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This work is an introduction to the author’s contributionsthie SOC area, resulting from his PhD
research activity. It focuses on the problem of automdsicadmposing a desired service, given
a set of available ones and a target specification. As forrigéi®n, services are represented as
finite-state transition systems, so to provide an abstrembnt of their behavior, seen as the set
of possible conversations with external clients. In additithe presence of a finite shared memory
is considered, that services can interact with and whickiges a basic form of communication.
Rather than describing technical details, we offer an m&roverview of the whole work, and refer
the reader to the original papers, referenced through@mibrk, for all details.

1 Introduction

This work provides an overview of author’'s contributionsthe SOC area, resulting from his PhD re-
search activity[[2I7], that can be summarized in the propokal novel technique for automated com-
position ofconversationakervices, which is optimal (wrt time-complexity) and ovares many of the
obstacles encountered by similar existing proposals. Bpempfocuses oautomated service composi-
tion, that is, the problem of automatically combining a set ofilatde services so as to meet a desired
specification. Such a topic has a lot in common with otheraneteareas, the most closely related being,
probably, System Verification and Synthesis (elg.} [29)},dlso others provide theoretical frameworks
that service composition can be cast over, such as Plarmifsgificial Intelligence (e.qg.,[128]), Reason-
ing About Actions (e.g.[124]) and even Data Integratiom (€.35]), thus making available some research
achievements that SOC research can benefit from. Due tathislisciplinarity, several approaches have
been proposed to model services, e.g., as atomic actiohdifiite state machine§][9] [7, 6] or views over
data | 36], and to solve the corresponding composition grablHere, we follow the same approach as
in [IZ, [6] and adopt dehavioral modebf services. Starting from such work, vi# consider some ad-
ditional features, such amperation nondeterminisrandpresence of a shared memawpich allows for
basic inter-service communication and, more importafiflyintroduce a novel solution technique based
on the formal notion ogimulation relation[25], which improves previous techniques in that it allows t
compute thavhole set of solutionsat no additional (worst-case) computational time cost.

1.1 Service Composition: an Overview

Let’s take a closer look at service composition, startimgrfithe classical architecture for Web Services.
Typically, the parties involved in a web service-basedisasdesides the client, which can be a service
itself, include two additional classes of entities, namelyservice brokerand someservice providers
The former is a central, well-known, registry which storesvie descriptions and can be accessed by
clients when searching for services that meet some dest@qdrements; the latter are organizations,
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such as companies, which make services actually avail&steziders register their services to brokers
and, when invoked, serve clients’ requests. A typical sesis as follows:(i) a client contacts one (or
more) broker(s) and requests a service that meets a depieeilication;(ii) if such a service is found
then the broker refers the client to the service providenallst deploying the service(ii) the client,
which located the service, based on the broker’s informationtacts the desired service and interacts
with it. Two classical questions about SOC arise:

1. How are services described?

2. What if the desired service is not found?

The first question concermsodeling i.e., the definition of a suitable service abstractiongdblcapture
aspects that can be relevant to client; the second one thisgsoblem of finding a constructive alter-
native to the trivial answer: “client’s request cannot biilfad, unless someone develops and deploys a
new service that meets the desired requirements”. As oneexy@act, there exist margorrectanswers

to such questions. We address both problems. On the one Wangkopose a conceptual model (not
an actual language), that substantially enriches existiveg (e.g.,18]), able to capture servimshavior

that is, which provides an abstraction of service evolutaer time, representing their possible conver-
sations with clients; on the other hand, on top of this modelpropose sound and complete techniques
for building a solution that fulfills a client’s needs, when possible, bgnbining other available services.
In particular, such techniques are shown to belibst one can dan that they return the most general
solutions, while being optimal with respect to worst-casetcomplexity.

2 Describing Service Behavior

In the literature, several approaches to service modelavg lheen proposed. Rather than actual lan-
guages, such as WSDL, widely used to describe Web servieeiaus on theiconceptual modelWe
can say that WSDL has an underlyiagpmic conceptual model, specified in terms of input-output re-
quirements. For instance, a service providing stock quafteeme market can be successfully described
this way, with a single operation that returns the list of tggo Such a model is useful in many situa-
tions, as its popularity over the Web witnesses, howeveenwhore complex specifications need to be
exported, it shows severe limitations. For instance, tluhthe same web service for stock quotes and
assume that it provides quotations only to authenticatedtsl In an input-output approach, one would
describe two operations, sayyth andquote, as well as the respective data format necessary for inter-
action. Unfortunately, the input-output approach doesatiotv for conversation specification.e., for
putting constraints on the order that operations shouldxbeuted in. A very natural constraint would
be, e.g., requiring clients to authenticate before requgsjuotes. Observe also that cases may exist
where two services export a same set of operations but ablowifferent execution sequences. Since
this last constraint is not captured by input-output appines, such services would appear to clients as
the same one. In a word, atomic conceptual models expoiiceénterfacebut not theirbehavior

The need for @ehavioraldescription of services is widely recognized (e.gl [13.1,[2]), yet, the
community suffers from a lack of standard languages for phigpose. In this work, we follow the
same approach as the so-called Roman Model ([20]), orlgimakoduced in [V [ 5], which proposed
the abstraction of conversational services as deternurisinsition systems, where each state brings
information about both service’s (relevant) past histongl ¢he potential (atomic) conversations that
can be carried out with a client. Inspired by that, we prop@seh model, oriented to describe all
conversationsupported by services, that includes relevant features, @8 nondeterminism and shared
memory, and, thus, increases the set of actual scenarioarétheaptured.
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Figure 1: Two approaches to service descriptjon:] 1(a) haptput model[I{B) Behavioral model.
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In our model, services export their behavioral specificetiby means of an abstract language that
represents transition systems, i.e., Kripke structuresseltransitions are labeled by service operations,
under the assumption that each legal run of the system pamds to a conversation supported by the
service. To clarify this, consider Figurgs 3}(a) ¢ndJL(b)e Tdrmer is a graphical representation of an
input-output description of the stock quote service witthautication, as described above, which pro-
vides information about which operations can be requetitedatter is a behavioral representation of the
same service, where more information is provided: indedd|l$ clients that theyi) must authenticate
before requesting quote operation and, therfii) may request any number of quotes. Of course, more
sophisticated examples do exist, where several operatwes nondeterministic, can be executed in a
state, with nondeterminism modeling partial knowledgeutls®rvice’s internal logic. Also, there are
settings relying on the same approach, where operatiores femameters and are able to exchange data
with other clients and even with an underlying databaseg(df., [5]).

A first advantage brought by such a model isgenerality with respect to service integration, in
the sense that it is abstract enough to serve as conceptai@l foo several classes of scenarios. As an
example, it can be used to model web service applicationsefiggmulti-agent system ones. As a con-
sequence, results obtained from this model are also rdlévameas different from SOC. Second, from
the SOC viewpoint, it provides a behavioral, stateful, mervepresentation, which allows for describ-
ing those inter-operation (temporal) constraints thatemirlanguages, e.g., WSDL, do not capture. We
remark the importance of such a feature in a perspectiveroposition automatization: indeed, compo-
sition engines are intended to replace human operators,campose services based on their informal
description, often provided in natural language, whichudes behavioral information.

Importantly, when dealing with a behavioral model, we caklat services as high-level descriptions
of software artifacts. Indeed, they are characterized &testand state transitions triggered by inputs,
which, specifically, represent requested operations. iftéspretation suggests, hence, to see service
(possibly finite) runs as computation fragments, that casuif@bly combined to generate more complex
services.

3 Composing Services

Many works exist which deal with automated compositioncofiversationalservices, where service
behavior is abstracted by various kinds of transition systee.qg., 34/ 419, 37]. The closest one to
our work is [4], that we take as a starting point, where theblgnm of automatically composing a
set of services, described as possibly nondeterminigtitsition systems, is addressed. Although here
we propose a significant extension bf [4], in that we deviseeehsolution technique which relies
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Figure 2: A service composition example in the Roman Mdd&][2(b) Available service§; Z(c) Target
service[2(d) A Composition.

on effective technologies and yields great advantageshdis& problem has not changed. It can be
informally stated as follows:

Consider a set of available services, a.lcammunity and an additionaiarget serviceall
exporting their conversational behavior. Is it possibledordinate the available services so
to support, at execution time, all conversations suppdriethe target service?

In other words, the problem amounts to realize a (virtuatyetservice, by resorting only to (actual)
available services. Obviously, how services are combingkld practice depends on the exported behav-
ioral model. To see how this can be done under our model, @entie following example.

Example 3.1 Figure[2 shows a service composition problem instance irRbman Model, which in-
cludes two available services, represented in Subfijuess?(2(D), and a target one, in Subfigfire P(c).
The one in Subfigufe Z{a), say, Provides login/logout capabilities, allowing a client be authenti-
cated and to close an authenticated session, whereas thi Gubfigurd 2(B), saypsSprovides market
stock quotes from all over the world. Clients willing to irgtet with S, are, first, required to input the
market country of their interest and, then, are allowed tquest either stock quotes or currency rates
(versus, e.g., euro and dollar) for that market. As for thegéd service, say it provides stock quotes
of a selected market only to authenticated clients. Spelificlients of such service need first to login,
then to select a market country, then are allowed to requastes and, finally, to logout.

As we said, target services awirtual, that is, only their specification exists, whereas theirlgnp
mentation is missing. However, it is easily seen that, bgrtewy to available services, this example’s
target service can be built. Indeed, it is enougglegatinglogin/logout operations to Sand country
selection and stock requests tg ®bserve that the target service not only provides a set efajons,
but imposes a set of constraints over their executions, £tgck can be requested only aftebuntry
has been executed. Since, on their side, also availabléceeoperations are subject to such kind of
constraints, when a target service is to be realized, thegtine met. For instance, had naf ®quired
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operation country be executed beforetock, it would be not realizable, as,3s the only service that
providesstock and it requirescountry to be executed first.

In Exampld_3L, the composition can be realized by a machiriehyon the one side, receives client op-
eration requests and, on the other side, forwards them tpnopriate available service which executes
them and, consequently, changes its state, where a new@et@tions becomes available. Such a ma-
chine, similar to a Mealy machine but that can be, in genarfihite-state, is called aorchestrator One
that solves the problem of Examfile13.1 is shown in Filurel Zdich state of the machine corresponds
to a state of the target service and each transition is ldiBle pair of the fornoperatioryservice with

an intuitive semantics: the requested operation is asdignthe output service. For instance, operation
login is delegated to servicg,.

The example above shows how the existence of temporal eamstamong operation executions
makes the problem non trivial: each time an operation is talddegated to some available services,
one needs to check whether all constraints are fulfilled, whether the service chosen for delegation
is in a state where the operation is actually executables iaikes the orchestrator construction a hard
task, akin to an advanced form of conditional planning [Iieed, in the Roman Model, the service
composition problem is shown to be EXPTIME-compléte [6,. 26]

More complex scenarios can be considered. For instancaleterministic available services are
also conceivable, where nondeterminism over operatiooutian represents partial knowledge about
service's internal logic. Also, one could think of servieesnmunicating through a common blackboard
or even exchanging data. All these scenarios require diftarotions of composition and, hence, differ-
ent kind of orchestratorsThe aim of our work is to provide a formal model for them andruppse a
respective solution technique for the resulting compasiproblem

Before providing details about the techniques for compmsiproblem solution, let us mention a work[10],
where the proposed technique applies to a more realistit@ascethan those presented so far. In partic-
ular, it shows how a workflow, to be carried out by a team of evaping agents, is realized as coor-
dination, or more preciselgrchestration of several behaviors which provide high-level descriptiof
agents’ capabilities. Also, the approach is currently tasie a starting point for the development of a
composition engine aimed at integrating embedded dewgésally adopted in home automatizatifhn

3.1 Solution Techniques

Once the service composition problem and its solution haea ldefined, the problem of finding solution
techniques that can be automated becomes central.

3.1.1 PDL-based solutions

Previous work([4] addresses the problem of building a singtaestrator that is a solution to the problem.
In such work, a technique was developed, able to deal witldetnministic, finite-state, services, based
on an encoding of the problem as a Propositional Dynamicd @@DL) [15] formula. Although such a
technique is only able to build finite-state orchestratiiris, actually made effective by a crucial result
showing thaif an orchestrator exists then there exists one which issf{dlt

In a nutshell, PDLs constitute a family of logics that allowv §pecifying evolution of propositional
properties over time, in response to events. PDL models dapké&structures, as often happens when
dealing with dynamic systems. Importantly, for each PDLiddbere exists arquivalentDescription

1This is part of recently started EU Project SM4AIl (FP7-2228
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Figure 3: Conceptual schema of PDL-based approach to sergimposition

Logic (DL), i.e., a logic used fostatic knowledge representation, expressed in termslagsesand
relationshipsamong them[]2], such that each model of the former is a modé¢hefatter and vice
versa([3B[ 1l1]. So, sinc@) PDLs capture the Roman Model afij) effective DLs reasoning tools are
available (e.g., KCT [19], RACER [18]], PeIIelE), one can exploit DLs to represent and actually solve
composition problems.

A conceptual schema of the PDL-based approach adoptedisddpicted in FigurEl3. Starting from
a description of the problem, where all involved servicesdescribed by transition systems, first an ab-
stract PDL formula is generated such tfizateach of its models (which are finite-state) corresponds to a
(finite-state) orchestrator that is a solution to the oagjjproblem and, vice verséj) each composition
problem’s (finite-state) solution has a corresponding rhofithe PDL-formula. Then, such a formula is
translated into a DL knowledge base, represented in anldotuaat suitable for a DL reasoner which,
finally, generates a model of the knowledge base, if comgist®y construction, such a model is also
a model of the original PDL formula which, in turn, corresgerto a composition problem’s solution.
Based on this approach, an actual ta8ly% (E-Service Composer), has been deviséd ([4]) which is
able, with some limitations, to actually compute an oratast that realizes a target service. Unfortu-
nately, this approach has three major drawbacks:

e only finite-state orchestrators are returned;

e the obtained solution is ndlexible that is, if a solution has been built which relies on an azéd
service and such a service becomes unavailable at runtierethe solution is no longer valid and
the best one can do, using this approach, is to re-compute aaiation;

e on the practical side, due to implemented DL reasoner liroitg, £.% is actually able tesyn-
thesizea model only for some particular inputs, though it is commpletth respect teheckingfor
the existence of a model.

These limitations constitute the essential motivationsuiowork.

3.1.2 Simulation-based solutions

We propose a novel solution technique based on the formalmot simulation relation between tran-
sition systems[]25]. Informally, given two transition sysisS; andS,, we say thatS, simulates g if
it shows, at least, the same behaviorsSasFor example, considering Figute 4, assume Sas the

2ht‘cp ://clarkparsia.com/pellet
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Figure 4. Two transition systems.

transition system shown in Subfigyre 4(b) é®ds the one in Subfiguife 4{a). Seen as servi€gsim-
ulatesS,, as each conversation supportedJyi.e., runs of the fornfab)*, is also supported bg,. Of
course, the vice versa does not hold: for instafibg; is supported bys but not byS,. Although, here,
we resort to regular languages as a means for describingsemnversations, in our approach we do
not adopt pure Finite State Machines (FSMs) as service motielieed, generic transition systems are
better suited for our purposes, as we are interested in wdticltesa service actually provides in each
State.

The following definition [25], wher&' is used to identify the set of a system’s final states, pravide
the central notion that our work is built upon. Actually, thee which follows can be used for our
purposes only when dealing with deterministic transitigstsms, whereas for nondeterministic ones, a
different notion, namel\ND-simulationis required. However, modulo formal details, the approauh a
the essential ideas remain the same.

Definition 3.1 Given two transition systems; and.”, a simulation relation of#; by .# is a relation
RC S x Sy, such that:

(s,S¢) € Rimplies:
1. fseS thens e ng;
2. for each transition;s-> § in .% there exists a transitions—— s, in . and R, s, ).

As it can be seen, this is a stronger relation than equivalefid=SMs, seen as language acceptors.
Indeed, cases exist where two transition systems accept@laaguage but their states are not in simu-
lation relation.

Essentially, our techniqgue amounts to reducing the cortipngiroblem to the search for a simula-
tion relation between the target service and the availadndce asynchronous product, which is itself a
transition system. Precisely, it is the transition systehictv describes all the possible interleaved exe-
cutions of available services or, in other words, represalpotentialitiesof the community services,
seen as a whole. Recalling the above informal definition dfraulation relation, this corresponds to
answering the questiofican available services be combined in order to include thme behaviors as
the target service?’which is precisely our problem.

A fundamental advantage brought by our technique is thatilsition-based solutions are, in fact,
universal solutionsor composition generatoys.e., finite structures that represealt possible, even
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Figure 5: Conceptual schema of the Game-based approactvikpeseomposition

infinite-state, orchestrators that realize a target seevidmportantly, this does not affect worst-case
time complexity: indeed, it is known that searching for aidmtion between two transition systems is

polynomial in the size of the systems, hence, since an asynohis product result has exponential size
with respect to its factor’s size, it comes out that our téghe requires exponential time with respect
to the size of the (original) input systems. This, along wfith observation that the service composition
problem is proven EXPTIME-complete [26], yields that alss simulation-based technique is optimal

with respect to worst-case time complexity. In fact, witegect to the PDL-based approach, we obtain
a complexity characterization refinement.

But our approach yields two additional benefits.

First, by using composition generators, we obtiéxible solutions, that is, able to change their
behavior based on information available at runtime. The RAted approach does not provide this
feature, since it returns a singlggid, solution that cannot be modified at runtime. For example if,
during execution, an available service that the executiobestrator relies on becomes unavailable, but
can be replaced by another one, then with our solution we lsange, without need for recomputation,
the available service used to realize the target servidéerBntly put, we are able tewitchorchestrators
during execution.

Second, a set of effective tools, suchtas [30], Lily [22] or Anzu [23], for computing simulation
is becoming available. Precisely, such tools are aimedrdahegizing finite-state dynamic systems that
meet desired temporal properties. In particular, they eamded to comput&inning strategiegor safety
gamesa.k.a.invariant games, i.e., games where a player, in order to win, is redjtirenaintain a given
property all along game evolution. Indeed, our work propaseeduction of the service composition
problem into a safety game, such that computing a winniragesiy for the obtained game corresponds to
computing an orchestrator generator for the original gblas defined in the simulation-based context.
A conceptual schema of such an approach is depicted in H§ufes synthesis engines are available,
our efforts focused on defining thiranslationmodule, which implements a procedure for automatic
reduction of a service composition instance into a gametsire. By doing so, we make available, for
computing simulation relations, tools from the System fition and Synthesis area, thus getting the
major advantage of efficiency, as such tools resort to oddeirgary decision diagrams (OBDD) for the
internal representation of dynamic structures, thus iimgithe typical state space explosion associated
with synthesis procedures.



Fabio Patrizi 9

4 Further Issues

In this Section, we briefly discuss additional issues whichstitute interesting research directions in
service composition, that have been or are currently umestigation.

4.1 Dealing with Data

Data-Management capability is a desirable service prppertapture: as a matter of fact, real services
deal with data. Including such features in service reptasiens would result in a more complete model,
thus yielding the possibility of facing even more realigiroblems. However, as several works witness,
e.g., [5[14/1B], the presence of data poses a major obstesevice composition and verification: data
is infinite by its nature and makes services infinite-statefotdunately, the techniques described above,
as well as others proposed in the literature, are effecting when dealing with finite-state systems,
whereas infinite-state system verification and synthesiskaown as a hard task for most non-trivial
properties, and undecidable for general ones. Conseguémtioducing data in service composition
frameworks has a great impact on the solution techniqué<#mabe adopted, thus making the problem
a major challenge for the SOC community.

In our work, we propose a model that allows for dynamic anddistate data structure represen-
tationfl, Precisely, in addition to available services, a commuoiigtains a so-called finite-statiata
box i.e., an additional transition system modeling the evolubf a shared data structure whose state
is affected by available services’ execution, and that @anded to realize a basic form of inter-service
communication. From a modeling perspective, a data box easebn as a database with a finite-state
behavior, used to capture some situations where serviggsvite data over finite domains. This way,
we keep dealing with finite-state systems, thus making sitionl-based techniques still applicable, but
introduce a simple form of data-awareness.

Such an extension, besides increasing the set of scenhabsan be captured and, hence, making
the model appealing also for other arEaprovides the bases for more ambitious research, i.e sidgvi
techniques for solving composition problem instances geeeric data-aware services. The basic idea is
abstractingover actual data: first, a symbolic representation of actatlbase instances is built by using
only a finite set of symboals; then, the infinite-state synobig evolution of both the available services
and the database is described as a finite-state system. @agisome can reduce the original problem
to one defined over finite-state symbolic structures, thukimgathe above techniques still applicable.
One attempt in this direction, in a synthesis context, is @me.omB0O framework described in_[5],
where services are able to exchange data from infinite danaaid to interact with a relational database,
by reading/writing scalar values. As for service verifioati [14,[13] propose two similar abstraction
techniques allowing for data-aware service verification.

We observe thal]5] tackles the composition problem by nglyin a PDL-based approach. However,
under the same model, one can recast the problem in termatafégvare) simulation, that is, by defining
a relation between two data-aware services that interdbtasxgommon underlying data structure, whose
data content may come from an infinite domain. This way, onaldvget the advantages brought by
a simulation-based approach, though the actual resolwiarid be more complex, due to state space
infiniteness, which calls for some abstraction procedure.

3Such a feature was first introduced[in][12], in a differenttesn
4Cf., e.g., [31[ID] where multi-agent scenarios have beemdtated as service composition ones
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4.2 Distributed Orchestrators

In SOC, centralized scenarios, though conceivable, aee Earen when all community services actually
reside in a same repository, they communicate through conmigdlewarethat enables communication
and interoperability. Hence, the resulting abstractiostiis a distributed community, where services
are seen as programs, located at different places, thabpeete through some protocol. In such a
distributed context, there can be cases where a centraflicating entity, such as an orchestrator, is
not realizable nor convenient. In_[32,110], two examplesuwaftsscenarios are reported. In particular,
[10] shows one where all services execute on distributed gedces, communicating via a wireless
network. Clearly, in such situations one cannot rely on glsincentral, coordinating unit: indeed,
network disconnections are possible and can dramaticalpact the overall system effectiveness. If,
for instance, the coordinator permanently loses a cormgctieers are no longer able to cooperate.
Also less catastrophic events, such as temporary discbhongcmay affect a system’s efficiency and/or
effectiveness.

In our work, we built a peer-based framework for distributadhestrator execution, that is, for
execution in a scenario where each service has an attéotmdrchestrator, able to communicate with
other ones, in order to cooperate for achieving a common goal
As discussed above, orchestrators make their choicesselect available services for delegation, based
on community current state, provided they have full obdalig on available service state. However, in
this case, such assumption is no longer valid as, on the ark barvices reside at different places and,
on the other hand and more importantly, there is no centtdayeble toobserveheir state. In fact, local
orchestrators have full observability only on the servioeytare attached to, and know nothing about
other services. Therefore, even if a technique for disteithexecution of a centralized orchestrator were
given, since, in general, services are nondeterministirollem ofstate reconstructiowould arise.

To solve this, we rely on the service communication abilitiijich is exploited to broadcast messages to
other peers. Essentially, our techniqgue amounts to bgjldinsual orchestrator as if it were to be executed
on a central coordinating device, and then, from this, gativey ondocal orchestratorfor each available
(distributed) service. Local orchestrators replicate rare¢ized one’s behavior except for two features:
(i) they are able to send/receive messages that are usefulrfonanoity state reconstruction, i.e., they
make their decisions based on received messages and @iatendf the service they are attached to, and
(ii) they issue commands only to the service they are attachadhiie, using received messageskeep
track of current community state. Differently put, each localtmstrator, through received messages,
reconstructommunity current state and history until itiis turn, and only then activates the respective
service by issuing the command requested by the client.

This technique, along with the possibility of executingises in parallel, and not only under an
interleaving policy, contributes to make the service-daapproach quite general and, thus, appealing
also for research areas other than SOC, e.g., Multi AgeneBys(MAS).

5 Contributions

The main goal of our work is to address the drawbacks assacigith a PDL-based solution approach
to the service composition problem. In doing this, the agderesults introduce a set of novelties with
respect to service composition state-of-the-art:
e We propose a rich conceptual model for service behaviosirgetion that makes services abstract
enough to represent a variety of dynamic, possibly comnatinig, entities such as web services,
physical devices or agents.
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e We devise a novel approach to service composition that églee formal notion of simulation,
thus bringing the following major advantages:

— a huge literature about simulation, and simulation-relgieoblems is available, as it is a
standard notion, widely and very well studied in Computeefoe and related areas, thus
providing access to a set of useful results, such as effipiemedures for computing simu-
lation relations (e.g.[ 116]);

— the notion of simulation relation is associated with Sys¥arification and Synthesis, thus

making effective tools, based on Model Checking approacéijable. In fact, we resort to
one such tools to build our composition engine.

e the proposed techniques overcome the obstacles met by thd&i&d approach:

— they return the whole (in general, infinite) set of solutidimluding infinite-state ones),
represented as finite orchestrator generatorwithout requiring additional computational
efforts, with respect to previous approaches. This is uhtimlly the most relevant achieve-
ment, which shows the optimality of the approach.

— Just-in-timesolutions, able to adapt to run-time exceptional situatiaran be built. With
respect to the PDL-based approach, this corresponds ta#stpity of switchingorches-
trators during target service realization. Importantlye @an take advantage of information
available at runtime, such as unexpected faults, which wensidereccatastrophicin the
previous approach;

— we get a refinement of the complexity bound obtained’In [4]ecRely, we identify the
exponential term as the number of available services, rétha their size.

e We provide actual techniques that take advantage of flesibletions to efficiently recompute
an orchestrator generator when some exceptional sitsatidse, such as temporal/permanent
unavailability of available services;

e We propose a formulation of the composition problem in aritisted scenario and show how
it can be solved. The problem is not introduced to fageuee service composition scenario,
though it might be conceivable. Rather, it finds natural igggibn in the Multi Agent System
field, where several agents are described as possibly revnueistic, communicating, finite-state
transition systems (i.e., the same as services), openatagommon environment and communi-
cating through a distributed shared memory;

e We show how the problem can be encoded into a safety-ganwws&uthen written in an actual

languagesMv, and, finally, processed by an implemented systauw, to compute the whole set
of solutions;

e Based on above game structure encoding, an actual systenS@fgice Composition Engine
(WSCE) was devised, which exploitsv for efficient problem solution.

References

[1] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijai Maaju. Web Services. Concepts, Architectures
and Applications Springer, 2004.

[2] Franz Baader, Diego Calvanese, Deborah L. McGuinneasjdle Nardi, and Peter F. Patel-Schneider, ed-

itors. The Description Logic Handbook: Theory, Implementatiarg &pplications Cambridge University
Press, 2003.



12 An Introduction to Simulation-Based Techniques for Aute@gService Composition

[3] Boualem Benatallah, Fabio Casati, Farouk Toumani, aadhRl Hamadi. Conceptual Modeling of Web
Service Conversations. DAISE pages 449-467, 2003.

[4] Daniela Berardi. Automatic Service Composition: Models, Techniques andsTdehD thesis, Universita
degli Studi di Roma - La Sapienza, 2005.

[5] Daniela Berardi, Diego Calvanese, Giuseppe De Giacdrick Hull, and Massimo Mecella. Automatic
Composition of Transition-based Semantic Web Servicds Missaging. IiProc. of VLDB 20052005.

[6] Daniela Berardi, Diego Calvanese, Giuseppe De Giacdaayrizio Lenzerini, and Massimo Mecella. Au-
tomatic Composition of e-Services that Export their Bebavin Proc. of ICSOC 2003pages 43-58, 2003.

[7] Daniela Berardi, Diego Calvanese, Giuseppe De Giacdvtayrizio Lenzerini, and Massimo Mecella. e-
Service Composition by Description Logics Based ReasorimBescription Logics2003.

[8] Daniela Berardi, Fahima Cheikh, Giuseppe De Giacomd,Fabio Patrizi. Automatic service composition
via simulation.International Journal of Foundations of Computer Scierk®(2):429-451, 2008.

[9] Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su. @ersation Specification: A New Approach to
Design and Analysis of E-Service Composition.Aroc. of WWW 20032003.

[10] Giuseppe De Giacomo, Massimiliano De Leoni, Massima®lla, and Fabio Patrizi. Automatic Workflows
Composition of Mobile Services. Ii€WS pages 823-830, 2007.

[11] Giuseppe De Giacomo and Maurizio Lenzerini. Boostmgytorrespondence between description logics and
propositional dynamic logics. IAAAI, pages 205-212, 1994.

[12] Giuseppe De Giacomo and Sebastian Sardifia. Autorsgtithesis of new behaviors from a library of
available behaviors. IRroc. of IJCAI 2007pages 1866—-1871, 2007.

[13] Alin Deutsch, Richard Hull, Fabio Patrizi, and Victoraviu. Automatic Verification of Data-Centric Business
Processes . IRroc. of ICDT 20092009.

[14] Alin Deutsch, Liying Sui, and Victor Vianu. Specificati and verification of data-driven web applications.
J. Comput. Syst. S¢ir3(3):442-474, 2007.

[15] Michael J. Fischer and Richard E. Ladner. Propositidgaamic logic of regular programg. Comput. Syst.
Sci, 18(2):194-211, 1979.

[16] Raffaella Gentilini, Carla Piazza, and Alberto PdlicrFrom bisimulation to simulation: Coarsest partition
problems.J. Autom. Reasonin@1(1):73-103, 2003.

[17] Malik Ghallab, Dana Nau, and Paolo Travergaitomated Planning: Theory and Practicklorgan Kauff-
man, 2004.

[18] Volker Haarslev and Ralf Moller. Description of the RER System and its Applications. Description
Logics 2001.
[19] lan Horrocks. The FaCT System. TABLEAUX pages 307-312, 1998.

[20] Richard Hull. Web services composition: A story of mtsj@utomata, and logics. 005 IEEE Interna-
tional Conference on Services (SCC 2Q@)05.

[21] Richard Hull, Michael Benedikt, Vassilis Christopk®&l and Jianwen Su. E-Services: a Look Behind the
Curtain. InProc. of PODS 2003pages 1-14, 2003.

[22] Barbara Jobstmann and Roderick Bloem. Optimizationd TL synthesis. InProc. of FMCAD '06 pages
117-124, Washington, DC, USA, 2006. IEEE Computer Society.

[23] Barbara Jobstmann, Stefan Galler, Martin Weiglho&erg Roderick Bloem. Anzu: A tool for property
synthesis. IProc. of CAV 200/pages 258—-262, 2007.

[24] Sheila A. Mcllraith and Tran Cao Son. Adapting Golog @wmposition of Semantic Web Services.HR,
pages 482-496, 2002.

[25] Robin Milner. An algebraic definition of simulation leten programs. IfProc. of 1IJCAI 1971 pages
481-489, 1971.

[26] Anca Muscholl and Igor Walukiewicz. A lower bound on weérvices compositionLogical Methods in
Computer Sciengé(2), 2008.

[27] Fabio Patrizi. Simulation-Based Techniques for Automated Service Catiggns PhD thesis, S8PIENZA



Fabio Patrizi 13

Universita degli Studi di Roma, 2009.

[28] Marco Pistore, Paolo Traverso, and Piergiorgio Bertalitomated composition of web services by planning
in asynchronous domains. Rroc. of ICAPS 2005pages 2—-11, 2005.

[29] Amir Pnueli and Roni Rosner. On the Synthesis of a Readodule. InProc. of POPL 1989pages
179-190, 1989.

[30] Amir Pnueli and Elad Shahar. The TLV system and its aggions. Technical report, Weizmann Institute,
1996.

[31] Sebastian Sardifia, Giuseppe De Giacomo, and Fahi@iPBehavior composition in the presence of failure.
In Proc. of KR'0§ 2008.

[32] Sebastian Sardifia, Fabio Patrizi, and Giuseppe Ded&ia. Automatic synthesis of a global behavior from
multiple distributed behaviors. IRroc. of AAAI 2007pages 1063-1069, 2007.

[33] Klaus Schild. A correspondence theory for terminot@diogics: Preliminary report. IRICAI, pages 466—
471, 1991.

[34] Maurice H. ter Beek, Antonio Bucchiarone, and Stefdaigesi. Formal Methods for Service Composition.
Annals of Mathematics, Computing and Teleinformati¢s):1-10, 2007.

[35] Snehal Thakkar, José Luis Ambite, and Craig A. Knokloé data integration approach to automatically
composing and optimizing web servicesIhrProceedings of the ICAPS Workshop on Planning and Schedul
ing for Web and Grid Service2004.

[36] Snehal Thakkar, Craig A. Knoblock, and José Luis Ambif view integration approach to dynamic com-
position of web services. IRroc. of ICAPS’03 Workshop on Planning for Web Seryi2€63.

[37] Paolo Traverso and Marco Pistore. Automated compositf semantic web services into executable pro-
cesses. IfProc. of ISWC-04volume 3298 o NCS pages 380—-394. Springer, 2004.



	Introduction
	Service Composition: an Overview

	Describing Service Behavior
	Composing Services
	Solution Techniques
	PDL-based solutions
	Simulation-based solutions


	Further Issues
	Dealing with Data
	Distributed Orchestrators

	Contributions

