4 /IPv6 addresses and
then test the performance in terms of the initial RTT of both
TCP servers. We introduced a term called TCP slowness,
defined as the difference in TCP connection time of IPv4
and IPv6 servers for a (pre) resolved domain, As;q,(u) =
tya(u) — tye(u), where u is the domain to be loaded. Positive
values of As;., denote that IPv6 connections are faster and
negative values of As,, denote that IPv4 connections are
faster. Then, we defined As;., = 0 in case of an IPv6 con-
nection failure. The results in Fig. 3 clearly show that about
60% of IPv4 connections are faster than IPv6 connections.
Another important observation is that around 7% of IPv6
connections were failing, which is shown as As;, = 0
in the TCP slowness graph. Hence, the results prove that
i) IPv6 connections are often slower than IPv4 and that ii)
the number of IPv6 connection failures is still not negligible.
Based on the current connectivity overhead, giving a higher
priority to IPv6 in the connection phase will bring a higher
user-perceived delay, which substantiates our claims about
preference schema towards IPv6.

We further analyzed Android dual-stack devices and found
additional bottlenecks, especially in network or link failure
cases. For example, in case of a broken link or blocked
address family (IPv4 or IPv6), multiple TCP connections at-
tempts in sequence cause higher user-perceived delay in dual-
stack devices. Moreover, since DNS cache is not effective on
Android due mainly to communication overhead among apps
and cache, sequential DNS lookup (AAAA followed by) and
shorter TTL (Time to Live) values of DNS resource records

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3014389, IEEE Access

IEEE Access

Jamsheed Manja Ppallan et al.: Reducing User Perceived Latency in Smart Phones Exploiting IP Network Diversity

25

® As = |Pv6 Connect Failures
20

15 Only 40% IPv6 Connections are faster
L] ‘.‘ ° L] L) LN eoe o0 L] L]

10 o0 000 © e ” e o oo dmoo ®» oome o

oo o e o (0600 00" o oo ° ®

5 L e e o0 ° LR 2 L
L] L L]

.
[} o o ® e e®eo o

L]
——
0 50 46 o 100 @150 200 250 2300

(] ® eo0 ®» ° [[® o oo - °
ee® o ® o0 ®oo e o o o oo .

TCP Slowness As [ms]
o

-10 IPv4 Connections are faster

D D ° °
15 &° ° ° o
°® Ld e, .)
$ 8 So 2%e %, cloa’ e _o
Plen o PO NR %%
e 0 o o oo oo °
°

-20 . e
o
°

25
Websites

FIGURE 3. TCP Slowness (Asy.p) analysis in TCP connection time. Positive
values of As;., denote that IPv6 connections are faster and negative values
of As;.p, denote that IPv4 connections are faster. The analysis shows about
60% of TCP connections over IPv4 are faster than TCP connections over IPvé.

degrade client application’s performance during slower net-
work conditions [8].

In this work, we propose a novel solution called Nex-
Gen Connectivity Optimizer (NexGenCO) for improving the
connectivity of the dual-stack Android mobile devices. Our
proposal aims to support the co-existence of IPv4 and IPv6,
keeping into account the user-perceived latency. At this
end, NexGenCO relies on concurrency between IPv4 and
IPv6 connectivity and intelligent caching of resolved domain
names.

Following are the main benefits of NexGenCO:

« is the first-ever implementation of asynchronous DNS
resolution and application-specific DNS cache on the
Android platform;

« overcomes the drawbacks of DNS resolution and TCP
connection on dual-stack networks;

« proposes a simple and efficient methodology for esti-
mating the best TCP connection at any moment and
maps it to the application;

« significantly reduces connectivity overhead and im-
proves application page loading time up to 18% con-
sistently.

The rest of the paper is organized as follows. Section 2
describes background and related work. In Section 3 we
describe our proposal. Then, in Section 4, we introduce a
model for performance evaluation. In Section 5 we present
the performance evaluation in controlled environment. Then,
in Section 6 we present the performance evaluation in apps.
Finally, in Section 7 we conclude the work.

Il. BACKGROUND AND RELATED WORK

A dual-stack host with IPv6 connectivity always prefers an
IPv6 path. During domain name resolution, DNS responses
get filled with a list of hosts in an order that prefers IPvo6.
Later in the connection phase, the application connects to an
IPv6 host concerning the DNS response order. However, the
preference for an IPv6 path can increase the user-perceived
latency due to the higher DNS resolution and TCP connection

VOLUME 4, 2016

delay over IPv6. Also, the application responsiveness reduces
further when there are connection failures over IPv6.

Android implements the base dual-stack architecture in its
devices for supporting the dual-stack networks (traditional
dual-stack in Fig. 4). The system function getaddrinfo
resolves the domain name into a list of hosts with a prefer-
ence towards IPv6. Then, the system lets the application to
connect to a host through the function connect. Android
system stack does not have a dedicated process for main-
taining a proper DNS cache [9]. It maintains a DNS cache
based on the smallest TTL value of the DNS response. Every
process running on the Android system communicates with
DNS cache using Inter-Process Communication (IPC), which
creates additional overhead in the mobile device. It is worth
noting that most of the popular Content Distribution Network
(CDN) providers set a minimum TTL value in DNS resource
records. This helps CDN providers to handle system fail-over
and to distribute load among the servers. These shorter TTL
valued DNS queries expire early, which creates additional
DNS queries in the network and also increases the load on
the DNS servers [10]. Hence, avoiding unnecessary DNS
resolution using an enhanced cache would be very efficient.

In i0S, Apple implements an algorithm named Happy
Eyeballs (version 1 [11] and version 2 [7]) for improving the
connectivity of dual-stack devices (shown in Fig. 4 as Happy
Eyeballs). The algorithm introduces the idea of concurrency
between IPv4 and IPv6. The HE algorithm, by design, prefers
its path selection in favor of IPv6. It introduces a static wait
timer for Type-AAAA DNS response before processing Type-
A DNS response. Similarly, it has a static wait timer for IPv6
connection before falling back to IPv4 connection attempt.
These delays are referred to as the resolution delay (rd) and
connection attempt delay (cad) respectively. HE caches in-
formation regarding the outcome of each connection attempt,
and it uses that information to avoid thrashing the network
with subsequent attempts. These cache entries should be
flushed when their age exceeds a system-defined maximum
on the order of 10 minutes. As mentioned in [12], even after
reducing the HE timer to 150 ms, it maintains the same IPv6
preference levels. HE prefers IPv6 connections 90% of the
time even if it is slower than IPv4. Further, the study states
that only 40% of top 10,000 websites by ALEXA ranking are
faster over IPv6 [12].

A few works available in the literature focus on the idea
of pre-fetch a resolution for a domain name or a pre-connect
towards a server. However, all the proposals do not explore
the type of IP network (IPv6/IPv4) for reducing the overall
user-perceived delay. Chromium and Mozilla are following
a technique [13] to pre-fetch DNS queries and reduce user-
perceived latency. But this idea pre-fetches the DNS queries
based on browsing history. In [14], Qualcomm proposes the
pre-resolution of a domain name based on browsing history.
Google published a patent [15] for reducing network connec-
tion latency and navigation latency, which also requires user
interaction as input and is limited to browser applications.
In previous works, we explored optimization mechanisms in

3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.3014389, IEEE Access

Jamsheed Manja Ppallan et al.: Reducing User Perceived Latency in Smart Phones Exploiting IP Network Diversity

|) |) |
| Resolution | Connection |
|

FTmeAMA_p, Tyeh gl IR g,
Android Traditional Dual-Stack

rut_ !

|
TypeAI | (rd) _y__Pv4) IE (cad),
Concurrent : | 0

DNSresolutio

Concurrent
| connection
Type AAAA r : IPvé r attempt

Happy Eyeballs v2

FIGURE 4. Traditional dual-stack implemented in Android and Happy Eyeballs
implemented in iOS. Android waits for resolution failure or connection failure
before to fall on IPv4 while iOS waits till static resolution delay or connection
attempt delay are expired before to fall on IPv4.

Android to reduce the latency overhead. In [16] we intro-
duced in Android the idea of pre-resolution of a domain name
and intelligently cached the results to reduce the resolution
delay. Then, in [9], we introduced the idea of pre-connect to
a host to reduce the connection delay. On the iOS side, HE
does not provide any specification of pre-resolution and pre-
connect mechanisms.

In this solution, we considered all the limitations of pre-
vious works and proposed NexGenCO for reducing the con-
nectivity latency overhead and improving the performance of
the applications in terms of page loading time. NexGenCO
proposes first of its kind connectivity mechanism that is
completely different from these earlier works. Indeed, it does
not rely on any user inputs and and is not specific to any
application or protocol. It is a client-only software layer and
provides a platform-independent solution.

lll. NEXT GENERATION CONNECTION OPTIMIZER

In the following, we provide a detailed description of the pro-
posed solution. NexGenCO aims to reduce page loading time
on mobile devices by exploiting IP network diversity. The
solution relies on concurrent operations over IPv4 and IPv6.
It performs DNS resolution and TCP connection concur-
rently over IPv4 and IPv6. NexGenCO avoids the application
overheads by implementing ahead-of-time DNS resolution
and TCP connection. Also, it introduces per-app caching
mechanism for storing DNS responses and TCP connection
descriptors.

A. SOFTWARE ARCHITECTURE

NexGenCO is a client software shim layer which lies be-
tween the 1ibc library and the application layer (Fig. 5).
The layer provides wrapper functions for getaddrinfo
and connect libc functions. NexGenCO comprises of three
modules, namely, Asynchronous DNS Resolver (ADR), Asyn-
chronous Connection Manager (ACM) and Network Moni-
tor. Also, it includes per-app CO DNS cache and Connection
Pool cache which store, respectively, the history of the re-

4

1
m Application(s)

connect()
wrapper

getaddrinfo()
wrapper

NexGenCO

Network Monitor

Async. DNS
Resolver (ADR)

Async. Connection
Manager (ACM)

CO DNS Cache

Connection Pool

getaddrinfo() connect()

| libc Library |

FIGURE 5. Software architecture of NexGenCO. It is a shim layer between the
libc library and the application layer for intercepting DNS lookup and TCP
connect for improving the connectivity.

solved domain names and the history of the connected hosts.
ADR performs DNS pre-fetching, asynchronous DNS res-
olution and provides cached DNS responses to the applica-
tions, based on the network stack capabilities. It has access to
CO DNS cache for storing the pre-fetched app-specific DNS
responses. ACM is responsible for establishing TCP con-
nections and determining the best TCP connection between
them at any moment. It utilizes Connection Pool cache for
maintaining the pre-connected connection descriptors. Also,
ACM interacts with CO DNS cache to fetch IP addresses for
establishing connections. Finally, Network Monitor monitors
the network conditions, e.g., analyzes the DNS responses and
server capabilities, to optimize ADR and ACM operations.

B. OVERALL OPERATIONS

Fig. 6 shows the overall operations of NexGenCO. To per-
form asynchronous operations, NexGenCO creates two Op-
eration Threads dedicated to IPv6 and IPv4 socket man-
agement separately. ADR and ACM manage the Operation
Threads for asynchronous DNS resolution and TCP con-
nect respectively. NexGenCO is capable of capturing the
app-specific query-pattern, i.e., frequently resolved domain
names, according to the technique proposed in [16].

ADR is able to trigger a DNS resolution on both operation
threads and in () performs an asynchronous DNS lookup.
Then, each thread separately stores the response in the CO
DNS cache. When the app requests for a resolution in (3),
ADR 1) replies with the resolution available in the cache
or ii) trigger a resolution if not available in cache. In the
latter case, ADR will notify the app when both IPv4 and
IPv6 resolutions are ready. In the former case, instead, if
NexGenCO has a valid entry in the cache for the requested
domain name, ADR quickly replies to the app and provides
near-zero resolution delay. It is worth to note that, according
to studies such as [17], ADR sets the cache entry lifetime to

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3014389, IEEE Access

IEEE Access

Jamsheed Manja Ppallan et al.: Reducing User Perceived Latency in Smart Phones Exploiting IP Network Diversity

Application Thread

Getaddrinfo() Connect()
wrapper \ wrapper \
S\ \) !
T
3 W

T
»-
| 4
r

Async. DNS Resolve

| 4
Async. Connection
Manager

| Type-ARAA
1 DNS Lookup \\

Network Monitor
]
I
|
|
|
|
T
I
-
124
1o
D1
2
S
=1l
2
D
21
?
I

lPv4

Type-A

FIGURE 6. Overall operations of NexGenCO. NexGenCO creates two
Operation Threads dedicated to IPv6 and IPv4 socket management
separately. ADR and ACM manage the Operation Threads for asynchronous
DNS resolution and TCP connect respectively.

3600 seconds intending to reduce the DNS traffic generated
from mobile devices and to reduce the resolution delay.

ACM, on each operation thread separately, waits for a do-
main name resolution. When ADR notifies a resolved domain
name, ACM will trigger TCP connections on the correspond-
ing Operation Thread, as shown in (2). Then, each thread
stores the connections descriptors in the Connection Pool
cache. When the app requests for a TCP connection @), ACM
i) replies with the best available connection, or ii) triggers
a new connection. In the latter case, NexGenCO provides
the descriptor to the app. In the former case, NexGenCO
estimates the best available TCP connection, e.g., connection
with minimum initial RTT, and it provides the descriptor to
the app. Note that, even an in-progress connection, i.e., the
thread opens the connection but the ACK from the server is
not received yet, can be passed to the app in this case. In both
cases, ACM assigns a connection file descriptor and closes
the other connection or the other connection attempt.

Finally, the Network Monitor interacts with ADR and
ACM. It is in charge to avoid resource wastage in
NextGenCO. Hence, it monitors the connectivity availability
and in case of unavailability, e.g., of IPv6 connectivity, sus-
pends the corresponding thread till the connectivity comes
back. Also, it monitors the network condition and in case of
persistent failures, e.g., three subsequent failures, it suspends
the thread.

C. ASYNCHRONOUS DNS RESOLVER (ADR)

Fig. 7 shows the inner details of ADR. The main goal of
ADR is to reduce the DNS lookup time for an application.
In general, a dual-stacked host performs both Type-AAAA
(IPv6) and Type-A (IPv4) DNS resolution sequentially, which
results in at least two RTT delay for an application. ADR re-
duces the DNS lookup time overhead and overcomes the lim-
itations of Android DNS Cache as mentioned in Section.II. It

VOLUME 4, 2016

ADR
. AAAAReq | ’
b >
i update cache and notify DNS Res
d A Req '

__update cache and notify DNS Res
trigger '

Read from cache
N

> DNS Resolver

1. getaddrinfo

1. answer

~--[Ahead-of-time
~— engine

FIGURE 7. ADR and its concurrent operations and caching. The main goal of
ADR is to reduce the DNS lookup time for an application. It incorporates i)
asynchronous DNS resolution, ii) DNS caching and iii) ahead-of-time DNS
lookup.

incorporates i) asynchronous DNS resolution, ii) intelligent
DNS caching and iii) ahead-of-time DNS lookup.

The Ahead-of-time engine is an important component of
ADR. Tt triggers DNS resolutions before the application
requests for it. Ahead-of-time engine continuously monitors
all the outgoing DNS queries and recognizes the frequently
triggered queries based on the number of DNS queries per
web domain. During the application launch, these frequently-
triggered DNS queries are used to pre-resolve the domain
names before application requests for it.

When the app makes DNS request, DNS Resolver reads
from cache and immediately replies to the app if a valid
resolution is available in cache. If no valid resolutions are
available in cache, ADR starts a DNS resolution by triggering
DNS queries on different operation threads, which are dedi-
cated for IPv6 and IPv4 socket management, concurrently.
Then, each thread updates the DNS responses on the DNS
cache and informs the DNS resolver. DNS resolver sorts the
resolved IP addresses based on Destination Address Selec-
tion Rule, e.g., first address provided by DNS resolution.
Then, DNS resolver replies to the app and provides the sorted
resolved addresses.

Thus, NexGenCO is able to provide zero RTT DNS re-
sponses for an application by performing DNS resolution
ahead of time and providing resolution in cache.

D. ASYNCHRONOUS CONNECTION MANAGER (ACM)

Fig. 8 shows the inner details of ACM. The primary objective
of ACM is to reduce the TCP connection time for an applica-
tion. It creates one or more parallel connections based on the
sorted DNS responses. Whenever app requests for a connec-

5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.3014389, IEEE Access

Jamsheed Manja Ppallan et al.: Reducing User Perceived Latency in Smart Phones Exploiting IP Network Diversity

; IPv6 Conn | :
G — :
1 update cache and notify Conn Man
i IPv4Conn :

—
. update cache and notify Conn Man
trigger

c

onnection:
Pool ;

Read from cache

|
2. connect N Connection
L
2'. answer ' Manager
L 1

FIGURE 8. ACM and its concurrent operations and caching. The primary
objective of ACM is to reduce the TCP connection time for an application. The
main features of ACM are i) concurrent TCP connection attempts and ii) best
path estimation.

tion, ACM estimates the best TCP connection available and
maps it to the application descriptor for reducing the socket
set-up delay. The main features of ACM are i) concurrent
TCP connection attempts and ii) best path estimation.

When notified from ADR, ACM uses the sorted IP ad-
dresses and establishes TCP connections with IPv6 and IPv4
servers separately on each Operation Thread. As shown in
Fig. 8, both connection attempts are made on the dedicated
IPv6 and IPv4 Operation Thread simultaneously. After cre-
ating the TCP connections, ACM stores the descriptors in
Connection Pool. When the application requests for a TCP
connection, the Connection Manager of ACM estimates the
best communication path between IPv6 and IPv4 connec-
tions. It considers the time taken for TCP three-way hand-
shake, connection failure history and IP family of the TCP
connection to choose the best connection at the moment. The
idea is to select the connection with minimum initial RTT,
no history of connection failures and also matching the app-
requested IP family. Algorithm 1 provides a brief explanation
of the best path estimation logic.

IV. MODEL FOR PERFORMANCE ANALYSIS

This section defines the mathematical model used to analyze
the results created during our experimental analysis. Several
rounds of tests were conducted to compare the NexGenCO
performance with default Android and Happy Eyeballs al-
gorithm. Table.1 explains the important terminologies used
further in the performance model.

Algorithm 1 Best Path Estimation Logic

1: function ESTIMATEBESTPATH(ipv4, ipv6)

2 if (ipv6 == READY) && (ipv4 == READY) then
3 return Lowest Initial RTT connection

4 else if (ipv6 == READY) then

5: return ipv6 connection

6 else if (ipvd == READY) then

7 return ipv4 connection

8 else

9 return App requested IP-version connection

10: end if
11: end function

TABLE 1. Terminologies used in performance modelling

Term Description

ANDCO Base Android connectivity
mechanism

iHECO Happy Eyeballs - i0S equivalent
connectivity mechanism

domain A domain name for which DNS

lookups and TCP connections
are performed by the application

The amount of time taken to
complete the DNS resolution

DNS lookup time

The amount of time taken to fin-
ish the TCP 3-way handshake

TCP connection time

Total time taken for DNS lookup
and TCP connection establish-
ment

Connectivity Overhead

The percentage of connectivity
overhead reduced

Performance Gain

A. DNS LOOKUP TIME ANALYSIS

Let u represent a domain used by the application. Consider
that the network as well as device both supports dual-stack
connections, then, the DNS lookup time for a domain u
for default Android algorithm can be defined by following
equation.

tans O C(w) = Ranaa(u) + Ra(u) (1)

Where, t4NPCO(y) is the DNS lookup time for a
domain wu, RAAAA(u) is the actual RTT of Type-AAAA
DNS lookup and R 4(u) is the actual RTT of Type-A DNS
lookup of domain u.

NexGenCO performs Type-AAAA and Type-A DNS reso-
lution concurrently. Hence, DNS lookup time t)/G“© (u) for
NexGenCO algorithm for a domain u can be represented by
the following equation

tihaC9(u) = MAX (RAAAA(U% RA(“)) @

Similarly, default connectivity mechanism in i0OS, Happy
Eyeballs algorithm also performs Type-AAAA and Type-A
DNS resolution concurrently, but, it adds an additional reso-
lution delay rd (refer to Fig.4) to prioritize IPv6 connections.

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3014389, IEEE Access

IEEE Access

Jamsheed Manja Ppallan et al.: Reducing User Perceived Latency in Smart Phones Exploiting IP Network Diversity

Hence, DNS lookup time for HE algorithm ¢/ €O () can
be given by following equation.

0 (u) = MAX (RAAAA(U), Ra(u) + rd) 3)

Where, rd is the resolution delay for Type-A DNS lookup.

B. TCP CONNECTION TIME ANALYSIS

Let us define the TCP connection time for an IPv4 server is
t,4(u) and for a IPv6 server is ¢,6(u). So, the TCP connec-
tion time for each algorithm can be defined as follows. When
the network and device support dual-stack connections, the
default Android algorithm prefers the IPv6 connection

HANDCO () — toe(u), if SUCCESS @
tew toa(u) + tys(u), otherwise

Instead, NexGenCO always prefers the connection which
has less initial RTT (along with the history of connection
failures)

if t,¢ (u) < tya (U)
otherwise

(NGOO () — {tq,ﬁ(u),)

fep tv4 (U),

Finally, HE prefers IPv6 connection ahead of IPv4 connec-
tion.

if tyg(u) < tyg + cad

tep

tiHECO (u) _ {th(u)’

tya(u) + cad, otherwise
| ©)
Where, t{gg’ beo, t{\cprCO and tig,ECO are the TCP con-

nection time of default Android, NexGenCO and HE respec-
tively.

C. THEORETICAL PERFORMANCE GAIN

The overall performance gain of NexGenCO is the difference
of its DNS lookup and TCP connection time with the default
Android algorithm. Hence, the performance gain for any
domain u can be defined as follows.

dns dns

(P90 () — 57 ()

FNGCO () = (ANDCO () tNGCO(u))+

(7

Where, 7VECO (4) is the performance gain of NexGenCO
for domain w.

Similarly, the percentage gain for NexGenCO can be de-
fined as follows.

TNGCO(U)

NGCO
y (u) = x 100 (8)
tam O () + 1 PO (u)

Where, 7VECO (1) is the percentage gain of NexGenCO
for domain w.

VOLUME 4, 2016

TABLE 2. Key parameters of Automated Test Framework

Parameter Value

Tool pageloadtest automated test
framework

Network Reliance Jio LTE Network

LTE Band Band-40
From Top 300 dual-stack websites by

Data Source ALEXA ranking

Duration 30 days

Frequency 100-200 page loading per day

No. of tests 6000 cycles for 300 websites

V. PERFORMANCE EVALUATION IN CONTROLLED
ENVIRONMENT

In this section, we present the experimental framework de-
signed to compare the performance of NexGenCO against
default Android and Happy Eyeballs version 2 (as it is the
default connectivity mechanism in iOS). Also, the model
presented in Section IV is verified by showing the adherence
of obtained results to the ones expected by the model. For
that, we implemented an automated test framework named
pageloadtest and collected the results from the test
setup for further analysis.

A. EXPERIMENT SETUP

We evaluated the performance of NexGenCO by comparing
it with the existing algorithms of Android OS and also with
IETF’s Happy Eyeballs version 2. As depicted in Fig. 9,
pageloadtest automated test framework is used to exe-
cute all three algorithms simultaneously to compare the con-
nectivity overheads. We measured the page loading time of
the top 10K websites featured by ALEXA ranking [4] for all
three algorithms. For better evaluation, the pageloadtest
filtered out the websites that were partially loaded or unable
to load from the list of top sites. The filtering of these
websites was done based on a fixed threshold value for
DNS lookup and TCP connection time. Further, it selected
only those websites which supported dual-stack connections.
This automated test framework is compiled for the Android
platform and deployed in Samsung smartphones.

The devices were connected to the Internet using Reliance
Jio LTE network operator, which has a high IPv6 adop-
tion rate of 93.66% [18]. For pageloadtest automated
testing, we used three identical devices configured with
ANDCO, iHECO, and NexGenCO algorithms respectively.
Android webview component is used to build and run the
pageloadtest framework to load the selected websites
serially. These websites may contain more than one domain
(as defined in Table.1) on the web page. pageloadtest
collects network traces for all domains and Data Analyzer
examines the DNS lookup and TCP connection time of each
domain, as shown in Fig. 9, to generate an elaborated report.
Table 2 summarizes the key parameters of the automated test
campaign.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.3014389, IEEE Access

Jamsheed Manja Ppallan et al.: Reducing User Perceived Latency in Smart Phones Exploiting IP Network Diversity

— - Automated Test Framework - —

TCP Server
(IPv6/IPv4)

0

Internet
ANDCO

iHECO
NexGenCO

|
|
|
|
|
|
|
|
i
|
! pageloadtest
|
|
|
|
|
|
|
|
|
|
|

Data Analyzer

FIGURE 9. Automated Test Framework to evaluate NexGenCO.
pageloadtest automated test framework is used to execute all three
algorithms simultaneously to compare the connectivity overheads.

1 .
| 'y
2
3 0.75
©
-1
2
a
o 05
2
g ‘iHECO
302 - ANDCO
.~ —- NexGenCO (No Cache)
o 77 e —NexGenCO (With Cache)
0 20 40 . 60 80 100
DNS lookup time [ms]

FIGURE 10. CDF of DNS lookup time. NexGenCO (¢} € ©) reduces the
DNS lookup time significantly.

B. RESULTS ANALYSIS

We analyzed the DNS lookup time of our experiments.
Fig. 10 shows the CDF of DNS lookup time for the
domains in the selected web pages with NexGenCO,
iHECO, and ANDCO. As shown in the figure, NexGenCO
(t}GC0) reduces the DNS lookup time using concurrent
DNS resolution without causing any additional delay. Even
without the DNS caching mechanism, NexGenCO performs
better than Happy Eyeballs, as it does not favor any specific
IP version. Whereas Happy Eyeballs (t/E€©) uses con-
current DNS lookup with a resolution delay (rd), preferring
IPv6, the values are comparable but higher than NexGenCO.
Since the Android platform performs the DNS resolution
sequentially, the time taken for DNS lookup (tj?rf\;DCO) is
about two times t)’G¢O. The result shows that 75% of
DNS resolutions take less than 48 ms using the NexGenCO
algorithm, whereas iHECO and ANDCO take 53 ms and 75
ms respectively to resolve a domain. Hence, we can observe
around a 35% reduction in DNS lookup time for a domain
supporting dual-stack network.

8

1
2038
E
g
o 0.6
o
204
-
Kd
3 ----ANDCO/iHECO
Eo0.2 , /
o . —NexGenCO

0

0 20 40 60 80 100
TCP Connect Time [ms]

FIGURE 11. CDF of TCP connect time. NexGenCO reduces the TCP connect
time by connecting to the server as soon as the DNS resolution is completed
and mapping the best available connection.

= NexGenCO (With CACHE)

60

5
E
-1
3
£ 120 X o NexGenCO (Without
o

CACHE!
8 100)
g 8iHECO
2 80
g
g @ANDCO
2 i
o
o

N
o

20

0

FIGURE 12. Connectivity Overhead Comparison. NexGenCO reduces the
connectivity overhead of 30% and 35% with DNS cache and without
respectively if compared with default Android.

Then, we analyzed the TCP connection establishment time
of our experiments. Fig. 11 shows the CDF of TCP con-
nect time for the domains in the selected web pages with
NexGenCO, iHECO, and ANDCO. NexGenCO reduces the
TCP connect time by connecting to the server as soon as the
DNS resolution is completed and mapping the best available
connection (IPv4/IPv6 connection) to the application when
requested. Instead, ANDCO and iHECO create the connec-
tion upon receiving the application’s request and always favor
IPv6. Hence, both achieve higher TCP connection delays.
More specifically, to connect with a TCP server, 75% of
connections take less than 57 ms using the NexGenCO al-
gorithm, whereas ANDCO and iHECO take 69 ms. Hence,
we observe around an 18% reduction in TCP connect time
for a domain supporting dual-stack network.

Finally, we analyzed the total connectivity overhead,
which is the sum of DNS resolution delay and TCP connec-
tion delay. Fig.12 depicts the total connectivity overhead of
the three algorithms using a box plot. For getting a complete
result, we also evaluated the connectivity overhead of Nex-
GenCO without its DNS caching mechanism. NexGenCO
reduces connectivity overhead significantly, providing almost

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3014389, IEEE Access

IEEE Access

Jamsheed Manja Ppallan et al.: Reducing User Perceived Latency in Smart Phones Exploiting IP Network Diversity

zero RTT connections to the applications. We observe a
reduction in the connectivity overhead of 30% and 35%
by NexGenCO with DNS cache and without respectively
if compared with ANDCO. Also, we perceive an improve-
ment of about 15% and 20% in by NexGenCO with DNS
cache and without respectively, if compared with iHECO.
Indeed, the results show the median connectivity overhead
value of 77 ms in NexGenCO with DNS cache, 81 ms in
NexGenCO without DNS cache,117 ms in ANDCO, and 95
ms in iHECO.

According to results analysis and Equations 1 to 5, the
relation between connectivity overheads of three algorithms
can be represented as follows.

NGCO NGCO iHECO iHECO
tdns + ttcp] < [tdns + ttcp]

9

ANDCO ANDCO
< |:tdns + ttcp :|

Therefore, NexGenCO outperforms both Happy Eyeballs
and default Android algorithms.

Eventually, it is worth to note that during the
pageloadtest analysis, Monsoon Power Monitor Tool is
utilized to estimate the power usage with Android platform,
NexGenCO, and Happy Eyeballs. The results show no sig-
nificant variations in the device power usage during our tests.

VI. LIVE-AIR PERFORMANCE EVALUATION

To understand the impacts and benefits of NexGenCO on
end-user experience, we extended the evaluation to live-air
network with popular Android applications.

A. EXPERIMENT SETUP

The proposed solution is successfully implemented in various
Samsung models such as S10, S10+, A9 and A7 with An-
droid Pie. We used two identical devices simultaneously for
testing with and without NexGenCO solution and evaluated
the solution by comparing different network parameters.
Both devices were configured with the same hardware, soft-
ware and network conditions. Experiments were conducted
in both Wi-Fi and 4G/LTE networks. The results are taken
from a live network with normal usage pattern for analyzing
the real-time effects on end-users.

B. RESULTS ANALYSIS

Firstly, we analyzed the performance of DNS resolution in
Android with NexGenCO in terms of the number of queries
generated and the DNS lookup time of several popular ap-
plications. The trace I/O graph in Fig.13 shows the average
DNS traffic for the first three minutes after launching an app
with NexGenCO and default Android. NexGenCO performs
concurrent DNS resolution ahead of time for minimizing
DNS lookup time. As shown in the graph, NexGenCO’s
asynchronous DNS pre-fetching results in higher DNS traffic
during the app startup. Later, due to DNS caching, it dras-
tically reduces the number of DNS lookup requests. Thus,
by average, NexGenCO minimizes overall DNS traffic from

VOLUME 4, 2016

50 Default Android
DNS Pre-fetch

== NexGenCO

0 15 30 45 60 75 90 105 120 135 150 165 180
Time (s)

FIGURE 13. DNS traffic generated by an app in Android with and w/o
NexGenCO. NexGenCO performs concurrent DNS resolution ahead of time for
minimizing DNS lookup time. NexGenCOQO'’s asynchronous DNS pre-fetching
results in higher DNS traffic during the app startup. Later, due to DNS caching,
it drastically reduces the number of DNS lookup requests.

= DNS Cache Hit% SAvg. DLT (Default Android) @ Avg. DLT (NexGenCO)
100 100

@
=}
@
t=}

60

o
=}

N
o

40

DNS Cache Hit %
Avg. DNS Lookup Time [s]

N
o
N
=3

0

€ = a @

FIGURE 14. DNS cache hit percentage and DNS Lookup Time (DLT) in
popular Android apps with and w/o NexGenCO. NexGenCO minimizes the
average DLT by up to 89%.

52.81% to 78.22%. To further evaluate the effect of DNS
cache on Android apps, Fig. 14 depicts the DNS cache hit
rate of NexGenCO. As a result of the intelligent caching
mechanism, on an average, NexGenCO DNS cache achieves
81.07% hit rate. Fig. 14 further compares the average DNS
lookup time (DLT) with NexGenCO and default Android
for various popular apps. NexGenCO minimizes the average
DLT by up to 89% consistently.

Then, we evaluate the impact of TCP connection time
in NexGenCO performance. NexGenCO realizes TCP pre-
connect ahead of the application request. Since NexGenCO
avoids the TCP three-way handshake overhead by making
concurrent TCP connections attempts, it provides zero RTT
overhead TCP connections to the applications. Fig. 15 reports
the average number of TCP connections established by the
apps and TCP pre-connections created by NexGenCO along
with zero RTT overhead percentage. Also, Fig. 16 summa-
rizes the average TCP connection time improvement using
NexGenCO. NexGenCO provides from 35.71% to 65.11%
zero RTT connections and reduces the effective TCP connec-

9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.3014389, IEEE Access

Jamsheed Manja Ppallan et al.: Reducing User Perceived Latency in Smart Phones Exploiting IP Network Diversity

N
'
o

Total no. of TCP Connections

-
N}
o

u No of Zero RTT Connections
(NexGenCO)

No. of TCP Connections
S D o] 5
o o o o

N}
=}

o

a @

© =

FIGURE 15. Number of TCP connections opened in Android popular apps
and percentage of zero RTT TCP connections obtained by means NexGenCO.
NexGenCO provides from 35.71% to 65.11% zero RTT connections.

@
=}

Default Android = NexGenCO

-~
o

=}
o

25% to 35% effective TCP Connection Time
reduction using NexGenCO

Avg. TCP Connection Time [ms]
n w B o
o o o o

=
o

FIGURE 16. TCP connection time in Android popular apps with and w/o
NexGenCO. NexGenCO reduces the effective TCP connection time from 25%
to 35%.

tion time from 25% to 35%.

Finally, we estimate the performance of NexGenCO in
terms of browser page loading time. We developed a test
application that loads webpages one by one (from the list
provided) and provides the PLT for each page. Fig.17 shows
the impacts of page loading time of the commonly used 100
websites from Alexa ranking. We chose popular websites
with page loading time lie in between 1500 ms to 3000
ms. NexGenCO significantly improves page loading time by
12.81% to 18.33% consistently.

The results using pageloadtest (controlled environ-
ment) and live-air networks confirm that NexGenCO mini-
mizes connectivity overhead of protocol stack and improves
the end-user experience significantly.

VIl. CONCLUSION

As 5G and IoT are emerging and IPv6 adoption rate is boom-
ing, the need for efficiently handling the connection overhead
caused by dual-stack network is inevitable. In this paper, we
propose a novel solution named NexGenCO to improve the
dual-stack connectivity and support intelligent DNS caching.
It is a client only software solution for minimizing latency

10

4.5
~~~~~~ Default Android NexGenCO
z ! : :
£ L
= 3 ..
g i
5 25
©
S 2
&
15
a
;b 1
< o5 Percentage Gain (VNGCO) =12.8%-18.3%
0
0 50 100 200 250 300

150
Websites

FIGURE 17. Page Loading Time of ALEXA popular wbsites. NexGenCO
significantly improves page loading time by 12.81% to 18.33%.

caused by the network protocols, which is easily deployable
in Android based devices. It is a user-space solution and
does not require any changes in the kernel, existing network
protocols, middle boxes or servers. NexGenCO is a light-
weight solution which is prototyped in Samsung devices with
Android Pie and evaluated its performance with multiple
defined scenarios. Extensive analysis was conducted using
pageloadtest framework. NexGenCO significantly re-
duced network protocols latencies without causing any per-
formance degradation. It improved the page loading time up
to 18% consistently.

In addition to finding the best TCP communication path
among IPv4 and IPv6 servers, exploring all available content
server path quality is a area of interest for us. Hence, we
extend our scope of work to find the best communication
path among all the content servers with zero connectivity
overhead to the application.

REFERENCES

[1] Statista. Internet of Things (IoT) connected devices installed base

worldwide from 2015 to 2025 (in billions). (Accessed on 09-Jan-2020).

[Online]. Available: https://www.statista.com/statistics/471264

GoogleIPv6. IPv6 Adoption Statistics. (Accessed on 09-Jan-2020).

[Online]. Available: https://www.google.com/intl/en/ipv6/statistics.html

[3] InternetSociety. World IPv6 Launch. (2012). Retrieved Dec 04, 2019 from
http://www.worldipv6launch.org.

[4] “Alexa.com Website Traffic Statistics,” https://www.alexa.com/, accessed:
2019-07-21.

[5] “Dan  Wing - AAAA and IPv6 Connectivity Statistics,”
http://www.employees.org/ dwing/aaaa-stats/, (Accessed on 09-Jan-
2020).

[6] J. Pickard, M. Angolia, and D. Drummond, “Ipv6 diffusion milestones:
Assessing the quantity and quality of adoption,” Journal of International
Technology and Information Management, vol. 28, no. 1, pp. 2-28, 2019.

[7] D. Schinazi and T. Pauly, “Happy Eyeballs Version 2: Better Connectivity
Using Concurrency,” RFC 8305, Dec. 2017. [Online]. Available:
https://www.rfc-editor.org/info/rfc8305

[8] D.S.Sabareesh, G. V. P.Reddy, S. Jaiswal, J. M. Ppallan, K. Arunachalam,
and Y. Wu, “Redundant TCP connector (RTC) for improving the perfor-
mance of mobile devices,” in 2019 IEEE Wireless Communications and
Networking Conference (WCNC), April 2019, pp. 1-7.

[9] K. Arunachalam, J. M. Ppallan, S. Jaiswal, R. S. Lingappa, V. Balasubra-
manian, and K. Subramaniam, “Layer 4 Accelerator (L4A) for optimizing
network protocol latencies in mobile devices,” in 2018 IEEE 20th Interna-
tional Conference on High Performance Computing and Communications
(HPCC), June 2018, pp. 439—448.

2

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3014389, IEEE Access

IEEE Access

Jamsheed Manja Ppallan et al.: Reducing User Perceived Latency in Smart Phones Exploiting IP Network Diversity

[10] M. Almeida, A. Finamore, D. Perino, N. Vallina-Rodriguez, and
M. Varvello, “Dissecting dns stakeholders in mobile networks,”
in Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies, ser. CONEXT 17, 2017, pp.
28-34. [Online]. Available: http://doi.acm.org/10.1145/3143361.3143375

[11] D. Wing and A. Yourtchenko, “Happy Eyeballs: Success with Dual-Stack
Hosts,” RFC 6555, Tech. Rep. 6555, Apr. 2012. [Online]. Available:
https://rfc-editor.org/rfc/rfc6555.txt

[12] V. Bajpai and J. Schonwilder, “A longitudinal view of dual-stacked web-
site: Failures, latency and happy eyeballs,” IEEE/ACM Transactions on
Networking, vol. 27, no. 2, Apr. 2019.

[13] Google. DNS Prefetch Control. (Accessed on 09-Jan-2020). [Online].
Available: https://dev.chromium.org/developers /design-documents/dns-
prefetching

[14] D. Ghosh, M. Bapst, C. Lott, R. Attar, G. Cherian, L. He, and D. Garg,
“Adaptive DNS pre-fetching,” Feb. 4 2014, uS Patent 8,645,501. [Online].
Available: https://www.google.com/patents/US8645501

[15] J. Roskind, “Reduction in redirect navigation latency via speculative
preconnection,” Dec. 2 2014, uS Patent 8,903,946. [Online]. Available:
https://www.google.com/patents/US8903946

[16] J. M. Ppallan, K. Arunachalam, S. Jaiswal, D. S. Sabareesh, S. Seo, and
M. R. Kanagarathinam, “Flare-DNS Resolver (FDR) for optimizing DNS
lookup overhead in mobile devices,” in 2019 IEEE Consumer Communi-
cations and Networking Conference (CCNC), January 2019, pp. 1-7.

[17] G. C. M. Moura, J. Heidemann, R. d. O. Schmidt, and W. Hardaker,
“Cache me if you can: Effects of dns time-to-live,” in Proceedings
of the Internet Measurement Conference, ser. IMC ’19. New
York, NY, USA: ACM, 2019, pp. 101-115. [Online]. Available:
http://doi.acm.org/10.1145/3355369.3355568

[18] “APNIC Labs : IPv6 Capable Rate by
https://stats.labs.apnic.net/ipv6/IN, accessed: 2019-07-21.

country,”

JAMSHEED MANJA PPALLAN (M’17) is cur-
rently working as a Research Engineer for Sam-
sung R&D Institute India-Bangalore. Previously,
he worked as a Senior Software Engineer for
Huawei Technologies India Private Limited and
as Associate Programmer for National Informatics
Centre, Govt. of India. He received a B.Tech de-
gree in computer science from Cochin University
of Science and Technology, Kerala, India, in 2012.
He has 8+ years of industry experience in software
research and development. His research interests include next-generation
transport layer protocols, cross-layer optimization, smartphone operating
system, and green communication.

SWETA JAISWAL (M’20) has 11+ years of ex-
perience in software research and development in
the telecommunication industry. Currently, she is
working as Chief Engineer for Samsung R&D In-
stitute India, Bangalore. Previously she worked as
a software engineer for Tata Consultancy Service
Ltd. She received her B.Tech degree in electron-
% ics and communication from the Vellore Institute

of Technology, Vellore, Tamil Nadu, India. Her

research interest lies in Communication and Net-
working which include next-generation transport layer protocols, Multi-
access Edge Computing (MEC), green communication techniques, and
cross-layer optimization.

VOLUME 4, 2016

KARTHIKEYAN  ARUNACHALAM  (M’16,
SM’19) has 15+ years of extensive research expe-
rience in Transport layer protocols. He is an IEEE
senior member and ACM member. Currently, he
is working as an Architect for Samsung Research
institute India Bangalore. His current research
interests include next-generation transport layer
protocols, cross-layer communication, and mobile
edge computing. Previously he worked as a senior
associate in Novell Software Development (India)
Private Limited, senior software Engineer in Huawei Technologies India
Private Limited, and software engineer in Protechsoft Technologies Private
Limited. He received a B. Tech degree in information technology from Anna
University, Chennai, India.

PASQUALE IMPUTATO received the M.Sc. and
Ph.D. degrees from the University of Napoli Fed-
erico II in 2015 and 2019, respectively. He is
currently a research fellow at Department of Com-
puter Engineering at the University of Napoli. He
was a visiting researcher at the Centre Tecnologic
de Telecomunicacions de Catalunya (2017-2018).
His research interests include wireless networks
and the bufferbloat problem.

STEFANO AVALLONE received the M.Sc. and
Ph.D. degrees from the University of Napoli Fed-
erico II in 2001 and 2005, respectively. He is
currently an Associate Professor with the Depart-
ment of Computer Engineering at the University of
Napoli. He was a visiting researcher at the Delft
University of Technology (2003-04) and at the
Georgia Institute of Technology (2005). He is on
the editorial board of Elsevier Ad Hoc Networks
and the technical committee of Elsevier Computer
Communications. His research interests include wireless mesh networks,
4G/5G networks and the bufferbloat problem.

DRONAMRAJU SIVA SABAREESH (M’19) is
graduated from JNTU Kakinada in Electronics
and Communications Engineering and received
his Post Graduation degree from IIT Kharagpur
in Telecommunication Systems Engineering. Cur-
rently, he is working as a Chief Engineer at Sam-
sung R&D Institute, Bangalore. He has 7+ years of
work experience in the Android Telephony Frame-
work, Android Connectivity Framework, Android
Application Development, MP-TCP, Radio Inter-
face Layer (RIL), Design and Development of Transport Layer Protocols.
His current research interests are in Communication & Network which
include next-generation transport layer protocols, Mobile Edge Computing
(MEC), cross-layer optimization, and green communications.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

. 10.1109/ACCESS.2020.3014389, IEEE Access
IEEE Access

Jamsheed Manja Ppallan et al.: Reducing User Perceived Latency in Smart Phones Exploiting IP Network Diversity

MADHAN RAJ KANAGARATHINAM (M’18,
SM’20) received the BE degree in computer
science and engineering from Anna University,
Chennai, India, in 2012. He has seven years of
working experience in design and development
of TCP/IP protocols, Multi-path TCP and UNIX
flavored operating systems. Currently, he is work-
ing as a Chief Engineer for Samsung R&D Insti-
tute India Bangalore. Previously, he worked as an
Engineer with Aricent Technology (India) Private
Limited. He is the author of 15 articles, and more than 20 inventions. His
current research interests include communication and network which include
Pre-6G/Beyond 5G, Next Generation Mobile Network, software-defined
network architecture, transport layer protocols, and cross-layer optimization
technique. He is a senior member of the IEEE, and a member of the ACM.

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



