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Abstract. This paper presents a damage detection procedure based on Bayesian analysis of data 

recorded by permanent monitoring systems as applied to condition assessment of Precast Reinforced 

Concrete (PRC) bridges. The concept is to assume a set of possible condition states of the structure, 

including an intact condition and various combinations of damage, such as failure of strands, cover 

spalling and cracking. Based on these states, a set of potential time response scenarios is evaluated 

first, each described by a vector of random parameters and by a theoretical model. Given the prior 

distribution of this vector, the method assigns posterior probability to each scenario as well as updated 

probability distributions to each parameter. The effectiveness of this method is illustrated as applied 

to a short span PRC bridge, which is currently in the design phase and will be instrumented with a 

number of fiber-optic long gauge-length strain sensors. A Finite Element Model is used to simulate 

the instantaneous and time-dependent behavior of the structure, while Monte Carlo simulations are 

performed to numerically evaluate the evidence functions necessary for implementation of the 

method. The ability of the method to recognize damage is discussed. 

Introduction 

We are seeing rapid development of sensor technology which will radically change monitoring 

methods for civil structures in coming years. Fiber optics technology offers today durable solutions 

for bridge monitoring, and recent advances in Micro Opto Electro Mechanical Systems (MOEMS) 

suggest that in the near future we will be able to rely on very small-scale optical devices. Wireless 

communication too can simplify many installation and operation issues. We also expect these 

technologies to be available at very low cost.  

The possibility of monitoring bridge structures using a large number of sensors is very promising 

for the future of instrumental monitoring. However, a major issue is how to exploit appropriately the 

large amount of data recorded by these systems. A Bayesian approach provides a rational framework 

to interpret the data, also allowing proper handling of all prior knowledge, including material 

properties, environmental conditions and sensor performance. This methodology lets us identify not 

only the most likely values of the unknown damage parameters (such as type, position and extent) but 

also their posterior probability distribution. Bayesian theory of probability originates from Bayes’ 

well known essay [1]. Many modern specialised textbooks provide the reader with a critical review 

and applications of this theory to data analysis (see for instance [2,3]). Of all the papers dealing with 

application of Bayesian theory to engineering problems, the authors wish to mention Beck’s work 

[4,5,6], which by disseminating these concepts had great impact on the civil engineering community. 

In this paper we introduce an iterative damage detection algorithm based on Bayesian analysis as 

specifically applied to the problem of condition monitoring of Precast Reinforced Concrete (PRC) 

bridges. In the following section we will state the basic assumptions and the general formulation of 

the method. Next a sample application is presented to clarify how the method works: the case study is 

a single-span PRC box-girder bridge, adopted as reference in a research project aiming at developing 

a new concept of smart elements [7]; due to page limitation, the application is restricted to the 

simulation of failure of one prestressing strand. A brief discussion of the identification outcomes is 

provided at the end of the paper. 
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Identification Concept 

Problem statement. Assume we have a bridge instrumented with a certain number of sensors, and we 

want to gain information on the state of the bridge based on the data recorded. Each sensor provides a 

measurement for each of NT time values (t1,t2,….,tNt). It is convenient to distinguish two types of 

gauges: sensors recording the structural response of the bridge, and sensors recording the load and 

environmental effects on the bridge. The first set might include sensors such as strain gauges, 

accelerometers, displacement transducers. In a broad sense, we can classify as a response sensor any 

instrumentation setup capable of providing a response quantity. For simplicity, here we will assume 

that these are all strain gauges. Say that the structure is instrumented with Ns sensors of this type, 

labelled (s1,s2,….,sNs), and let us label εi,j the strain measurement recorded by sensor sj at time ti. The 
second set includes, for example, thermocouples installed next to the strain gauges for temperature 

compensation or load cells applied at the bridge bearing, capable of recording the traffic loads. 

Without losing generality, here again we will assume all these sensors to be thermometers. The basic 

idea is that response measurements depend, on the one hand, on external actions such as temperature 

and loads; on the other on long term effects, such as dead load redistribution, creep, shrinkage, strand 

relaxation. Long term effects produce slow changes in the structural response. Based on this, it is 

convenient to organize measurements into time intervals (for example: per day) this time interval 

being a time span short enough to assume that long term changes are negligible, and long enough to 

ensure that short term change are significant. Let us define mT,j the vector including all the strain 

measurements recorded by the j-th sensor in time interval T and mT the matrix including all strains in 

time interval T. Finally let us label MT the whole dataset from the first time interval (i.e. from the start 

of monitoring) to time interval T. Similarly to strain measurements, we define as hT the matrix 

including all temperature measurements in time interval T. Data acquired during this sample period 

can be organized in matrix form: 

mT,j=ε0T,j+ hT aT,i + gT,j. (1) 

where ε0T,j is strain independent of temperature (i.e. the compensated strain), aT,i is the vector 
including the coefficients of the linear correlation from temperature to strain, and gT,j is a noise vector, 

which is assumed to have zero mean Gaussian distribution, with standard deviation (σg)T,j.  Eq. 1 
assumes that the effect of temperature (or in general of external actions) on strain is linear, although 

this is not the most general case.  

We assume that the presence of damage in the structure will generally modify the compensated 

response history. Thus, the identification method seeks to detect the presence of damage by 

comparison of the compensated measurements with the theoretical response produced by a model. In 

practice, it is convenient to divide the domain of the possible structural response in a mutually 

exclusive and exhaustive set of scenarios (S1,S2,….,SNd), each defining the structural behavior in a 

specific condition (e.g. reinforcement corrosion). A single probability result for each scenario is one 

of the main advantages of this approach. The structural strain response
 n
rT,j(

n
x) for day T and sensor sj 

in scenario n is controlled by a certain number of parameters 
n
x (e.g. damage position, activation time, 

corrosion rate). The structural response is completely defined by specifying a scenario and a value for 

the correlated parameter set. Here, as the Bayesian model selection theory [2,8], the discrete 

meta-parameter scenario identifies the response function which in turn is specified by a parameter set. 

The difference between measurements and structural response is just random noise. Assuming 

scenario n and 
n
x to be correct, the compensated strain can be expressed as ε0T,j=nrT,j(nx) +eT,j, where 

eT,j is the model error. We assume eT,j is a random error modelled as an uncorrelated Gaussian noise, 

with zero mean and standard deviation (
nσe)j. This is independent of time, but generally changes with 

the sensor. Evidently (
nσe)j changes with sensor type, but we may expect a dependency, for example, 

on sensor position or precision. More generally we can state that (
nσe)j is function of a set of 

scenario-dependent parameters 
n
y. In summary, we can observe that each scenario is fully described 

by a set of parameters 
n
p=[

 n
x 
n
y]. 
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Bayesian updating. The method here presented allows calculation of the probability of being in 

each scenario, as well as the statistical distribution of the parameters associated. Once the probability 

at day (or time interval) T-1 of being in a specific scenario is known, Bayes' theorem allows us to 

update this probability using the fresh data acquired on day (or time interval) T: 

( ) ( ) ( )
( )

1 1

1

PDF , , prob ,
prob , =

PDF ,

T T n n T

n T

T T

S I S I
S I

I

− −

−

⋅m M M
M

M M
. (2) 

where I means all the background information assumed, and PDF stands for Probability Density 

Function. The first term at the numerator, sometimes referred to as evidence of scenario Sn, can be 

calculated integrating over the whole parameter domain D
n
p, using: 

( ) ( ) ( )1 1
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n
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while the denominator of Eq. 2 can be expressed as:  
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In a similar manner, we can calculate the PDF of the parameters governing a specific scenario: 
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where: 
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Of course, the first application of Eqs. 2 and 5 requires definition of prior values of probability of each 

scenario prob(Sn|I) and Probability Density Function (PDF) of parameters vector PDF(
n
p|Sn,I). The 

only remaining  problem is how to obtain PDF(mT,j|
n
p,Sn,I). Assuming PDF(aT,j|I) to be Gaussian, it is 

demonstrated that: 

PDF(mT,j|
n
p,Sn,I)=Normal(

n
rT,j(

n
x); (µε)T,j,(σε)T,j2+(nσe)j2). (7) 

where (µε)T,j and (σε)T,j are the mean value and standard deviation estimated for the compensated 
strain ε0T,j introduced in Eq. 1. In turn, (µε)T,j and (σε)T,j can be estimated using the following 
procedure: Eq 1 can be seen expressed in the set of parameters vT,j =[aT,j

T
 ε0T,j]T; the best fit of vT,j is 

first calculated; next, the error variance (σg)T,j is estimated comparing measurements and best fit; 
based on this, the covariance matrix of vT,j is calculated; accounting for the prior distribution of aT,j 

Bayes’ theorem provides the posterior distribution of vT,j; finally, (µε)T,j and (σε)T,j result from the 
marginalization of the posterior PDF of vT, which is a trivial procedure for Gaussian distributions. 

Numerical methods for calculating evidence. When many parameters are involved in Eq. 3, the 

exact integration might require an exceptional computational effort and needs to be circumvented 

with numerical techniques. One of the simplest ways is to apply Laplace asymptotic expansion [4]: 

using this method, function PDF(mT|
n
p,Sn,I)·PDF(

n
p|Sn,I) is approximated by an unnormalized 

multivariate Gaussian function. Algorithms of the Markov Chain Monte Carlo family are alternate 

methods for solving Eq. 4. Parallel Tempering [2] is one of the most robust options of this type: this is 

an evolution of the Metropolis-Hastings algorithm [5,9] where several pseudo-random samples are 

produced in parallel by using different distributions. The algorithm allows information exchange 

between the simulations running in parallel [2]. This approach is computationally more demanding 

but its validity is more general, as it also works with non-Gaussian distributions. 
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Fig. 1. Elevation and cross-section of the case study (left); cross-section of one of an instrumented 

box-girder (right); based on the original design by Autonomous Province of Trento and Rivoli SpA. 

Sample application 

Case study description. To clarify how the Bayesian updating procedure works, in the following we 

present the application of this method to a real-life problem. The case study is the PRC bridge shown 

in Fig. 1. The bridge has a single span of 27.9 m and deck 10.4 m width overall. The deck structure is 

made up of 6 precast elements, finished with a 22 cm cast-in-place concrete slab. The prefabricated 

elements are 1-m high box girders, prestressed with 40 0.6” diameter strands. The two lateral beams 

are special smart elements specifically designed for this application with embedded instrumentation. 

In detail, each smart element accommodates 8 long gauge-length fiber optic sensors at the lower edge, 

each monitoring longitudinal elongation over a 2.8 m span. The optical instrumentation also includes 

thermometers for temperature compensation. The reader is referred to [7] for more information on the 

bridge design and the smart element technology involved.  

Damage simulation. In this example, we simulate the failure of a strand located at beam 1 and 

position xf=15.1 m from the left hand support, near sensor s4; we also suppose the failure occurs at 

time tf=43 days after the production of the beam. To predict the strain history and distribution, we 

developed a Finite Element Model (FEM) of the deck accounting for all geometrical and mechanical 

properties of structural elements, including pre-stressing, creep, shrinkage and relaxation [10]. 

Assuming Young’s modulus Ec=35 GPa and a creep coefficient φ=3.55 for concrete, the FEM shows 
that the damage episode produces an instantaneous change in the strain field as reported in Fig. 2(a). 

Note that the local strain peak is 14µε, which is relatively small with respect to long term effects, as 
highlighted in [7]. Suppose the monitoring system evaluates compensated strains with a sample 

period of one day, producing a sequence of measurements MT from T=1 day to T=51 days: the 

theoretical compensated strain history obtained by FEM are of the type shown as the dashed line in 

Fig. 2(b) in the case of sensor s4. However, in real life the compensated response is affected by 

instrumental error, imprecise compensation of external action and other unpredictable factors. To 

account for all these uncertainties a Gaussian noise with standard deviation of 15µε was added the 
pure FEM response. The resulting signals are similar to those shown as a continuous line in Fig. 2(b). 
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Fig. 2. Changes in the strain field due to the failure of a strand on beam 1 (a). Simulation of the 

compensated strain response recorded at sensor s4 on beam 1. 
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Damage identification. Our objective is now to recognize the presence and position of damage, 

based on the simulated sensor response. To do so, we assume that only two scenarios, S1 and S2, are 

allowed: S1 simulates a situation where no damage occurs and the structural response follows a trend 

basically due to creep; S2 simulates a strand failure scenario. Given that the strain sensors are all the 

same type, we can assume that (
nσe)j is independent of the sensor, thus the set of parameter ny reduces 

to a single standard deviation 
nσe. Therefore, scenarios S1 and S2 are characterized by response 

parameters 
1
p=[

1
Ec 

1φ 1σe] and 2p=[2Ec 2φ tf  xf 2σe], respectively. A priori, a total ignorance is 
assumed between scenarios, i.e. prob(S1|I)=prob(S2|I)=0.5, and the parameters are assumed 

uncorrelated. In detail: PDF(
1
Ec|I) and PDF(

2
Ec|I) are both Gaussian with mean value µEc=40 GPa and 

standard deviation σEc=10 GPa; similarly, PDF(1φ|I) and PDF(2φ|I) are Gaussian with mean value µφ= 
3 and standard deviation σφ=1; uniform PDF is assumed for PDF(ln(1σe)|I)=PDF(ln(2σe)|I) between 
1µε and 30µε, and uniform distributions are also assumed for tf and yf. In both scenarios, the structural 
response is reproduced using the same FEM adopted in simulating the sensor response. 

In general, the probability of being in a specific scenario and the PDFs of the corresponding 

parameters are calculated day by day through the recursive application of Eqs. 2 and 5. For this 

specific problem, the special nature of time variable tf lets us simplify the burdensome numerical 

calculation of evidence in scenario S2. First note that for tf >T evidently we have that 
1
rT,s(

1
x) ≡ 

2
rT,s(

2
x), thus the posterior PDF for 

1
x at time T-1 can be used as prior PDF for the corresponding 

parameters in 
2
x for step T-1 to T. Next, the problem simplifies significantly observing that after a few 

days monitoring the distribution of parameters 
1
x basically remains almost unchanged. In practice, the 

numerical procedure here adopted follows two parallel paths: when data from a new time interval T is 

available, on the one hand PDF(
1
p|MT,S1,I) is updated by Parallel Tempering; on the other, evidence 

of S2 is estimated by direct integration over the two damage parameters, tf and xf, and treating Ec, φ 
and σe  with Laplace approximation.  
Fig. 3(a) shows the result of the Parallel Tempering procedure for strain data at T=41 days in the 

space Ec-φ. The simulation starts from the centre of prior PDF, and after a few steps converges to the 
bulk of posterior PDF(

1
x|M41,S1,I). This distribution is closely approximated by a Gaussian PDF with 

µEc=35.10 GPa, µφ=3.565, thus very close to the actual value adopted in the simulation, and marginal 
standard deviations σEc= 0.15GPa and σφ=0.039. At T=41 days, the probability prob(S2|M41,I) of 

damage is actually very close to zero. This value departs from zero only a few measurements after the 

actual occurrence of damage; and at the end of the simulated monitoring period, T=51 days, we obtain 

prob(S2|M51,I)=0.703. Fig. 3(b) shows the joint distribution of the two damage parameters, time of 

failure tf and position xf, at T=51 days. It is worth noting that the procedure identifies the damage 

position very well, while time of occurrence is more uncertain, with the most likely value for tf=45 

days. 
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Fig. 3. Random walk of Parallel Tempering simulation in Ec-φ space in scenario S1 in time span 1 to 
41 days (a). Marginal PDF of damage parameters tf and xf at time T=51 days (b). 
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Summary 

The proposed identification procedure provides a rational quantification of the influence of 

monitoring data on the knowledge of the occurrence of different scenarios. With respect to classical 

damage detection methods, its merit is to provide not only information on the damage, but also the 

degree of confidence of this information. This is of paramount importance when the results of damage 

assessment serve as an input in a decision-making process. For instance, the simulation reported 

clearly shows that parameters such as mechanical properties of material and damage position can be 

identified with very high precision. However, the specific nature of the problem does not allow us to 

recognize with the same confidence the time of occurrence of damage.  

The procedure has been developed with in mind the problem of monitoring PRC bridges, and also 

the example proposed is extremely simplified. However, the general approach is not problem 

dependent, and can be extended to a broader class of problems, including manifold scenarios, model 

or material uncertainties, prior knowledge of parameter distribution. The main issue is the high 

computational cost involved in the integration of evidences, especially when, as in this case, the 

response model is based on a FEM. 
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