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ABSTRACT

Any bacterial strain to be used as starter culture should have suitable characteristics, including a lack of amino acid

decarboxylase activity. In this study, the decarboxylase activity of 76 bacterial strains, including lactic acid bacteria and gram-

positive, catalase-positive cocci, was investigated. These strains were previously isolated from European traditional fermented

sausages to develop autochthonous starter cultures. Of all the strains tested, 48% of the lactic acid bacteria strains and 13% of

gram-positive, catalase-positive cocci decarboxylated one or more amino acids. Aminogenic potential was strain dependent,

although some species had a higher proportion of aminogenic strains than did others. Thus, all Lactobacillus curvatus strains and

70% of Lactobacillus brevis strains had the capacity to produce tyramine and b-phenylethylamine. Some strains also produced

other aromatic amines, such as tryptamine and the diamines putrescine and cadaverine. All the enterococcal strains tested were

decarboxylase positive, producing high amounts of tyramine and considerable amounts of b-phenylethylamine. None of the

staphylococcal strains had tyrosine-decarboxylase activity, but some produced other amines. From the aminogenic point of view,

Lactobacillus plantarum, Lactobacillus sakei, and Staphylococcus xylosus strains would be the most suitable for use as

autochthonous starter cultures for traditional fermented sausages.

Fermentation of traditional meat products usually relies

on indigenous microflora and reflects the diversity of

formulation and the manufacturing practices (39). Lactic

acid bacteria (LAB) and gram-positive, catalase-positive

cocci (GCCz) are the two bacterial groups that are used

most often as fermentative microbiota in traditional

sausages. LAB are usually the main fermenters (107 to

109 CFU/g) and are responsible for the typical acidification,

with the consequent inhibition of spoilage and pathogenic

bacteria (2, 39). The species most commonly identified in

these fermented meat products are Lactobacillus sakei,
Lactobacillus curvatus, and Lactobacillus plantarum (4, 32,
34). Enterococci, mainly Enterococcus faecium, also may

constitute a large part of the microbiota of traditional

fermented sausages, with levels close to 106 CFU/g (2, 29,
39), because these meat products have a relatively high pH

and provide ideal conditions for survival and growth of

these organisms (18).
GCCz are the second major bacterial group (106 to 108

CFU/g) in these sausages and contribute mainly to the color

and development of flavor. Staphylococcus xylosus, Staph-
ylococcus saprophyticus, and Staphylococcus equorum are

the most common GCCz species identified (2, 36, 39). In

some traditional fermented sausages, GCCz levels, espe-

cially those of staphylococci, can be similar to or even

greater than those of LAB. This feature differentiates these

sausages from industrial products and may account for their

appreciated sensory qualities (2). However, indigenous

microbiota and traditional manufacturing techniques do

not always ensure acceptable hygienic quality of fermented

sausages.

Biogenic amines are formed by the decarboxylation of

their precursor amino acids by certain bacteria, including

enterobacteria and enterococci but also lactobacilli and

GCCz (38, 43). Large amounts of biogenic amines can

accumulate in traditional fermented sausages (20). The

occurrence of large amounts of these substances is of

concern in terms of the hygienic quality and safety of these

products (16, 38, 43). Therefore, control measures to

minimize biogenic amine production are needed. Selected

starter cultures have been used in experimental (pilot plant)

and industrial production with variable success.

Knowledge of the indigenous microbiota usually

present in traditional fermented sausages is essential for
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improving the hygienic quality and safety of these products.

Specific strains isolated from the traditional products and

adapted to the ecology of traditional fermentation (i.e., low

temperatures) could be used as autochthonous starter

cultures, thereby maintaining the typical sensory qualities

of these sausages (4, 40, 44). To reduce biogenic amine

accumulation, the autochthonous starter culture must not be

able to produce biogenic amines.

The main objective of the European project Tradisau-

sage (42) was to improve the quality and safety of European

traditional fermented sausages. In the frame of this project,

the present study was conducted (i) to determine the amino

acid decarboxylase activity of several strains of the

dominant fermentative bacteria (LAB and GCCz) isolated

from traditional dry fermented sausages and (ii) to identify

the best candidates for possible further use as autochthonous

starter cultures to minimize the risk of biogenic amine

accumulation in this type of food product.

MATERIALS AND METHODS

Bacterial strains. Decarboxylase activity was assessed for 76

strains of LAB (including lactobacilli, enterococci, Leuconostoc,
and Weissella) and staphylococci, all isolated from several types of

traditional fermented sausages. Table 1 summarizes the number of

strains of each species studied. The strains examined were

provided by the partners involved in the Tradisausage project

(France, Spain, Portugal, Italy, Greece, and Slovakia) (42), who

isolated and identified these strains by molecular methods (2, 3, 14,
33, 45).

Determination of biogenic amine–forming capacity. To

promote enzyme induction before the decarboxylase test (5),
strains were subcultured four times at 30uC for 24 h in de Man

Rogosa Sharpe broth (Oxoid, Cambridge, England) for LAB and in

tryptic soy broth (Oxoid) for staphylococci. Both media contained

0.1% concentrations of the corresponding amino acid precursor (all

from Merck, Darmstadt, Germany): L-tyrosine free base, L-histidine

monochlorohydrate, L-ornithine monochlorohydrate, L-tryptophan,

L-lysine monochlorohydrate, and L-phenylalanine. Broth cultures

of all bacterial strains were then placed in a decarboxylase medium

containing the precursor amino acids (0.5%), pyridoxal-59-

phosphate (Merck), and growing factors as previously described

by Bover-Cid and Holzapfel (5) and incubated aerobically at 30uC
for 4 days. The type and amount of biogenic amines produced were

determined by high-performance liquid chromatography with

postcolumn derivatization with ortho-phtaldialdehyde and fluori-

metric detection following the procedure described by Hernández-

Jover et al. (17).

RESULTS AND DISCUSSION

Table 1 shows the amino acid decarboxylase–positive

strains for all the species tested. Of the LAB strains, 48%

produced one or more biogenic amines (11 Lactobacillus, 8

Enterococcus, and 3 Leuconostoc strains). Among lactoba-

cilli, 100% of the L. curvatus strains and 70% of the L.
brevis strains were biogenic amine producers. In contrast,

none of the L. sakei, L. fermentum, or L. plantarum strains

had amino acid decarboxylase activity. All Enterococcus
strains (seven E. faecium and one E. hirae) were amino acid

decarboxylase positive, as were three of the Leuconostoc
strains tested (two L. carnosum and one L. mesenteroides).

Only 13% of the Staphylococcus strains tested were amino

acid decarboxylase positive.

The amino acid decarboxylase activities of LAB

isolated from traditional fermented sausages are consistent

with the results reported for other LAB isolated from

various types of sausages (3, 6, 12, 25, 26, 35, 37).
Phenotypically, L. brevis and L. curvatus strains are usually

associated with tyramine production in fermented meat

products and in some cases with production of phenyleth-

ylamine, tryptamine, putrescine, and cadaverine (3, 5). In

contrast, L. plantarum and L. sakei strains are more

frequently reported as nonaminogenic (3, 6). Genes coding

for tyrosine decarboxylase (tdc genes) have been identified

in several strains of L. brevis (GenBank accession

no. EF371897.1, EF371896.1, and AF446085.5) and L.
curvatus (EF371895.1, AJ871286.1, AF354231.1, and

AB086652.1). The partial sequence of tdc genes also has

been described for an L. plantarum strain (EF178285.1). To

our knowledge, the presence of tdc genes has not been

described to date in any L. sakei strain. However, in L. sakei
strain 23K, molecular techniques have confirmed that the

absence of the tdc gene in its genome (8).
Some studies have confirmed the ability of some

Leuconostoc strains to form biogenic amines (9, 15, 27),
while other Leuconostoc strains did not (3, 5). In contrast,

enterococci are extensively reported to have aminogenic

potential, mainly as tyramine and phenylethylamine pro-

ducers (6, 25, 38). The tdc gene has been described in

several strains of Enterococcus faecalis (AF371893,

AE016830, and AF354231) (10), E. hirae (AY303667)

(11), and E. faecium (EF371894 and AJ83966) (21). In

contrast to the tyrosine specificity of L. brevis decarboxyl-

ase (28), enterococci are nonselective for tyrosine and can

TABLE 1. Occurrence of amino acid decarboxylase–positive
strains among lactic acid bacteria and coagulase-negative
staphylococci tested

Species

No. of strains

positive

No. of strains

tested

Lactobacillus brevis 7 10

L. curvatus 4 4

L. fermentum 0 1

L. plantarum 0 3

L. sakei 0 15

Leuconostoc carnosum 2 2

L. mesenteroides 1 2

Weissella cibaria 0 1

Enterococcus faecium 7 7

E. hirae 1 1

Staphylococcus carnosus 1 1

S. epidermidis 1 2

S. equorum 0 4

S. haemolyticus 0 1

S. pasteuri 1 1

S. saprophyticus 0 2

S. simulans 0 1

S. succinus 0 1

S. xylosus 0 15

S. warneri 1 2
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decarboxylate phenylalanine (21). This finding is in

agreement with the high frequency of simultaneous

production of tyramine and phenylethylamine by entero-

coccal strains.

Staphylococcus species usually are described as weak

or negative for decarboxylase activity (6, 25, 36). Martı́n et

al. (23) found this activity in only 35 of 240 strains,

including strains of S. xylosus, S. warneri, S. epidermidis,
and S. carnosus. Martuscelli et al. (24) reported that 50% of

the S. xylosus strains tested were only weak producers of

biogenic amines. However, some researchers have described

staphylococci as having a remarkable potential to form

biogenic amines (26, 35, 37). The genetic potential for

the tyrosine decarboxylase enzyme has been partially

sequenced in an S. epidermidis strain (EF371899) and S.
xylosus (41).

In addition to determining whether various bacteria

produce biogenic amines, the level of such production is

also of interest. Table 2 shows the quantitative results for

biogenic amine accumulation in the fermenting broth by the

amine-positive strains. All LAB strains formed tyramine and

b-phenylethylamine; the strongest tyrosine decarboxylase

species were E. faecium, L. carnosum, and two strains of L.
curvatus, all of which produced levels higher than 2,000

mg/liter in most cases. All of these strains also showed the

capacity to produce moderate amounts of b-phenylethyl-

amine (up to 1,000 mg/liter). In contrast, all strains of L.
brevis and some of L. curvatus produced at least 10-fold

lower amounts of tyramine and b-phenylethylamine.

Decarboxylase-positive species of staphylococci did not

produce tyramine. Depending on the species, these strains

produced b-phenylethylamine, tryptamine, putrescine, and

cadaverine. Usually the production of b-phenylethylamine

and tryptamine is associated with high occurrence of

tyramine (36), but for S. carnosus the production of these

amines was not related to that of tyramine. Although there

was not a general trend, other authors also found this

particular profile of amines produced by S. carnosus (1, 12).
E. faecium strains also produced low amounts of tryptamine,

but this finding is consistent with the presence of tryptamine

in fermented sausages when there are high amounts of

tyramine. Putrescine and cadaverine production was less

extensive; only two strains of L. curvatus and one of

Staphylococcus pasteuri and S. warneri produced these

diamines, especially putrescine (Table 2). In the present

study, none of the species tested produced histamine.

Histidine decarboxylase activity seems to be limited to some

specific strains of contaminant species (22, 30, 41). The

results of the present work agree with other published data

on decarboxylase activity of Lactobacillus (3, 6, 7, 12, 31),
Leuconostoc (31), Enterococcus (6, 13, 21), and Staphylo-
coccus (23, 25) strains found in fermented sausages.

TABLE 2. Quantification of biogenic amine production by decarboxylase-positive lactic acid bacteria and coagulase-
negative staphylococci

Genus Species Strain

Amine production (mg/liter)a

TY PHE TRP PU CA

Lactobacillus brevis LQC 0524 169.47 11.28

LQC 0528 148.74 6.84

LQC 0531 138.51 6.22

LQC 0537 142.62 8.84

LQC 0581 168.36 10.68

LQC 0588 148.35 6.46

LQC 0591 158.07 10.51

curvatus IS02/F25 106.07 38.1

IS02/F26 76.55 15.06

P05/4 2,198.8 154.11 1,616.34 20.17

P05/119 2,561.7 175.51 1,673.6 20.79

Leuconostoc carnosum S02/2M/1B 2,137.04 470.1

S02/F12 2,086.48 498.55

mesenteroides LQC 0538 161.8 8.9

Enterococcus faecium S02F11 2,867.4 535.5 8.5

S02/211 1,466.81 720.39 12.11

S02/223 1,006.47 555.14 11.87

S04 1M/2 2,429.68 440.67 8.83

S03 M1/2 2,133.22 674.13 13.02

S03F11 1,865.25 505.22 9.84

S01M122 2,227 578.26 9.37

hirae IS02/Z30 159.8 79.6

Staphylococcus carnosus P06/8 161.1 20.2

epidermidis IS02/Z16 8.8

pasteuri IS02/M5 227.3 8.1

warneri CTC6010 427.5 137.5

a Biogenic amines produced by each strain were analyzed in duplicate, and the relative standard deviation was always below 5%.
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On the basis of these results regarding biogenic amine

production, enterococci and some strains of Lactobacillus
usually found in dry fermented sausages (e.g., L. curvatus)

would not be suitable candidates for starter cultures for

traditional fermented sausages. In contrast, L. sakei and L.
plantarum strains (among the LAB) and S. xylosus and S.
equorum (among the GCCz) would be the most appropriate

candidates to be used as autochthonous starters. However, to

maintain the sensory properties of traditional sausages, the

use of more complex mixed starter cultures than those used

in industrial procedures would be desirable. For this

purpose, the contribution of other weak amine-producing

bacteria, such as L. brevis or some strains of staphylococci,

could be considered. L. curvatus also could be used, but the

heterogeneous distribution of aminogenic potential among

strains of this species confirms that amino acid decarbox-

ylase activity is a strain-dependent property. Thus, the

amino acid decarboxylase activity of any strain intended to

be used as a starter culture must be tested case by case. The

behavior of the selected strain(s) also must be assessed in

the real product under the actual processing conditions. This

was the aim of further studies carried out within the frame of

the European Tradisausage project (19, 40, 42).
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