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Abstract

The heating of the solar wind is key to understanding its dynamics and acceleration process. The observed radial
decrease of the proton temperature in the solar wind is slow compared to the adiabatic prediction, and it is thought
to be caused by turbulent dissipation. To generate the observed 1/R decrease, the dissipation rate has to reach a
specific level that varies in turn with temperature, wind speed, and heliocentric distance. We want to prove that
MHD turbulent simulations can lead to the 1/R profile. We consider here the slow solar wind, characterized by a
quasi-2D spectral anisotropy. We use the expanding box model equations, which incorporate into 3D MHD
equations the expansion due to the mean radial wind, allowing us to follow the plasma evolution between 0.2 and
1 au. We vary the initial parameters: Mach number, expansion parameter, plasma β, and properties of the energy
spectrum as the spectral range and slope. Assuming turbulence starts at 0.2 au with a Mach number equal to unity,
with a 3D spectrum mainly perpendicular to the mean field, we find radial temperature profiles close to 1/R on
average. This is done at the price of limiting the initial spectral extent, corresponding to the small number of modes
in the inertial range available, due to the modest Reynolds number reachable with high Mach numbers.
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1. Introduction

The radial evolution of the proton temperature in the solar
wind has not yet been fully explained. From 0.2 to 1 au, the
wind expands radially and with a low-varying mean velocity.
Observations have shown that the rate at which the proton
temperature decreases in this interval does not correspond to an
adiabatic cooling of a spherically expanding flow; instead of a
temperature evolution given by T R 4 3µ - , a slower cooling
rate is observed, T Rµ x- for 0.8, 1x Î [ ] (Totten et al. 1995).
The origin of this extra heating may be attributed to the
development of a turbulent regime in the wind that generates
substantial heating (e.g., Vasquez et al. 2007; Carbone
et al. 2009; Matthaeus & Velli 2011; Coburn et al. 2012; but
see also Hellinger et al. 2013 and Scudder 2015 for an
explanation not based on the turbulent cascade origin).

We know that in quasi-stationary incompressible turbulence, the
turbulent energy (i.e., the sum of the kinetic and magnetic energies)
cascades along the inertial range without being dissipated. When
energy reaches the dissipation scales, it is transformed into heat. If
the process is quasi-stationary, the heating rate can be obtained
either from the dissipation rate (if the small-scale dissipation
process is known) or via the energy cascade rate. The dissipation
mechanisms take place at sub-ion scales that are not yet reachable
by current measurements; therefore, little can be said about
the associated heating. On the contrary, the cascade rate can be
computed at much larger (inertial range) scales, and this is the
approach commonly used in analyzing solar wind data to obtain
the turbulent heating.

To understand if turbulent heating is responsible for the
nonadiabatic decrease of temperature in the solar wind, one
needs to compute the heating rate required to produce the
observed temperature profile. Such heating is obtained by
exploiting an argument based on the internal energy equation
(e.g., Vasquez et al. 2007; see Section 2.3 below). In particular,
it shows that the existence of a radial power law implies a direct
relation between the energy cascade rate Q, wind velocity U,

proton temperature Tp, and heliocentric distance R,

Q k m UT R1 2 , 1B p= ( )( ) ( )

the coefficient 1/2 being associated with the scaling T R1p µ ,
which we adopt here as a representative scaling. Equation (1)
expresses a balance between two decaying quantities: the
energy cascade rate, which is a turbulent quantity, and the
proton temperature, which is not.
The most accurate measurements of the cascade rate are

obtained by computing third-order moments of the distribution
of the magnetic field (Politano & Pouquet 1998). Such
measurements have shown that Equation (1) holds at 1 au
(Stawarz et al. 2009; Coburn et al. 2012) and at larger distances
(Marino et al. 2008), although the precise value of the cascade
rate somewhat depends on the hypothesis made on the 3D
geometry of the angular spectra (Verdini et al. 2015).
The existence of the 1/R profile between 0.3 and 1 au suggests

that the balance in Equation (1) is also realized during this whole
distance range, but there is presently no measure of the cascade
rate and no proof (either theoretical or numerical) that such an
equilibrium is indeed achieved in the inner heliosphere. In fact,
previous attempts to verify Equation (1) used models of solar
wind turbulence with simplified nonlinear couplings (Tu 1988; Tu
& Marsch 1997; Smith et al. 2001; Breech et al. 2009). These
models actually managed to reproduce the wind temperature
decrease; however, they relied on the choice of free parameters to
fit their results to the observations.
We aim here to examine at what conditions such a relation

between turbulent heating and temperature, as well as the
associated temperature profile, can be found using direct
numerical simulations. It is indeed most probable that not all
turbulent conditions close to the Sun are able to generate such a
close adjustment between the turbulent cascade rate and the
temperature in the distance range 0.3–1 au, so that the
numerical solution to this problem will provide constraints on
turbulent properties close to the Sun.

The Astrophysical Journal, 853:153 (10pp), 2018 February 1 https://doi.org/10.3847/1538-4357/aaa1ea
© 2018. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-7848-9200
https://orcid.org/0000-0002-7848-9200
https://orcid.org/0000-0002-7848-9200
https://orcid.org/0000-0001-7847-3586
https://orcid.org/0000-0001-7847-3586
https://orcid.org/0000-0001-7847-3586
https://orcid.org/0000-0003-4380-4837
https://orcid.org/0000-0003-4380-4837
https://orcid.org/0000-0003-4380-4837
mailto:Victor.Montagud-camps@lpp.polytechnique.fr
mailto:Roland.Grappin@lpp.polytechnique.fr
mailto:Verdini@arcetri.astro.it
https://doi.org/10.3847/1538-4357/aaa1ea
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aaa1ea&domain=pdf&date_stamp=2018-02-01
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aaa1ea&domain=pdf&date_stamp=2018-02-01


We directly compute the temperature and heating evolution
versus distance, adopting successively different initial states of
the plasma at the minimum heliocentric distance (here 0.2 au).
We use the MHD equations modified by expansion, as given
by the expanding box model (EBM; Grappin et al. 1993). We
study in this work the case of the slow solar wind, where
turbulence is mainly in a 2D geometry (Dasso et al. 2005;
Verdini & Grappin 2016). The initial conditions found to lead
to Equation (1) between 0.2 and 1 au will be characterized by
(i) spectral properties and (ii) global plasma properties such as
expansion parameter, Mach number, plasma β, and mean
magnetic field angle with radial.

2. Equations, Control Parameters, Diagnostic Tools, and
Initial Conditions

2.1. EBM Equations (Ideal)

We give here a short description of the EBM equations
(Grappin et al. 1993; Grappin & Velli 1996; Dong et al. 2014)
that allow us to follow the turbulent evolution transported by
the radial wind. Let us denote by U eU r0 0= ˆ the mean wind
velocity.

The wind is assumed to be radial and have a uniform speed
(U0=const). The radius R at which the numerical domain is
located varies with time τ as

R R U , 20 0t t= +( ) ( )

where R0 is the initial position of the box. Space, time, velocity,
temperature, and density are measured in the following units:

L 2 , 30 p( ) ( )

t L u2 , 4NL
0

0 rms
0p= ( ) ( )

u , 5rms
0 ( )

m u k2 , 6p Brms
0 2( ) ( ) ( )

and

, 70r ( )

where 0r is the initial average density of the plasma, urms
0 is the

initial rms velocity of the fluctuations, tNL
0 is the initial

nonlinear time based on the initial rms velocity, and L0 is the
initial size of the numerical domain perpendicular to the radial
direction.

The EBM approach relies on the idea that a simple change of
Galilean frame is not sufficient to eliminate the expansion.
After such a frame change, the plasma still expands: it is
stretched in directions perpendicular to the radial. In other
words, a systematic velocity field perpendicular to the mean
radial direction remains. To recover the usual theoretical setup
where the fluctuating quantities are homogeneous (i.e., have
zero average) in the plasma volume, we need to subtract this

transverse expansion. This is done by using coordinates
comobile with this transverse expansion:

t , 8t= ( )
x X U a , 9x0t= -( ) ( )

y Y a t , 10= ( ) ( )

and

z Z a t . 11= ( ) ( )

The parameter a L L L L 5x x y x z= = = is the initial aspect
ratio of the domain. The parameter a is defined as the
normalized heliospheric distance,

a R t R t1 , 120 = = +( ) ( )

where da dt = is the expansion parameter defined as the
initial ratio between the characteristic expansion and turnover
times in the transverse directions (perpendicular to the radial),

U R

k u
, 13NL

exp

0 0

0 rms
 t

t
= = ( )

with k0 the minimum wavenumber in the transverse direction.
At a given distance R(t), the domain thus has an aspect
ratio L L a t axradial =^ ( ) .
The EBM equations with dissipation terms omitted (but see

Equations (20) and (21) below) read

u a2 , 14t r r r¶ +  = -( ) ( ) ( )
u uP P P P a. . 2 , 15t g g¶ +  +  = -( ) ( ) ( )

u u u B BP B a. 2 . ,
16

t
2 r r¶ +  +  + -  = -


( ) ( )

( )

B u B B u B u a. . . , 17t ¶ +  -  +  = -


( ) ( )

and

P T. 18r= ( )

In these equations, ρ is the density, P is the total pressure, B is
the magnetic field, and u is the velocity fluctuation
u U U er0= - ˆ , U being the total velocity. The pressure
equation with 5 3g = is the perfect gas equation, and
T T Ti e= = is the proton (and electron) temperature, mp being
the proton mass.
The above equations are standard MHD equations with,

however, two modifications. First, additional linear terms
involving the constant average speed U0 appear on the right-
hand side: u u0, ,y z = ( ) and B B B2 , ,x y z = ( ). Hence,
depending on the component, the right-hand side damping
term differs, as is well known. Note that in the following, we
will sometimes use the dimensional form of these damping
terms, namely, with a t U R t0 ( ) ( ). Second, a new
expression for the gradients is used, accounting for the
increasing lateral stretching of the plasma volume with time/
distance:

a a t a t1 , 1 , 1 , 19x x y z = ¶ ¶ ¶(( ) ( ( )) ( ( )) ) ( )

With Ox being along the radial, expansion acts only in the other
two directions.
All fields x y z, ,r ( ), u x y z, ,( ), etc. are then considered to be

periodic in all three directions of the domain comobile with the
mean expansion. This allows to use a pseudo-spectral method

Figure 1. Initial and final domains of simulation (and plasma volume) in the
ecliptic plane. Thin lines: direction of mean magnetic field. For all runs, the
aspect ratio of the domain varies from 1/5 to unity. In the figure, the mean
magnetic field angle with the radial varies varies from tan 1 5 11 . 31 - ( )
to tan 1 41 p=- ( ) .
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for the spatial scheme, as in the standard Lagrangian approach.
The temporal scheme is a third-order Runge–Kutta method.

2.2. Defining Visco-resistive Terms and Dissipation Rate

The diffusive terms read

u u u1 3 , 20t dis
2m r¶ = ~ 

~
+ 

~

~∣ ( )( ( ) ( · )) ( )

B B, 21t dis
2h¶ = ∣ ˜ ( )

and

P T , 22t dis rk¶ = D∣ ¯ ˜ ( )

where r̃ is the density normalized by its average,

a , 232r r r r= =˜ ¯ ( )

and a1 2r =¯ is the average density of the plasma. Note that
the normalized density r̃ is unity, on average. Note that density
enters in two different ways in the dissipative terms: as the
normalized density r̃ in the momentum equation and as the
average r̄ in the pressure equation. In the homogeneous
(nonexpanding) case, the dissipative terms given by
Equations (20) and (21) are identical to the standard ones in
MHD. In the expanding case, these dissipation terms have two
specific differences. First, the ∇ operator components are
comobile derivatives, without the anisotropic prefactors

a a a1 , 1 , 1x( ):

, , . 24x y z = ¶ ¶ ¶˜ ( ) ( )

This allows the dissipation to be isotropic in comobile
coordinates, that is, to use the available Fourier domain most
efficiently. Second, we impose that viscosity, resistivity, and
conductivity κ decrease as time/distance increases (see
Equation (12)):

a. 250k m h m= = = ( )

This choice allows us to somewhat moderate the decrease of
the Reynolds number associated with the fast damping of the
turbulent amplitude.

From Equations (20) and (21), one derives the contribution
of dissipative terms to the turbulent energy evolution,

u B Q F2 2 , 26d

dt
2 2

dissr r+ = - + n( )∣ ¯ ˜ · ( )

where F is a flux that does not change the average turbulent
energy. The turbulent heating is given by the visco-resistive
damping term Qν, which is always positive,

Q u J4 3 , 272 2 2m w h= +  +n ( ˜ ( ˜ · ) ) ˜ ( )

where uw =  ´˜ ˜ and J B=  ´˜ ˜ .
Finally, what is lost by turbulent energy is transmitted to

internal energy; this reads

u uP P P

P a T Q

. .

2 1 , 28

t


g

g rk g r

¶ +  + 

+ = D + - n

( )
( ) ¯ ˜ ( ) ¯ ( )

where κ is the thermal conductivity. Since we are in the
following more directly interested in the temperature T, we also
write down its equation:

u uT T T T a

T Q

. 1 . 2 1

1 . 29

t g g

k r g r

¶ +  + -  + -

= D + - n

( ) ( ) ( ) ( )
( ˜ ) ˜ ( ) ˜ ( )

2.3. Critical Heating, Cascade Rate, and Parameter M2 

We here rederive Equation (1), which expresses the critical
heating leading to a temperature decrease as T R1p µ . For this,
we need to take the spatial average of Equation (29), so
eliminating the thermal conductive term. The other terms are
checked to be negligible, e.g., using the dimensional factor
U R0 instead of a t ( ),

u uT T TU R. . 2 , 300d g =   ¯ ( )

which gives for the average temperature (the spatial average
being denoted either by a bar or by angular brackets)

T T a Q Q2 1 1 1 ,
31

t g g r g¶ + - = - á ñ -n n( ) ( ) ( ) ˜ ( )
( )

where the last equality is obtained assuming 1dr r  . Now
we replace the temporal derivative by the radial derivative,

Ul R0¶  ¶ , and the damping term a by its dimensional
expression U R t0 ( ),

U T T U R Q2 1 1 . 32R0 0g g¶ + - - n( ) ( ) ( ) ( )

We now define Qα as the heating necessary to obtain a
temperature profile of the form T R1= a. Thus, we replace in
Equation (32) U dT dR U T R;0 0a= -¯ ¯ this gives

Q TU R. 334 3

2 0=a
a- ( )

In the following, we will insist on the special value 1a = ,
which leads to what we will call the critical heating Qc:

Q Q TU R1 2 . 34c 1 0= = ( ) ( )

Using simple phenomenology, we now derive a condensed
formula for such a critical heating involving basic parameters
of the turbulent wind: the Mach number and the expansion
parameter ò. We first define the Kolmogorov cascade rate,
generalized to MHD, in two ways. A first definition (Vasquez
et al. 2007) is given by

Q k u B ku3 , 35K41
2 2 3 2 3d r+ ( ) ( )

with B B Bd = - á ñ being the magnetic field fluctuation and
both u and Bd being evaluated at the Taylor’s scale, thus in the
inertial range. In Equation (35), u2 and B2d r are, respectively,
the kinetic and magnetic energy content in the wavenumber
range k k2 , 2[ ], where k lies in the inertial range. Note that
to derive the last approximate equality, we have assumed
equipartition between kinetic and magnetic energy.
When analyzing our simulation results, we shall use the

equivalent but more precise definition,

Q E k k , 36K41
3 2 5 2= l l( ) ( )

3
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where E kl( ) is twice the 1D total (kinetic+magnetic) energy
spectrum, integrated on directions perpendicular to the radial
and depending on the radial wavenumber, evaluated at the
Taylor’s wavenumber kλ. The Taylor wavenumber is defined as

k
k E k dk

E k dk
. 37

x x x

x x

0
2 1 2

0

ò

ò
=l

¥

¥
( )( )

( )
( )

More precisely, kl marks the middle of the inertial zone of the
reduced spectrum in the radial direction.

Now, we know from Vasquez et al. (2007) that in cold
winds, the Kolmogorov cascade rate QK 41 overestimates by a
factor of 10 the true average dissipation rate Qn :

Q Q10 . 38K41 n ( )

From the latter equation, Equations (33) and (35), we rewrite
the critical condition Q Q=n a to produce a R1 a temperature
profile as

ku TU R3 10 . 393 4 3

2 0
a- ( )

We want to express this condition in terms of the rms turbulent
Mach number,

M u c , 40srms= ( )

where c Ps
1 2g r= ( ) is the sound speed and the expansion

parameter ò (Equation (13)), which also includes the rms
velocity in its definition. Assuming that the inertial range
begins at the largest scale, we evaluate the kinetic energy
content at the largest scale u 20

2 and the total energy content
u 22 by integrating a Kolmogorov spectrum k 5 3µ - on,
respectively, the interval range k k, 20 0[ ] and k ,0 ¥[ ]. This
leads to a ratio u u 4.4rms 0

3 =( ) , which allows us to express
Equation (39) in terms of quantities based on rms velocity
amplitude, namely the Mach number M and expansion
parameter ò. One finds

M 4.4 4 3 412  a- ( ) ( )

and, for the particular value 1a = ,

M 4.4. 422   ( )

Equation (42) will guide us in selecting “critical” couples of
initial Mach number and expansion parameter in our
simulations.

2.4. Turbulent Energy, Expansion, and Viscous Damping

We define the average turbulent energy per unit mass:

e u B
1

2
. 432 2r d r= á + -ñ˜ ¯ ( )

From Equations (16) and (17), one finds the expression of the
energy damping rate due to expansion,

Q u u B a
1

2
2 , 44y z xexp

2 2 2 r d r= á + + ñ˜( ) ¯ ( ) ( )

or, in dimensional terms,

Q u u B U R
1

2
2 . 45y z xexp

2 2 2
0r d r= á + + ñ˜( ) ¯ ( ) ( )

The two main terms leading to the damping of turbulent energy
are thus (i) the small-scale diffusive (viscous and resistive)
damping term Qν, which is fed by the nonlinear turbulent
energy cascade, and (ii) the expansion damping term Qexp.
However, here turbulent energy conservation is subject to
further effects: (i) compressibility breaks the turbulent energy
invariance, the remaining invariant being the sum of turbulent
energy and internal energy; and (ii) expansion modifies the
nonlinear terms as well, thus breaking down all inviscid
invariants of homogeneous MHD. These two additional effects
are gathered in a single term denoted by QNL. It is found by
subtracting turbulent dissipation and linear expansion decay
from the time derivative of turbulent energy:

de dt Q Q Q . 46exp NL= - - -n ( )

In the previous equation and from now on, Qν (without
average) denotes the spatial average Qá ñn . Note that the very
existence of a Kolmogorov-like spectral scaling k 5 3- implies
that the term QNL should be subdominant compared to Qν.

2.5. Numerics, Initial Conditions, and Parameters

All simulations are computed in a numerical box with
resolution N N N 512x y z= = = . We start at 0.2 au with a
numerical box elongated with an aspect ratio ax=5 along the
radial of dimensions L L L5 5 5 2x y z p= ´ = ´ = ´ . The
domain is then stretched by expansion in directions perpend-
icular to the radial so that at 1 au the domain becomes a cube,
and the mean field rotates accordingly (Figure 1).
We set up energy equipartition: u b 1rms rms= = and about

zero correlation between magnetic and velocity fluctuations
(zero cross-helicity). Energy isocontours are spatially aniso-
tropic, having the same aspect ratio as the numerical box. As
the mean magnetic field in all runs makes a small angle θ with
the radial (between 11° and 20°), the initial spectrum has
isocontours not far from perpendicular to the radial direction
with an aspect ratio equal to 5 (see Figure 9(a)). This
corresponds to the so-called “2D” configuration characteristic
of slow winds (Dasso et al. 2005; Verdini & Grappin 2016).
The parameters of the simulations are listed in Table 1, which

lists all runs described here. The main parameters are the Mach
number and expansion parameter ò. In Table 1, ò goes from 0.12
to 0.4,M from 0.3 to 1, and M2  from 0.45 to 5. Varying ò by a
factor of 2 as done here corresponds to varying the initial
turnover time of the largest scale by such a factor, so the
wavenumber by a factor of 22 3, adopting a k 5 3- scaling for the
initial spectrum. Also, the simulation duration is longer when ò is
smaller, as the transport distance (from 0.2 to 1 au) is fixed.
Each simulation provides a test window of wavenumbers

(reduced to a little more than two decades) on the much larger
solar wind inertial range. When choosing the couple M, ( ) for
a given run, we choose a wind regime, and at the same time we
place our simulation range on the solar wind wavenumber
range. Typical values, as taken in the runs A, B, C, and E, are
M=1 and 0.2 = . Such values are not far from the values

4
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found in cold winds in Helios data at the scale of several hours
(Grappin et al. 1991).

As seen in Section 2.3, the expression M2  was found to be
approximately 4.4 in the inertial range at 1 au by Vasquez et al.
(2007) for cold/slow winds. This is in the middle of the range
of values listed in Table 1.

Other parameters appearing in Table 1 are the plasma β,
P P c v2B s ath

2b g= = ( )( ) , which is varied from 0.29 to
1.48, and the mean field B0, which varies between 0.86 and
2.04, meaning that, since b 1rms = , b Brms 0 varies from 1.2 to
0.5. The initial viscosity 0m is about the same in all calculations
except for run Z: the origin of this exception will be discussed
in Section 4.2. The parameters kmax and m are, respectively, the
extent of the initial spectrum and its 1D spectral slope.

3. Results

3.1. Run A: Extended Initial Spectrum

We start with the case of run A, with M=1, 0.2 = , and
thus M 52  = . The initial spectral extent in the direction
perpendicular to the radial is k 64max = , and the spectral slope
is m 5 3= .

Figure 2 shows the evolution of several quantities versus
heliocentric distance. Panel (a) shows the evolution of the rms
turbulent quantities urms, Brms

1 2d r̄ , and ucrms, where u
c is the

compressible part of the velocity field. The quantities shown
are multiplied by R R0

0.6( ) . One sees that the compensated
profiles of velocity and magnetic field (in velocity units) are
close to a plateau, indicating a decay close to R1 0.6, somewhat
faster than the Wentzel-Kramers-Brillouin (WKB) prediction
u b R1rms rms

1 2 1 2r ¯ . The compressive rms velocity
amplitude, initially zero, rapidly reaches about half that of
the total rms velocity and then becomes closer to 1/3 of it.
Panel (b) shows the average turbulent dissipation of total (solid
line), solenoidal kinetic ( 2mw̃ ; dotted line), magnetic ( J 2h ˜ ;
dashed line), and compressible ( u4 3 2m 

~( · ) ; dot-dashed line)
energy. While the kinetic and magnetic dissipation are

comparable as expected, the compressible dissipation decreases
rapidly and becomes 1/10 of the total dissipation at the end.
Panel (c) of Figure 2 shows the total energy (Equation (43))

decay rate de dt∣ ∣ (solid line) and its components: the
expansion decay rate Qexp (dotted line), the turbulent decay rate
Qν (dashed line), and the residual term QNL (dot-dashed line).
One can distinguish two phases: (a) a short initial transient,
during which the turbulent dissipation dominates the expansion
decay, in agreement with the small value of the expansion
parameter 0.2 = and a very large residual term comparable to
the turbulent dissipation, Q Q Q ;exp NL< n  and (b) the rest
of the evolution, during which the turbulent decay is smaller
than the expansion decay, and the residual decay is the
smallest, Q Q QNL exp< <n . These two points will be clarified
in the discussion. We also remark that the sign of QNL varies: it
is an energy loss (thus increasing de dt∣ ∣), denoted by a thick
line, but during the beginning phase ( R R1 20  ; thin line),
it is an energy gain, thus decreasing de dt∣ ∣.
Finally, panel (d) gives the resulting temperature curve,

compensated by a 1/R law. One sees that a power-law regime
appears for R 0.5 au , with an index between 4/3 and 1. The
turbulent energy reservoir is clearly used in two phases: (i) an
early phase with rapid and strong dissipation that almost stops
the plasma cooling and (ii) a long-lasting phase with reduced
dissipation that only mildly delays the cooling of the plasma.

3.2. Varying Spectral Extent

Is the set of initial conditions made for run A the most
efficient in terms of resulting temperature curve, or can we
achieve a resulting curve closer to the observed 1/R decrease?

Table 1
List of Parameters for the Initial Conditions

R M ò
M2

 B0 β kmax m 0m

A 1 0.2 5 2.04 0.29 64 5/3 2.4 10−3

B 1 0.2 5 2.04 0.29 64 3 1.7 10−3

C 1 0.2 5 2.04 0.29 4 5/3 2.1 10−3

D 0.77 0.2 3 2.04 0.49 4 5/3 1.8 10−3

E 1 0.2 5 2.04 0.29 4 2.2 1.7 10−3

F 0.77 0.12 5 2.04 0.49 4 2.2 1.8 10−3

G 0.6 0.14 2.6 2.04 0.8 4 2.2 1.5 10−3

H 1 0.4 2.5 2.04 0.29 4 2.2 1.3 10−3

K 0.77 0.2 3 2.04 0.49 4 2.2 1.8 10−3

M 0.77 0.2 3 0.86 2.75 4 2.2 1.8 10−3

N 0.77 0.2 3 1.17 1.48 4 2.2 1.8 10−3

Z 0.3 0.2 0.45 2.04 0.29 64 5/3 1.5 10−4

Note. In the table, R is the name of the run; M u csrms= , with cs the sound
speed; ò is the initial expansion parameter; M 2  , see Section 2.3; B0 is the
initial magnetic field amplitude (and Alfvén speed); β is the ratio of thermal
over magnetic pressure; kmax is the maximum wavenumber in directions
perpendicular to radial (nota bene largest perpendicular scale corresponds to
unit wavenumber); m is the 1D spectral slope; and 0m is the initial value of the
diffusive parameters (viscosity, resistivity, and conduction).

Figure 2. Run A: evolution of basic quantities vs. heliocentric distance R R0.
(a) Velocity amplitude urms (solid line), compressible velocity u c

rms (dotted
line), and magnetic field fluctuation brms

1 2r̄ (dashed line). (b) Visco-resistive
dissipation Qν (solid line) decomposed as the sum of u 2m  ´∣ ˜ ∣ (dotted line),
j 2h˜ (dashed line), and u.4

3
2n ∣ ˜ ∣ (dot-dashed line). (c) Dissipation rates per unit

mass: dE/dt (solid line), expansion-driven damping Qexp (dotted line), visco-
resistive dissipation Qν (dashed line), and nonlinear loss during cascade QNL

(dot-dashed line, thick when increasing the decay rate and thin when
decreasing the decay rate). (d) Temperature compensated by 1/R decrease.
Distance is normalized by the initial distance R0=0.2 au.
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As we will see later in the discussion, an important
characteristic of run A is the exaggerated importance of small
scales, compared to the one found in the quasi-stationary
turbulent state. This is at the origin of the excessive heating
occurring in the early phase of the run. To reduce the energy of
small scales, we now change one or two of the following
parameters: (i) the initial spectral slope m and (ii) the initial
power-law extent, as measured by kmax.

In Figure 3, we compare runs A (solid line), B (dotted line),
C (dashed line), and E (dot-dashed line) with the following
values of m and kmax: m 5 3= and k 64max = for run A,
m=3 and k 64max = for run B, m 5 3= and k 4max = for run
C, and m=2.2 and k 4max = for run E. Panel (a) shows the
critical heating ratio Q Qcn that in principle reveals how close
we are from critical heating; panel (b) shows the temperature
curve compensated for a 1/R decrease.

Run A shows an initial large overheating phase with
Q Q 10cn  , followed by insufficient heating Q Q 1c <n for
R 0.3 au> (panel (a), solid line). This explains the different
phases of temperature evolution considered earlier: a large part
of the turbulent energy is lost during the first phase; so, in the
second phase, the remaining turbulent energy is too small to
substantially heat the plasma, leading to a temperature decrease
between adiabatic and 1/R (panel (b), solid line).

Due to the reduced importance of small scales, runs B, C,
and E show a different behavior. Initially, for R 1.2 , all of
them show comparable critical heating ratios (panel (a)), too
small to lead to observable heating. This phase corresponds to a
quasi-adiabatic decrease of temperature (panel (b)). This is
followed by a quasi-stationary regime (R 1.2 ) in which the
heating is close to critical and leads to a common temperature
decrease, with all three temperature curves showing a quasi-
plateau, thus close to a 1/R decrease (panel (b)).

Decreasing the importance of small scales in the initial
spectrum thus succeeds in suppressing the too-large energy loss
of the first phase. Note that run E shows the profile closest to
1/R during the whole nonadiabatic phase. In the following
runs, we thus fix the spectral parameters as in run E: spectral
slope 2.2 and a short spectral extent with k 4max = .

3.3. Mach Number, ò, and M2 

Decreasing the initial Mach number intuitively decreases the
turbulent energy reservoir compared to the internal energy, so it

should also decrease the heating ratio Q Qcn . In order to check
this conjecture, we compare two runs, C and D, both with
k 4max = , 0.2 = , and, respectively, M=1 and M=0.77.
Figure 4(a) shows that our conjecture for the heating ratio is
correct. As a consequence, the average radial slope of the
temperature profile changes substantially (Figure 4(b)). Note,
however, that the temperature curve shows a break and
decreases at a faster rate in the end.
The expansion parameter ò measures the expansion rate

normalized by the nonlinear shearing rate. Intuitively again, a low
expansion parameter should favor heating to the detriment of
cooling. In order to check this second conjecture, we compare
two values of the expansion parameter, 0.12 = (run F) and

0.2 = (run K), with M=0.77 in both cases. The result is as
expected (Figure 5); i.e., the heating is larger for the run with
lower ò during the first part of the transport for R 0.6 au<
(R R 30 < ). However, the reverse is true for the second half of
the travel. This happens because, for smaller values of ò (run F,
solid line), the same travel distance corresponds to a larger
number of nonlinear times (i.e., larger “age”; see Grappin et al.
1991), which may easily result in a too-fast decrease of the
energy reservoir and thus of the heating rate.
Last, we test the parameter M2  as a possible control

parameter for the heating and temperature profile (see
Section 2.3). We choose two pairs of runs: E and F have the
largest parameter value, M 52  = , and G and H have the
lowest one, M 2.52   (see Table 1).
Figure 6(a) shows that the ordering of critical heating by

M2  is approximately verified for R 0.5 au< but not at larger
distances. Nevertheless, the temperature curves (Figure 6(b))

Figure 3. Heating ratio Q Qcn and temperature profiles, all with M 1,=
0.2 = but varying small-scale initial excitation. Runs A (solid line), B (dotted

line), C (dashed line), and E (dot-dashed line). (a) Heating ratioQ Qcn vs. heli-
ospheric distance R. (b) Average temperature (normalized by its initial value)
compensated by R R0 . Distance is normalized by the initial distance R0 =
0.2 au. The thin solid line in panel (b) corresponds to T T R R0 0

4 3= -( ) .

Figure 4. Heating ratio Q Qcn and temperature profiles, with same 0.2 = but
varying initial Mach number, for runs C (M=1; solid line) and D (M=0.77;
dotted lines). Same caption as Figure 3.

Figure 5. Heating ratio Q Qcn and temperature profiles, with same M=0.77
but varying expansion parameter, for runs F ( 0.12 = ; solid line) and K
( 0.2 = ; dotted line). Same caption as Figure 3.
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appear to be gathered in two groups according to the parameter
value.

3.4. Varying the Plasma b and Angle VBq

Due to variations of the initial temperature, with the mean
initial magnetic field remaining constant, the β of the different
runs considered up to now (runs A to K) has been varied in the
interval 0.3 0.8 b (Table 1). Since, in the slow solar wind,
the β of the plasma can be larger than unity, we now consider
runs with larger values, 2.75, 1.48b = (runs M and N), and
compare with run K with 0.49b = . The Mach number is 0.77
in the three runs. The overall effect of the β variation appears to
be small (Figure 7), with, however, a slight advantage (stronger
heating) to the two runs with larger β (runs M and N; solid and
dotted lines with quasi-superposed curves).

A last parameter is of interest: it is well known that, although
the angle VBq between the magnetic field and the radial
direction is, on average, 45° at 1 au (which corresponds to

11q =  at 0.2 au), its distribution actually varies widely
around the average. To test the effect of small-angle variation,
we considered doubling the initial angle VB

0q . We found that
when passing from 11VB

0q =  to 20VB
0q = , the critical heating

ratio, as well as the temperature profile, shows no variation at
all (not shown).

4. Discussion

4.1. Summary

Our numerical results support the possibility that MHD
turbulence can drive a proton temperature profile that is
decreasing significantly more slowly than the adiabatic
prediction in the distance range R0.2 1 au< < . We started
with a spectrum initially having a 2D configuration, corresp-
onding in principle to the slow wind regime as observed by
Dasso et al. (2005). This led, with an rms Mach number close
to unity and expansion parameter 0.2 = , to a temperature
profile significantly steeper than observed; however, when
considering a strong reduction of the initial spectral inertial
range, we obtained a temperature profile close in average to a
1/R law, thus not far from the average R1 0.9 profile measured
by Totten et al. (1995).

We found that the parameters regulating the heating rate are
the rms Mach number and the expansion parameter ò,
combined as M2  , while other parameters, such as plasma
β and angle VBq between the mean field and the radial (for small
initial values) have a minor effect.

4.2. Spectral Properties versus Mach Number

To understand the necessity of reducing the initial small-
scale energy content, we examine here the spectral evolution.
We first examine the spectral anisotropy. Figure 8 shows the

case of run E; it is representative of the other runs that all show
comparable evolutions. The 2D spectra shown are cuts though
the plane kz=0 of the 3D spectrum for total energy
u B2 2d r+ . As explained in Section 2, the initial energy
isocontours (panel (a); R=0.2 au) are quasi-perpendicular to
the mean field direction (straight line), which is close to the
radial direction. At 1 au, however (panel (b)), the mean
magnetic field has an angle of 4p with the radial, and the
main symmetry axis of the isocontours is now quasi-
perpendicular to this mean field. In other words, the cascade
is not only initially perpendicular to the mean field, it remains
so during transport, following the rotation of the mean field.
This corresponds nicely to the so-called 2D spectrum dominant
in the slow wind (Dasso et al. 2005), which was first found
numerically in Verdini & Grappin (2016) to be one of the two
robust attractors in the wind.
We now consider the 1D reduced total energy spectra at 0.2

and 1 au for runs A, B, C, and E, shown in Figure 9. The initial
spectra have dotted lines, and the final ones have solid lines
(1 au). The final spectra depend on either radial (thick solid
line) or perpendicular (thin solid line) wavevectors. The
wavenumber is normalized by the Kolmogorov dissipation
wavenumber k Qd

3 1 4m= n( ) , where the dissipation rate Qn is
defined in Equation (27). Each final spectrum is then obtained

Figure 6. Heating ratio Q Qcn and temperature profiles, with varying M 2  ,
for runs E (solid line), F (dotted line), G (dashed line), and H (dot-dashed line).
Same caption as Figure 3.

Figure 7. Heating ratio Q Qcn and temperature profiles, with M=0.77,
0.2 = , and varying β, for runs M (solid line; β=2.75), N (dotted line;

β=1.48), and K (dashed line; β=0.49). Same caption as Figure 3.

Figure 8. Run E: rotation of the energy spectrum (kinetic + magnetic) with the
mean magnetic field. The angular energy spectrum E(kx, ky) is in the plane
kz=0. (a) At R=0.2 au. (b) At R=1 au. The mean magnetic field direction
is represented by a straight line in each panel.
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by averaging the spectra so normalized in the distance
interval R0.6 1  .

The four final spectra are all comparable (either along the
radial or transverse direction), showing a very reduced spectral
extent of about half a decade with a slope m 5 3 .

The origin of the small extent of the inertial range in the final
spectra actually lies in the high Mach number (M=1) adopted
in these runs. A high Mach number leads to large intermittent
variations of density associated with shocks, thus requiring
large viscosities to prevent the occurrence of unresolved
gradients in high-density regions. As a matter of comparison,
when dealing with run Z (M=0.33), we could use a viscosity
10 times smaller than that used for runs with M=1 (see
Table 1). Due to its much lower viscosity, run Z follows a k 5 3-

scaling on more than one decade, thus significantly larger than
that for run A (Figure 10).

The short spectral extent seen previously for runs with
M=1 thus results from the necessity to increase the viscosity
with such large Mach numbers to prevent a catastrophic
(unphysical) evolution of the run at a given numerical
resolution. This also explains why it is necessary to start with
a small spectral extent: otherwise, during a transient phase, one
obtains excessive heating produced by the artificial initial
excess of energy at visco-resistive scales (see the evolution of
Q Qcn for run A in Figure 3(a)).

4.3. Dissipation Rate and Kolmogorov Rate

The parameter M2  (Equation (42)), derived in Section 2.3,
has been used to specify conditions allowing us to approach
critical heating. In particular, in runs B, C, and E, the value
M 52  = (not too far from the nominal value of 4.4 derived in
Equation (42)) allowed us to obtain temperature profiles with a
power law close to 1/R.

The argument used in Section 2.3 leading to this prescription
relies on the assumption that the ratio R Q QV K 41= n is 0.1 .
This very low value of RV (corresponding to an effective very
high Kolmogorov constant) has been found to hold in cold
winds by Vasquez et al. (2007). It would be satisfying to check
whether or not the runs studied in this paper show the same low
value of RV.
Figure 11(a) gives RV versus distance in runs A, B, C, and E.

The curve varies wildly for run A, with RV passing from larger
than 1 to lower than 0.1, while runs B, C, and E all show a ratio
clustering around the value 0.1 on the whole distance range.

Figure 9. Runs A, B, C, and E: evolution of the 1D energy spectrum (kinetic +
magnetic), compensated by the Kolmogorov scaling k 5 3- . Abscissa:
wavenumber normalized by the Kolmogorov wavenumber k Qd

3 1 4m= n( ) .
Dotted line: R R 0.2 au.0= = Solid lines: R 1 au.= Thick solid line: radial
1D spectrum. Thin solid line: 1D spectrum perpendicular to radial (ẑ direction).

Figure 10. Runs Z (solid line) with M=0.3 and A (dotted line) with M=1.
The total 1D energy spectrum is averaged during the last phase of transport,
compensated by the k 5 3- scaling. Abscissa: radial wavenumber normalized by
the Kolmogorov wavenumber.

Figure 11. Checking the Vasquez law and consequences. (a) Ratio Q QK41n
between visco-resistive dissipation and Kolmogorov’s energy cascade rate
(Equation (36)). (b) Radial Taylor wavenumber. (c) Ratio Q Qexpn between
visco-resistive dissipation and expansion decay rate. (d) Turbulent rms
amplitude Z u B2 2 1 2d r= +( ) evolution compensated by R1 0.6. Shown
are runs A (solid line), B (dotted line), C (dashed line), and E (dot-dashed line).
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Panel (b) shows the evolution of the Taylor wavenumber
(Equation (37)) for the four runs, summarizing the spectral
width evolution for the different runs. By comparing panels (a)
and (b), one sees again that the initial oversized spectral width
of run A leads to an anomalously large value of RV. In contrast,
runs B, C, and E, which have a spectral width adapted to their
viscosity, show RV values clustering around 0.1.

The fact that in our simulations B, C, and E leading to a
critical heating, we find a value for Q QK 41n close to that
observed indicates that our numerical setup, in spite of the
previous remarks on the limited spectral range, leads to
turbulent properties close to those of the actual solar wind
turbulence.

This small value of RV means that the characteristic turbulent
decay time is about 10 times longer than the plain nonlinear
time t ku1NL = . This allows us to interpret the relative
importance in our runs of the expansion decay rate and
turbulent decay rate. Indeed, with an expansion parameter

0.2 = , as in runs A, B, C, and E, one expects a priori an
expansion decay rate Qexp smaller than the turbulent dissipation
rate, since ò is the expansion rate normalized by the inverse of
the turnover time at large scales (Equation (13)). However, due
to RV being 0.1, the effective turbulent decay timescale is
10 times longer than the nonlinear turnover time. The effective
expansion decay rate is thus finally not smaller, but rather
larger than the turbulent dissipation rate, in spite of 0.2 = .
This is true in the whole distance range [0.2, 1] au for runs B,
C, and E, and also for run A, except during the early transient
where RV is close to unity.

A corollary to the overall dominance of expansion damping
in runs A, B, C, and E should be that the turbulent fluctuation
amplitude decays close to the WKB prediction, which is, for
Alfvén waves,

Z u B R1 . 472 2 1 2 1 2d r= + ( ) ( )

This is indeed the case: Figure 11(d) shows that the turbulent
amplitude in runs A, B, C, and E decays as Z R1 0.6 , thus
close to the WKB prediction.

4.4. Loss of Energy Conservation during Cascade

The deviation from turbulent energy conservation during
cascade has been measured by the residual term QNL, defined
as the difference between the total turbulent energy decay and
the sum of turbulent dissipation Qν and linear expansion decay
Qexp (Equation (46), run A, Figure 2(c)). Other runs show that
with a fixed Mach number, the residual term QNL is
proportional to the expansion parameter ò. In order to eliminate
the contribution of compressibility and so to determine without
ambiguity the contribution of expansion alone, we consider the
deviation of total energy conservation instead of just turbulent
energy. We denote the new residual term by QNL¢:

d dt e T Q T a Q1 2 .

48
exp NLr g g r+ á ñ - = - - á ñ - ¢( ˜ ( )) ˜

( )

Figure 12 shows the total (turbulent + internal) energy time
derivative and the associated residual term QNL¢ for run A. The
residual dissipation is limited to 1% or 2% of the total
variation. This is substantially smaller than QNL (see
Figure 11(c)). It shows that compressible exchanges between
turbulent and internal energy are the dominant contribution to

the deviation of turbulent energy conservation during the
cascade, especially during the beginning of the evolution. The
same remarks can be made for the other runs in Table 1.
However, in run H, with a larger expansion parameter
( 0.4 = ), we find that compression and expansion contribute
more equally (not shown).

4.5. Conclusion

In conclusion, using complete nonlinear couplings of MHD
equations, we have shown that radial temperature profiles as
1/R simply result from the combination of adiabatic decrease
and turbulent dissipation. This has been done starting at 0.2 au
with an rms Mach number 1 and an expansion parameter

0.2 = . With these parameters, the decrease of rms turbulent
amplitude is not much faster than the Alfvén WKB prediction,
actually as R1 0.6. This demonstration has been done by
starting with a spectral anisotropy characteristic of slow winds,
namely mainly perpendicular to the mean magnetic field. This
included showing that the Q QK 41n ratio is close to 0.1 in our
simulations, as in the solar wind. Finally, we measured the
deviation from the conservation of turbulent energy during the
cascade (residual energy loss QNL). We found that expansion
was a minor cause of deviation, the main cause being
compressible exchanges between turbulent and internal energy.
Future work includes (i) providing a clearer signature (i.e.,

with larger Reynolds) of the 5/3 power-law index character-
istic of slow winds by lowering the Mach number and the
expansion parameter and (ii) considering the case of fast winds,
which, despite having a different spectral anisotropy, produce a
similar radial dependence of the temperature.

This work was performed using HPC resources from
GENCI-IDRIS (grant 2017-040219). It has been supported
by Programme National Soleil-Terre (PNST/INSU/CNRS).
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