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Abstract

The sensitivity of standard optical schemes for the readout of weak vibrations is limited thermal and radiation p
fluctuations induced by the small interrogation area. We propose and analyze an optical configuration allowing to overc
problem and optimize the sensitivity of the new generation of massive gravitational wave detectors.
 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The research devoted to the realization of detectors for gravitational waves (gw) has seen substantial
since the first experiments in the early 60s. However, it is now commonly accepted that, to open the poss
a gw astronomy, a further substantial advance in sensitivity is necessary. To reach this goal a new gene
gw detectors is being studied. This activity concerns both long baseline interferometers (an example is LIG
and massive detectors, for which the most advanced designs are based on hollow spheres equipped with
resonant transducers [2] and wideband ‘dual’ detectors. The last configuration can be implemented with tw
spheres [3], an inner solid one and a hollow outer one, or two cylinders [4], and the signal is directly read f
gap between the two nested masses.

While long interferometers naturally employ long Fabry–Perot cavities (FP) in the two arms, also for re
detectors the use of optical techniques for the displacement detection was considered in the past [5] and a
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optical readout system has recently been operated on a room-temperature Weber bar [6]. Interferometric te
can compete with the standard capacitive and inductive sensors which are used in cryogenic bars and
excellent candidates for the necessary further extension of the sensitivity.

Optimizing the displacement sensitivity of a FP interferometer requires an increase of the input lase
and/or of the cavity finesse, up to the quantum limit given by the balance between the shot-noise e
the detection and the back-action exerted by radiation pressure. A really quantum-limited detection can
obtained if thermal noise is negligible.

The optical readout considered in Ref. [3] for the dual-sphere detector is based on a FP cavity
finesse of 106 and laser power of about 1 W (in a conservative design) or 7 W (to reach the quantum l
the design frequency of 1.3 kHz). The shot-noise limited displacement sensitivity corresponds respec
7 × 10−45 m2/Hz and 10−45 m2/Hz.1 Thermal noise is negligible respectively forQ/T > 2 × 107 K−1 and
Q/T > 2 × 108 K−1, whereQ is the mechanical quality factor andT the temperature of the massive resona
This calculation only considers the global detector response for evaluating both thermal noise and radiation
effects, using a normal mode expansion. On the other hand, one should also take into account local effec
surface deformation, for both thermal noise [7–10] and radiation pressure [11].

The rigorous analysis of local thermal noise sources is the subject of several recent works. The interna
noise of the test masses was studied by Levin [7] and by Liu and Thorne [8], who showed an important dep
on the size of the region which is interrogated. Besides these thermal fluctuations, called Brownian no
further noise sources must be considered, as pointed out by Braginsky et al. [9] and calculated on a wide f
range by Cerdonio et al. [10]: a first one is due to fluctuations in the temperature (thermodynamic noise); a
one is due to the heating of the mirrors caused by the laser power in the cavity (photothermal noise). Bot
give rise to displacement fluctuations through the thermal expansion coefficient. As discussed in Ref. [10]
1 K the material to be used in the mirror substrates is probably sapphire. In that case, thermal fluctuat
dominated by Brownian noise. The same work also reports the calculation of the ‘local’ radiation pressure

Both effects can be calculated from the susceptibilityχ(ω) describing the mechanical response of the mirro
an exerted pressure [7,10]. From the fluctuation–dissipation theorem we obtain the spectral power of the B
noise

(1)SBr(ω)= 4kBT

ω
Im

[
χ(ω)

]
,

wherekB is the Boltzmann constant. The displacement noise due to radiation pressure fluctuations is give

(2)Srp(ω)= ∣∣χ(ω)∣∣2(2

c

)2

Scav,

wherec is the speed of the light andScav is the noise spectral power of the radiation impinging on the mirror. If
mirror is part of a FP cavity of finesseF and a shot-noise limited laser with powerPin and optical frequencyν is
resonant with the cavity, we have

(3)Scav= 2hν

(
F

π

)2

Pin.

If we consider a single Gaussian spot on a half-infinite mirror, for the low-frequency susceptibility w
use [12]

(4)
∣∣χsingle

∣∣ = 1

π1/2w

1− σ 2

Y
,

(5)Im
[
χ(ω)

] � φ
∣∣χ(ω)∣∣,

1 We consider single-side spectra.
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whereσ is the Poisson coefficient,Y is the Young modulus of the mirror material,φ is the loss angle (we suppo
φ � 1) andw is the beam waist at the reflecting surface. From Eqs. (1)–(5) we obtain [7,8]

(6)S
single
Br (ω)= 4kBT

π1/2

φ

ω

1

w

1− σ 2

Y
,

(7)S
single
rp =

(
2(1− σ 2)F

π3/2cYw

)2

2hνPin.

For a FP cavity, the Brownian fluctuations on the two mirrors are independent while the fluctuations
radiation pressure must be summed coherently obtaining (in the approximation of equal beam size on the
SFP

Br = 2Ssingle
Br andSFP

rp = 4Ssingle
rp .

For sapphire at 1 K we use the following material parameters:φ = 3 × 10−9, σ = 0.25 andY = 4 × 1011 Pa.
With an input laser power of 1 W, a beam waist of 1 mm and a finesse of 106, we getSsingle

Br = 2.7×10−44 m2/Hz (at

1.3 kHz) andSsingle
rp = 2.9× 10−42 m2/Hz. With such parameters, both effects are larger than the sensitivity

imposed by the shot-noise. In particular, in order to reduce Brownian noise and radiation pressure fluc
below this limit we need a beam waist larger than, respectively, 7.4 and 40 mm. If the input power is 7
constraints become as large as 52 and 280 mm.

The optical readout that we have experimented on a room temperature bar is based on a plane-sph
cavity with a length of 6 mm and a concave mirror radius of 6 m, giving a spot-size of about 0.18 mm. The
spherical geometry does not allow for great improvements, since the cavity length cannot be much incre
obvious technical reasons and for maintaining a low sensitivity to the laser frequency noise, and the dep
of the spot size on the mirror radiusR is just asR0.25. Other cavity configurations can be used, such as ne
concentric or meniscus cavities, but the maximum beam-size that can be obtained with reasonable tole
the fabrication is few millimeter. An optical geometry alternative to the FP is given by the Herriott delay line
where each bounce of the beam corresponds to a different spot. Nakagawa et al. [14] have shown that it
noise effect is lower than the one of a FP with the same sensitivity. However, such an optical scheme is only
for low corresponding finesse (few hundreds), while the planned finesse of the readout is 106.

In this Letter we present a different optical configuration which allows to keep the sensitivity of a high-fi
FP while using several spots to interrogate two opposite surfaces, as for the Herriott delay line. Our scheme
to reach the desired low level of thermal noise and radiation pressure effects. The basic idea is to take a
cavity andfold the optical path, so that the beam experiences several reflections before getting back to the
reflecting input mirror. This folded Fabry–Perot (FFP) maintains the sensitivity of the high finesse FP (lim
the losses on one single mirror), but the surface fluctuations are probed by several reflections. It is po
obtain an ‘equivalent’ beam radius of several centimeter maintaining a compact cavity. A similar configurat
be adopted also for the long FP of future generations of long interferometers, by using several mirrors at e
Such schemes allow to solve completely the problem of excess noise, bringing its effect below the quant
for the adopted configuration.

2. Design and performance of a folded Fabry–Perot

An example of FFP is shown in Fig. 1(a), where the input mirror is partially reflecting and the othe
high reflectors. The input and/or the end mirrors M1 and M4 are concave and the beam experiences
reflections between two intermediate flat mirrors M2 and M3 before reaching M4 and being reflected b
we callD the distance between the mirrors M2 and M3,θ the incidence angle andN the number of bounce
on M2 (there areN − 1 bounces on M3) we get an effective cavity lengthL = 2ND/cosθ . The geometrica
configuration of the beam, i.e., waist dimension, necessary alignment accuracy, etc., is the same as the
standard cavity of lengthL. If the input mirror transmission isT and the losses on each mirror areΣ , we have a
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Fig. 1. (a) Folded Fabry–Perot cavity with input (M1) and end (M4) mirrors, and two parallel intermediate mirrors (M2 and M3): th
entering the cavity reflects off the intermediate mirrors with a constant incidence angle and bounces back at the end mirrors. (
Fabry–Perot cavity with an input mirror (M1) and two angled mirrors (M2 and M3): if the incidence angle of the first reflection on mir
is an integer multiplen of the angle between the mirrors M2 and M3, then the beam bounces back on the same path aftern+ 1 reflections.

total losses coefficient on the round-tripΣTOT = 4NΣ . If the Pound–Drever–Hall technique [15] is used to de
the mirror displacement, the optimum signal-to-noise ratio is obtained whenT =ΣTOT. The cavity finesse is the
FFFP = 2π/(T + ΣTOT) = 2π/8NΣ , i.e., a factor of 2N lower than the finesse of a simple cavity. The cav
linewidth δFFP= c/2LFFFP is just a factor of cosθ smaller than the one of a Fabry–Perot cavity of lengthD made
with the same mirrors (M1 and M4).

Simple geometrical considerations show that the shift�ν of the resonant optical frequencyν due to a change
�D in the position of M2 is given by�ν/ν =�L/L= cos2 θ �D/D, i.e., for small incidence angles, it is nea
the same as in the case of a simple cavity of lengthD. A lower limit to the detectable signal is given by the sh
noise in the detection and it is proportional toDδFFP/ν. As a consequence, the sensitivity of the FFP is wors
just a factor of cosθ with respect to the simple cavity.

We consider now the effect of the Brownian noise. If the thermal fluctuations in the mirror surface p
at each spot are not correlated, then the total fluctuations sensed by the beam in a round-trip are
S2L

Br = (8N − 2)Ssingle
Br , corresponding to relative frequency fluctuations

(8)
Sν

ν2 = S2L
Br

(2L)2
= S

single
Br

2D2

cos2 θ

N

(
1− 1

4N

)
.

We have considered that the fluctuations on each spot of M2 and M3 are experienced twice in a round-trip
two contributions must be summed coherently giving a displacement noise 4(2N − 1)Ssingle

Br , while the end mirrors

are only sensed ones giving additional contribution 2S
single
Br .

For a simple cavity of lengthD the relative frequency noise isSν/ν2 = S
single
Br /2D2. This is the first importan

result: for small incidence angles, the signal remains the same while the excess thermal noise is reduced
a factor ofN (in the power spectrum) with respect to the simple cavity.

In the calculation of the fluctuations in a FFP we must also take into account that the beam size increa
the optical lengthL. If the concave mirrors radius is much larger thanL, we can consider the beam radiusw
as constant within the FFP and equal to the cavity beam waistw0 defined below. If we observe the express
in Eq. (6), we see that the displacement power spectrumS

single
Br scales with the inverse of the beam radius. A

consequence, for a rough calculation, we can start from an equivalent radiuswE,Br defined as the beam-size whi
is necessary to get rid of the Brownian noise in the simple cavity. We find that the minimum number of bou
given by

(9)w0 =wE,Br
cos2 θ

N

(
1− 1

4N

)
.
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If the FFP has one concave mirror with radiusR, the beam waist is

w0 =
√
λzR

π
�

(
2NRDλ2

cosθπ2

)0.25

,

whereλ is the optical wavelength andzR = √
L(R −L)� √

LR is the cofocal parameter. The minimum numb
of bounces is thus given, for small incidence angles and largeN , by

(10)N �w0.8
E,Br

(
π

λ

)0.4

(2RD)−0.2.

We analyze now the radiation pressure effect. We must take into account that the radiation pressure sc
the cosine of the incidence angle and that fluctuations on all the spots sums coherently. On the other h
intra-cavity power scales with the finesse and it is thus reduced by a factor of 2N with respect to the simple cavit
The fluctuations sensed in a round trip are

(11)S2L
rp = [

(4N − 2)cosθ + 2
]2

(
1

2N

)2

S
single
rp = 4Ssingle

rp cos2 θ

(
1+ 1− cosθ

2N cosθ

)2

� 4Ssingle
rp .

We remark that in the expression of Eq. (7) forS
single
rp the finesseF is the one of a simple cavity, made with th

same mirrors of the FFP (M1 and M2). In this way the comparison is simple and the (11) shows that the fluc
sensed in a round trip of the FFP are nearly the same as the corresponding ones in a simple cavity. Th
frequency noise is

(12)
Sν

ν2
= S2L

rp

(2L)2
= S

single
rp cos4 θ

4D2N2

(
1+ 1− cosθ

2N cosθ

)2

� S
single
rp

4D2N2
,

which is about a factor of 4N2 smaller with respect to the relative fluctuationsSν/ν2 = S
single
rp /D2 of a simple

cavity.
This is the second important result: while the Brownian noise effect decreases linearly withN , the radiation

pressure effect scales even faster, as 1/N2.
Like for the Brownian noise, we can define a useful equivalent radiuswE,rp for calculating the necessary numb

of bounces, which is given by

(13)w0 =wE,rp
cos2 θ

2N

(
1+ 1− cosθ

2N cosθ

)
.

For small incidence angle, we eventually obtain

(14)N � 1

2
w0.8

E,rp

(
π

λ

)0.4

(RD)−0.2.

The expression is similar to the one calculated for the Brownian noise, Eq. (10), but here we must use th
wE,rp.

3. Numerical estimates and implementation

For a numerical example, we takeR = 10 m,D = 6 mm,λ = 1064 nm. We have previously quoted the valu
of 40 and 280 mm forwE,rp, for input power levels of 1 and 7 W. Eq. (14) givesN = 26 andN = 124 for the two
cases. Two consecutive spots on one flat mirror are separated byd = 2D tanθ . A lower limit to the incidence angle
is given by the necessity to limit the scattering losses at the edges of the mirrors. A safe constraint isd = 4w0. With
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N = 26 we can useθ = 0.25 rad, obtaining an effective cavity lengthL= 0.32 m and a beam waistw0 = 0.77 mm.
The flat mirrors width must beNd = 80 mm. ForN = 124 we haveθ = 0.35 rad,L = 1.6 m,w0 = 1.1 mm and
Nd = 0.55 m.

A key point is that the finesse is reduced by a factor of 2N with respect to the simple cavity while the bea
waist is increased, as we have already remarked. As a consequence, the intra-cavity power is strongly
without loosing sensitivity. As an example, for the above considered FFP configurations the light intensity
mirrors is of the order of 104 W/mm2. An et al. [16] have already experimented without damage optical cav
with a finesse of 8× 105, a waist of 30 µm and an input power of 10 mW, giving an intra-cavity intensity as
as 5× 106 W/mm2. The FFP design discussed above can be implemented with the present technology. Th
light absorption also facilitate heat removal.

Different FFP configurations can be adopted, according to the geometry of the masses whose displace
be measured. For example, it is possible to avoid the final mirror, thus simplifying the system, by slightly tilt
two flat mirrors, as in Fig. 1(b). If the angle between them isθ/2N , the distance between the spots along the
mirrors gets shorter and the beam finally gets back on itself. Another interesting design is obtained by increa
incidence angle and reducing the distance between the parallel mirrors. In the optical transducer implem
the room-temperature Weber bar [6], a lower limit to the cavity length of about 5 mm is imposed by the tun
range of the Nd:YAG laser. Indeed, it must cover at least one free spectral range if we want to avoid tun
cavity itself with further complication and possibility to introduce extra-noise sources. On the other hand
FFP the distance between resonance peaks is determined byL while the linewidth depends onD. We can thus
lowerD and reduce the sensitivity to the laser frequency noise. For example, one can chose an angle of◦, for
which high reflectivity coatings have already been tested in ring cavities [17], and reduceD down to about 1 mm.

The design described above is particularly suitable for the proposed dual-cylinder gw detector [4],
the mass displacement has to be measured along a stripe parallel to the cylinder axis. For the dual-s
detector [3] a more compact design can exploit a 2-dimensional configuration, with square flat mirrors wh
beam forms a matrix of spots. Several hundreds of spots can be easily obtained with few cm mirrors.

The application of the FFP concept to long baseline interferometers is less obvious, since they alread
large mirror surfaces to support the wide beam waist. A possible solution is the use of several mirrors,
each spot. In principle, these mirrors can be hanged on the same suspension, without any extra complic
what concerns the interferometer alignment. A decrease of one order of magnitude in the local fluctuation
feasible.

4. Calculation including space correlation

The approximated calculation of the Brownian noise for the FFP is based on the assumption t
contributions of the different spots are uncorrelated. On the other hand, Nakagawa et al. [14] give the exp
for the thermal noise of both a standard FP and a delay line, including space correlations, for a half-infinit
We will now apply their formalism to the FFP, in order to check the validity of the approximated calcu
developed above.

We are interested in the noise spectrum for frequencies of few kHz, i.e., well below the cutoff freque
the response function of the Fabry–Perot which corresponds to the cavity linewidth, i.e., forω < δFFP. We remind
that the linewidth of the FFP is roughly the same as the one of the simple cavity, i.e., tens of kHz. For the
simplicity, we will thus omit in the following the response function. We will also use the approximation of
incidence angles (cosθ � 1).

The effective susceptibility of a mirror withN spots is

(15)χN = χsingle

{
N + 2

N∑
n=2

n−1∑
q=1

exp

(
−|rn − rq |2

2w2

)
I0

( |rn − rq |2
2w2

)}
,
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wherern is the position of thenth spot,w is the beam radius, assumed as constant,I0 is the modified Besse
function of the first kind.

The Brownian noise spectrum for a FFP which hasN spots on M2 andN ′ on M3 can be written as

(16)SFFP
Br (ω)= 4kBT

ω
φ
(
4χN + 4χN ′ + 2χsingle)

and inserting the (15) we obtain

(17)

SFFP
Br (ω)= S

single
Br (ω)

{
4N + 4N ′ + 2+ 8

N∑
n=2

n−1∑
q=1

exp

(
−|rn − rq |2

2w2

)
I0

( |rn − rq |2
2w2

)

+ 8
N ′∑
n′=2

n′−1∑
q ′=1

exp

(
−|rn′ − rq ′ |2

2w2

)
I0

( |rn′ − rq ′ |2
2w2

)}
.

For the radiation pressure effect, we can write

(18)SFFP
rp =

(
2

c

)2

Scav
∣∣2χN + 2χN ′ + 2χsingle

∣∣2,
and by inserting Eq. (15) and Eq. (3) and using Eq. (7) (where the finesse is the one of the correspondin
cavity) we obtain

(19)

SFFP
rp = S

single
rp

(
1

(2N)2

)∣∣∣∣∣4N + 4N ′ + 2+ 4
N∑
n=2

n−1∑
q=1

exp

(
−|rn − rq |2

2w2

)
I0

( |rn − rq |2
2w2

)

+ 4
N ′∑
n′=2

n′−1∑
q ′=1

exp

(
−|rn′ − rq ′ |2

2w2

)
I0

( |rn′ − rq ′ |2
2w2

)∣∣∣∣∣
2

.

The effect of the interaction between surface fluctuations at different spots can be analyzed directly f
expressions ofχ . The right-hand side of Eq. (15) includes a first term,

χu =Nχsingle,

corresponding to uncorrelated noise sources in the different spots, while the remaining terms with
summations accounts for the extra noise due to correlation between spots on the same mirror. The first te
the noise spectra that we have found in the previous approximated calculations.

In Fig. 2 we report the ratioχN/χu as a function of the distanced between spots, normalized to the wa
for different configurations of the spots on the mirrors. The excess noise due to correlation rapidly de
whend gets higher than the beam radius. The approximated calculations described above in this work a
d = 4w0, and according to the plot in Fig. 2 the susceptibility is correct within a factor of 3 in the case
dimensional array of spots. In this case, the simple expressions derived are an useful tool for a quick es
the possible performance and the conceptual validity of the FFP is confirmed by the calculation which i
the correlation terms. This latter contribution becomes more important in the case of 2-dimensional config
of spots. However, such a design allows for a much higher number of spots in a compact optical system
desired level of noise can be eventually obtained.

The final result is better express by the relative frequency fluctuations, that can be directly compared
shot noise. In Fig. 3 we reportSν/ν2 for a FFP withN spots on M2 andN ′ =N−1 spots on M3, as a function ofN ,
for Pin = 1 W and 7 W. The approximated expressions (8) and (12) (with cosθ = 1) are compared with the resul
which take into account the correlations between spots, using the complete expressions for the noise den
and (19). The limits corresponding to a simple FP are given by the extrapolation atN = 0 of the respective curve



22 F. Marin et al. / Physics Letters A 309 (2003) 15–23

,

d
ssure

n terms;

ell as the

-action

. This
e of the
etector
Fig. 2. Ratio between the displacement susceptibilityχN and its uncorrelated componentχu as a function of the distanced between spots
normalized to the waist. From lower to higher curves, they correspond to a 1-dimensional linear array, forN = 25,100,400, and to a
2-dimensional squared array, again forN = 25,100,400.

Fig. 3. Relative frequency power noise levelSν/ν
2 as a function of the number of spotsN on a FFP, for a distanced = 4w between spots an

for two different value of impinging powerPin = 1 W and 7 W. a: Radiation pressure noise without correlation terms; b: radiation pre
noise with correlation terms; c: Brownian noise (at 1300 Hz) without correlation terms; d: Brownian noise (at 1300 Hz) with correlatio
e: shot noise level. The values atN = 0 correspond to the case of a simple FP cavity. The calculation is performed with:F = 106, R = 10 m,
D = 6 mm and the parameters of sapphire at 1 K.

The shot-noise levels are also reported. The improvement allowed by the FFP is clearly appreciated, as w
possibility to reach a quantum-limited detection.

5. Conclusion

We have presented an optical cavity configuration which allows to strongly reduce thermal and back
fluctuations related to the small sensing area of standard cavities.

In this Letter we have used the half-infinite space approximation for calculating the susceptibility
assumption is valid as soon as the dimension of the surface interrogated is small with respect to the on
overall detector and, within this limit, our calculation has a general validity and it does not depend on the d
shape.
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A more accurate calculation of the detector performance for large interrogation areas cannot distinguish
‘global’ and ‘local’ effects and one must consider the exact susceptibility of each particular detector and r
configuration. Calculation methods to accurately evaluate it are presently being developed [18,19]. Howe
behavior of the noise reduction predicted in this work allows to closely approach with the present techno
quantum-limited sensitivity calculated for the main mode of the detector, overcoming the problem of the
noise related to the small beam radius. Such a result is crucial for the design of the next generation of grav
wave detectors.
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