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Abstract

Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the
acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be
partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary
magnetic field and/or transported from the solar corona. To investigate the interaction with background
inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport
and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial
evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the
residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model
of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a
simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several
comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we
show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources
significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted
turbulence distribution results from a complete solar minimum model with in situ measurements made by the
Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable
agreement with observations.
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1. Introduction

Turbulence in the solar wind over a wide range of spectral
scales has been observed by many in situ measurements as
fluctuations in the interplanetary magnetic field (IMF) and solar
wind velocity since the pioneering studies of Coleman (1968)
and Belcher & Davis (1971). In situ measurements show that
the solar wind exhibits a global-scale inhomogeneity in
magnetohydrodynamic (MHD) parameters, which may reflect
differences in energy deposition (heating and acceleration) as
the solar wind escapes from the solar corona (Tu 1987; Tu &
Marsch 1990, 1997; Zhou & Matthaeus 1990). The turbulence
in the solar corona and solar wind is the most plausible
candidate to play a significant role in the deposition of energy
throughout the large-scale heliosphere.

A typical spectrum of solar wind fluctuations consists of
several power-law spectra with different slopes over different
scale ranges (Bruno & Carbone 2005, 2013). The largest scale
range with aslope of −1 is the energy-containing scale that
reflects the global inhomogeneity of the three-dimensional (3D)
solar wind. In the next smaller range, the spectrum is often a
power law of −5/3 that corresponds to that of Kolmogorov
turbulence. This range is called the inertial range, and the break
scale with the energy-containing range is called the “correlation
length,” and is a measure of the spatial scale of turbulent eddies
(Zank et al. 1996). In the inertial range, the energy in
fluctuations is transferred to smaller scales by a cascade process
without energy dissipation. When the transfer of energy reaches
the scale where dissipation by kinetic processes are dominant,
the turbulent energy begins to be converted into thermal
energy. Besides plasma heating, nonlinear turbulent processes

associated with Reynolds stresses associated with turbulence
are thought to contribute to the acceleration of the solar wind.
On the other hand, the characteristics of turbulence can be

modified significantly by the large-scale distribution of the
radial and lateral inhomogeneity of the global magnetic field
and solar wind plasma parameters. Turbulence can be
generated initially by convective motions in the photosphere
and then transferred into the corona along magnetic field lines.
The strongly inhomogeneous magnetic field of the Sun (in the
corona and in the interplanetary space) leads to an inhomoge-
neous supply and transport of turbulence.
Turbulence in solar wind plasma can play essential roles in the

heating of coronal (e.g., Tu 1988; Matthaeus et al. 1999a;
Oughton et al. 2001) and solar wind (Matthaeus et al. 1999b;
Smith et al. 2001; Adhikari et al. 2015a) plasma and the
acceleration of the solar wind, as well as the acceleration of
energetic particles associated with interplanetary shocks (Zank
et al. 2000, 2007). The inhomogeneous deposition of turbulence
energy results in an inhomogeneous solar wind speed. The
inhomogeneity of the solar wind introduces expansion, shear,
and mixing of solar wind plasma (Zank et al. 1996), which can
enhance the production and evolution of turbulence. Turbulence
can also be generated by energetic particles and shocks.
Because of the close coupling of turbulence, solar wind, and

energetic particles, a comprehensive model describing not only
turbulence but also the large-scale inhomogeneity of the solar
wind and the IMF is necessary to understand the physics of
these phenomena. The role of turbulence in solar coronal
heating and solar wind acceleration is one of the challenging
goals for the forthcoming Solar Orbiter and Solar Probe Plus
space missions.
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Many theoretical approaches have been introduced to study
the transport and evolution of turbulence in the solar wind.
Recently, Zank et al. (2012) proposed a nonlinear model
describing the transport of MHD turbulence, introducing a
closed set of six equations of six variables, three of which
represent the turbulence intensity of forward and backward
propagating modes and the residual energy, together with three
corresponding correlation lengths. Adhikari et al. (2014, 2015a)
developed a one-dimensional (1D) model reduction of the Zank
et al. (2012) turbulence transport model and well-reproduced the
observed turbulence. However, in their 1D model, Adhikari et al.
(2014, 2015a) did not study the role that the inhomogeneous 3D
global structure of solar wind and IMF can have on the transport
and generation of turbulence.

In this paper, we present a 3D numerical model in which the
large-scale MHD solar wind and turbulence transport therein
are coupled, and investigate the effect of the inhomogeneous
3D structure of the background solar wind on the transport of
turbulence. We assume a simple magnetic configuration with a
tilted dipole to mimic solar minimum conditions. The model
includes many effects, including inhomogeneity of the back-
ground solar wind and IMF, and diverse possible sources of
turbulence. To separate the effect of each, we simulated
intermediate comparative cases between a solar minimum
condition and a 1D model similar to that used in Adhikari et al.
(2015a). Based on this comparison, we discuss the connection
between turbulence generation and the bimodal solar wind
structure. The turbulence variables under solar minimum
conditions are compared with those derived from in situ
measurements made by Helios and Ulysses. Our intention with
this work is to carefully and systematically extend our idealized
1D model to an idealized 3D model in an effort to understand
the changes on the basic physics of turbulence transport in a
more complex structured solar wind. We do not try to explain
in great detail the relatively few existing observations of the
heliospheric evolution of turbulence. However, we do use the
observations that exist to try to determine whether the model
presented here is inthe right general direction. We do not
attempt to tweak the model in any way to match observations.

In the following section, we describe our numerical models.
Section 3 shows results from six test cases with spherically
symmetric solar wind and Section 4 shows results from two non-
asymmetric solar wind cases. The fully 3D solar wind cases are
compared with results from in situ measurements in Section 5.
Section 6 concludes with a Summary and Discussion.

2. Large-scale Heliospheric Model

Shiota et al. (2014) recently developed a 3D MHD model of
the solar wind in the inner heliosphere, which is used in the
present study. The model results are in reasonable agreement
with in situ measurements of the solar wind at the orbits of
Earth, Venus, and Mars (Shiota et al. 2014). This MHD model
is now used as part of the real-time space weather forecast
system SUSANOO5 at Nagoya University. In this Section, we
first briefly introduce the basic MHD model of the solar wind.
After that, we introduce the theoretical turbulence transport
model developed by Zank et al. (2012), which is now coupled
into the solar wind MHD model.

2.1. Solar Wind MHD Model

The solar wind MHD model of Shiota et al. (2014) calculates
the spatial and temporal variation of the 3D solar wind on the
basis of a time series of observed photospheric magnetic field
synoptic maps. The inner heliosphere defined in the Helio-
graphic Inertial (HGI) coordinate system is discretized with a
Yinyang grid (Kageyama & Sato 2004). In the MHD model
(Shiota et al. 2014), we integrate the following MHD
equations:
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These equations are normalized with typical values: =L0

= ´R 6.96 105 km, t = 1 h0 =3600 s, r = 10 cm ´- m3
H,

t= =V L 193.30 0 0 km/s, pr= ´ =B V 4 8.8640 0 0 nT,

and = ´ -p 6.252 100
2 nPa. I is the unit matrix in Cartesian

coordinates. The additional variable ψ is integrated with the
following equation
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that relieves the numerical deviation of the divergence free
(solenoidal) condition of magnetic field (Dedner et al. 2002),
where ch and cp are the propagation speed of ψ defined as the
maximum characteristic speed within the numerical domain and
the diffusion coefficient of ψ is defined as =c c 0.18p h ,
respectively (Dedner et al. 2002). mH, G, and M are the proton
mass, the gravitational constant, and the solar mass, respectively.
H is a heating term (Adhikari et al. 2014, 2015a) that is
discussed later and is set to be 0 in this study. These equations
are solved using a finite volume method with a Harten–Lax–van
Leer Discontinuities approximate Riemann solver (Miyoshi
& Kusano 2005), which is combined with the third-order
Monotone Upstream-centered Schemes for Conservation Laws
and second-order Runge–Kutta time integration.
The numerical domain in this study is set as  R r60

R1290 (6 au). The inner boundary conditions at = r R60 are
rotating and time-varying solar wind maps obtained from the 3D
potential coronal magnetic field (Shiota et al. 2012) and empirical
velocities between coronal magnetic field and solar wind
parameters (Wang & Sheeley 1990; Totten et al. 1995; Arge &
Pizzo 2000; Hayashi et al. 2003).
The solar wind 3D structure is determined from the time

series of solar wind and IMF maps specified on the inner
boundary of the MHD simulation (Shiota et al. 2014). In order
to obtain a simple solar wind structure, we use two simplified
steady magnetic field configurations:

1. a monopole field structure in which the field is outward-
directed and its strength (0.55 G or 0.275 G at r=2.5
R ) is spherically symmetric; and5 http://cidas.isee.nagoya-u.ac.jp/susanoo/
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2. a tilted dipole magnetic field whose magnetic axis is
inclined at 30° from the rotational axis of the Sun.

Furthermore, we use two types of solar wind velocity maps:

1. a spherically symmetric solar wind flow with a constant
speed 400 km s−1 or 600 km s−1; and

2. a bimodal (fast and slow) solar wind flow whose speed is
determined from the tilted dipole potential field and the
Wang–Sheeley–Arge 2000 formula (Wang& Sheeley 1990;
Arge & Pizzo 2000).

We ran the simulations for a sufficiently long time, so that a
steady-state solution was obtained. We show numerical results
with combinations of the four configurations and compare with
observations of turbulence in the solar wind.

2.2. Turbulence Transport Model

We combine the theoretical turbulence transport model
developed by Zank et al. (2012) with our global MHD model
(Shiota et al. 2014). In general, turbulence in the MHD regime
can be treated with the MHD equations, Equations (1)–(4), if
the spatial resolution of the numerical simulation is sufficiently
high to resolve the higher wavenumber turbulence. However, it
is difficult, if not impossible currently, to solve a global MHD
simulation with such a high spatial resolution because the
energy-containing rage of the MHD turbulence is too large. We
separate the high frequency fluctuations in the velocity v and
magnetic field B (Zhou & Matthaeus 1990), which cannot be
described by the global MHD simulation, and denote the scale-
separated fluctuations as u and b. The fluctuations in solar wind
velocity and magnetic field associated with oppositely
propagating Alfvén modes are described by the Elsässar
variables (Elsässer 1950):

( )pr= z u b 4 . 6

The transport and modulation of the Elsässar variables are
described by scale-separated incompressible MHD equations
(Marsch & Tu 1989, 1990; Zhou & Matthaeus 1990):
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where U is the mean velocity, VA is the mean Alfvén velocity,
NL are nonlinear dissipation terms, and S are source terms

for the turbulence. The detail of the source terms S are
described in the next subsection.

Equation (7) is derived from the standard incompressible
reduction of the MHD Equations (1)–(4). Strictly speaking
Equation (7) is therefore valid only for solar wind conditions
satisfying b  1p , where bp is the usual plasma beta (Zank &
Matthaeus 1991; Hunana & Zank 2010). Despite this
limitation, the turbulence models (Zank et al. 1996, 2012;
Matthaeus et al. 1999b; Smith et al. 2001; Adhikari
et al. 2014, 2015a) derived from it are quite well validated

by in situ observations of low-frequency turbulence in the solar
wind (Adhikari et al. 2014, 2015a).
The turbulence transport model of Zank et al. (2012)

considered the temporal and spatial evolution of three moments
of the small-scale fluctuations (unit: energy per unit mass),
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2 2

The transport equations of these variables are derived by taking
moments of Equation (7), corresponding to Equations (42)–
(44) of Zank et al. (2012):
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and L and LD are variables related to the correlation lengths
(l and lD) of these three moments, respectively. They are
defined as lº+

+L f , lº-
-L g , and lºL ED

D D. In the
turbulence transport model (Equations (11)–(13)), we solve
simultaneously for the temporal and spatial evolution of the
three variables L and LD,
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also derived from Equation (7). According to the derivation in
Appendix A, the parameters a and b in Equation (14) are set to
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= =a b 1 2 in the present study, which yields
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The model Equations (11)–(13), (15), and (16) are coupled to
our 3D MHD model, utilizing the inhomogeneous solar windU
and VA obtained from the MHD simulation, i.e., we solve the
temporal variation of eight MHD variables and six turbulence
variables simultaneously in the coupled model.

We note that related approaches have been introduced by
Usmanov et al. (2000, 2011, 2014) and Kryukov et al. (2012).
However, these authors coupled the much simpler turbulent
transport models of Zank et al. (1996) and Breech et al. (2008)
to 3D MHD models of the heliosphere. The Usmanov et al.
(2014) and Kryukov et al. (2012) 3D MHD models included
the back reaction of the turbulence on the global MHD flow by
including both heating and Reynolds-averaged turbulence
terms in the MHD model. This will be an important next step
in the further development of our approach.

The coupling of turbulence and heating by dissipation of the
turbulence using a 1D Zank et al. (2012) model was
investigated by Adhikari et al. (2015a), The intensities of
inward and outward propagating turbulence show a large
asymmetry in fast solar wind streams, whereas they are
comparable in slow solar wind streams.

Although these are coupled witheach other, in this study, we
show results in a steady state with coupling in one direction
only (no source term, H=0 in Equation (4)).

2.3. Sources of Turbulence

The origin of the three turbulence intensities described in the
previous section depend on the assumed inner boundary
conditions of the simulation and the generation of turbulence
by various sources within the numerical domain.

2.3.1. Boundary Condition

We consider the turbulent energy densities g and fto
beassociated with forward and backward propagating modes,
respectively. The propagation direction in the radial direction
depends on the sign of the IMF radial component. If we used
actual directional inhomogeneous magnetic field data, the
boundary condition would have to be specified taking into
account the IMF direction. However, the development of such
a technique is beyond of the scope of this paper, and we specify
instead spherically symmetric values on the inner boundary,
which are slightly modified from those used in Adhikari et al.
(2015a), as listed in Table 1.

To examine if the boundary conditions are inappropriate, we
performed simulations with the turbulence boundary conditions
with forward and backward propagating modes swapped (g, f,
l). The parameters for each case are tabulated in Table 2. We
denote the cases where =g g0, =f f0, l l=+ +0, and
l l=- -0, as “proper” in Table 2. The swapped cases, where
=g f0, =f g0, l l=+ -0, and l l=- +0, are denoted as

“opposite.”

2.3.2. Source Terms

We applied only one form of turbulence source terms, which
is that associated with the generation of shear at the interface of
fast and slow solar wind streams (Coleman 1968; Roberts
et al. 1987, 1992; Zank et al. 1996; Adhikari et al. 2015a).
Roberts et al. (1987) investigated observationally the origin and
evolution of fluctuations in the solar wind using the Helios and
Voyager spacecraft data sets and observed rapid evolution of
the normalized cross-helicity in the inner heliosphere, which is
indicative of strong in situ nonlinear dynamical processes, i.e.,
the shear of the streams. Zank et al. (1996) modeled this
process with a velocity shear source term in the form of
D á ñC U z r2 though the generation of turbulence by stream

shear should be independent of intensities of the background
turbulence. Therefore, we apply the source terms for solar wind
turbulence, which are extensively studied elsewhere (Zank
et al. 2017). We constructed dimensionally new source terms
parameterized based on (velocity)3/length ∼(velocity)2/time.
The way we chose the (velocity)3 term was to combine the two
characteristic speeds, viz., the Alfvén speed and the speed of
fluctuations. We find that the combination DV UA

2 seems to
work best where –D ~U 5 10 kms−1 is of the order of the
characteristic speed of velocity fluctuations. We could have
written the source term in e.g., Equation (11) as Constant
´D = +UV r r C V r rA A

2
0

2 2
0

2. The dimension of +C and -C is
that of velocity. We use the following modified 1D model

( )=+ +S
C V r

r
; 18A0

2
0

2

Table 1
Turbulence Variables on the Inner Boundary (Same as in Adhikari et al. 2015a)

Name symbol values unit

Strength of outward propagating mode g0 14,000 (km s−1)2

Strength of inward propagating mode f0 268 (km s−1)2

Strength of Residual energy ED0 −57.07 (km s−1)2

Correlation length of outward propa-
gating mode

l-0 ´1.16 105 km

Correlation length of inward propa-
gating mode

l+0 ´2.14 105 km

Correlation length of residual energy lD0 ´3.05 106 km

Table 2
Parameter List of the Numerical Results

Case Boundary Solar wind IMF Turbulence

condition Structure

VSW

[km
s−1] Structure source term

Case 1 proper 1D 600 Monopole Yes
Case 2 proper 1D 400 Monopole Yes
Case 3 proper 1D 600 Monopole,

´1 2
Yes

Case 4a proper 1D 600 Monopole No
Case 4b proper 1D 600 Monopole Yes,´2
Case 5 opposite 1D 600 Monopole Yes
Case 6 proper Bimodal Monopole Yes
Case 7a proper Bimodal Dipole Yes
Case 7b opposite Bimodal Dipole Yes
Case 8a proper Bimodal Dipole Yes,´2
Case 8b opposite Bimodal Dipole Yes,´2

4
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where =V 174.4A0 kms−1, = r R62.350 , =+C V2.00 0

kms−1, and =-C V0.80 0 kms−1. Theseforms were chosen
to ensure consistency of the model and observed values of the
various turbulence quantities. To examine the effect of the
source terms, we consider cases in which the sources are set to

=C 0 or two times stronger than shown above. These cases
are denoted as “No” or “́ 2” in the last column of Table 2,
respectively.

Since we consider only solar minimum conditions, source
terms associated with the generation of turbulence by shock
waves (Zank et al. 1996; Adhikari et al. 2015a) are neglected.
Similarly since the simulated domain is restricted to within
6 au, pickup ion driven turbulence (Lee & Ip 1987; Williams &
Zank 1994; Zank et al. 1996) is neglected too.

3. Results

The numerical results for eight comparative cases are shown
in the present paper. First, the basic case results are shown in
detail in Section 3.1. Comparisons of five spherically
symmetric solar wind cases to the basic case are shown in
the following sections.

3.1. Basic Axisymmetric Case

First, for the Basic Case (Case 1), we assumed a spherically
symmetric solar wind flow of 600 km s−1 at the inner boundary
(60 R ) and a monopole IMF with magnetic field strength is
0.55 G at source surface 2.5 R . The radial field in the
magnetic field vector becomes Br=7.43 nT at 1 au, which
is acomparable value to thatobserved in situ (Adhikari
et al. 2015a).

Figure 1 shows two-dimensional distributions of velocity
(panel (a)), magnetic field (panel (b)), magnetic field alignment
to the radial direction (panel (c)), and turbulence variables
(panel (d)–(i)) in the meridional plane in the HGI coordinate. In
spite of the spherically symmetric boundary conditions, the
steady state shows latitudinal distributions resulting from the
rotation of the Sun (the inner boundary), i.e., forming the
Parker spiral IMF (Parker 1958; see Figure 1(c)). Vr and Br

have spherically symmetric distributions, while the magnetic
field alignment ∣ ∣ ∣ ∣B Br has a cylindrically symmetric distribu-
tion. Because of the inhomogeneous distribution of the
background solar wind and IMF, the distributions of turbulence
intensities and correlation lengths have latitudinal dependences
(Figures 1(d)–(i)).

For a quantitative comparison between the four different
latitudes, we use the 1D radial plots of the background solar
wind, IMF, and the turbulent variables in Figure 2. The
different colors in each radial plot correspond to different
latitudes (0° (black), 30° (blue), 60° (green), and 90° (red)).
Figures 2(a) and (b) show the solar wind speed and IMF along
the four different latitude lines, respectively. The profiles of the
solar wind speed and the IMF radial component are identical
due to the spherically symmetric distribution seen in Figure 1,
while only the IMF azimuthal component has different
distribution.

Figure 2(e) shows radial plots of the three turbulence
strengths: the solid lines denote g, the dashed lines f, and the
dotted lines-ED. For the outward propagating intensity g, the
distributions are similar and small differences can be seen
beyond 2 au. In contrast, the profiles of the other two intensities
show a stronger dependence with latitude, with the lower
latitude profiles showing a greater decrease at larger distances.
From Figure 1(d), since the contours of the distribution f seem
to be more vertically oblate with distance from the Sun, the
distribution will approach a cylindrical distribution, and the
transport of the inward propagating intensity f is likely to
depend on the direction of IMF (Figure 1 (c)) in these regions.
From the turbulence transport Equations (11)–(13), (15),and

(16), the dependence on the magnetic field alignment ∣ ∣ ∣ ∣B Br
appears only in the mixing term as shown in Equation (17). For
large distances, Equation (17) can be reduced as
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assuming that ~U eUr r and V UA r. This indicates that
mixing of the inward and outward propagating modes and the
residual energy can be the relatively dominant factor in
determining the backward propagating mode intensity in the
distant region. The terms that include the mixing in
Equations (11) and (12) are positive because ED is negative.
In the low latitude region, the term approaches 0 and hence the
absence of mixing results in lower intensities.
Figures 2(c) and (d) show the normalized cross-helicity

(solid), residual energy (dashed), and Alfvén ratio (Bruno et al.
2007), respectively,
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Corresponding to the latitudinal dependence seen in
Figure 2(e), these three parameters reflect the same latitudinal
dependence.
Notice too that the decay of the normalized residual energy

σD indicates that the turbulence is becoming increasingly
dominated by the magnetic field fluctuations (see Adhikari
et al. 2015a, 2015b) rather than the kinetic energy. In the inner
region, thedominance of the outward propagating turbulence
intensity relative to the other two intensities (Figure 2(e))
reflects that the normalized cross-helicity is nearly equal to +1
and that the normalized residual energy is ∼0. The normalized
residual energy approaches approximately−0.5 as the intensity
of the residual energy becomes half of the average of the
inward and outward propagating turbulence in the outer regions
(Figure 2(e)). This is reflected in the Alfvén ratio plot rA,
whichapproaches∼0.3 (Figure 2(d)). The normalized cross-
helicity approaches ∼0.5 as the intensity of the inward
propagating turbulence becomeshalf that of the outward
propagating turbulence. The reductions in the intensities of
the inward propagating turbulence and the residual energy in
lower latitudes results in the difference in the radial profiles of
sC, sD, and rA (Figures 2(c) and (d)).
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Figure 2(f) shows radial plots of the three turbulence
correlation lengths: the solid lines denote l-, the dashed lines
l+, and the dotted lines lD. The distributions of all the
correlation lengths show a similar latitudinal dependence.

The line in each panel of Figure 3 show the radial profiles in
the equatorial plane (solid lines) and over the poles (dotted
lines) for all the variables. Observed values (Adhikari
et al. 2015a) for the three strengths are overlaid using the
cross symbols in Panels (d), (e), (g), (h), and (i) for reference. A
word of caution is appropriate about the observational data
overplotted on the panels of the radial plots. As discussed at

length in Adhikari et al. (2015a, 2015b), the observations
combine Helios data from 0.29 au to 0.9 au and Ulysses data
1.3–4.8 au. The data, taken during solar minimum conditions,
is nonetheless from different decades, used different instru-
mentation, and is a combination of in-ecliptic and out-of-
ecliptic solar wind data. During the periods of observation, the
IMF was approximately radial. Despite these caveats, the
observed turbulence properties appear to provide a reasonable
quantification of the evolution of various turbulence parameters
from 0.29 to ∼5 au, and is in reasonable inaccordance with the
theoretical model of Adhikari et al. (2015a, 2015b).

Figure 1. Panels (a)–(i) are 2D plots of the radial components of velocity, IMF radial component, and alignment of the IMF to the radial direction, and
threeturbulence intensities and correlation lengths in the meridional plane in Case 1, respectively. In Panels (a) and (b), four solid lines display the four latitudes (0°,
30°, 60°, 90°), along which 1D profiles are drawn in Figure 2. The dotted line in Panel (c) shows the position where ∣ ∣ ∣ ∣ =B B 1 2r i.e., ∣ ∣ ∣ ∣= fB Br .
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Figure 2. 1D plots along four different latitudes (0° (black), 30° (blue), 60° (green), and90° (red)) for Case 1. Observed values of turbulent intensities and normalized
ones Adhikari et al. (2015a) are overplotted in panels (c)–(f). Panel (a) shows radial profiles of solar wind speed. Panel (b) shows radial profiles of theradial
component (solid lines) and theazimuthal component (dashed lines) of the IMF. Panel (c) shows normalized cross-helicity (solid lines) and normalized residual
energy (dashed lines). Panel (d) shows radial profiles of theAlfvén ratio. Panel (e) shows the forward (solid lines) and the backward (dashed lines) propagating
intensities and residual energy (dotted lines). Radial profiles of the corresponding correlation lengths are shown in Panel (f).

7

The Astrophysical Journal, 837:75 (25pp), 2017 March 1 Shiota et al.



Figure 3. Comparison between Case 1 (black) and Case 2 (red). Solid line of each color in each panel displays a 1D radial plot along the equatorial line (lat.=0°),
while the dotted lines showthat along the pole (lat.=90°).
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3.2. Effect of Solar Wind Speed Boundary Conditions

Case 2 differs from Case 1 in that the solar wind speed is
reduced to 400 km s−1 from the 600 km s−1 of Case 1. Since
the behavior of the global distributions is similar to those in
Case 1, only radial profiles along the equatorial line and over
the poles are compared, as shown with red lines in Figure 3 to
illustrate the latitudinal dependence.

The main differences are in the speed (Figure 3(a)) and
hence in the IMF because of the Parker spiral, as shown in
Figure 3(c). The azimuthal component in Case 2 at the equator
is 1.5 times larger than that in Case 1.

A comparison of the turbulence intensities is shown in
Figures 3(g)–(i). The profiles of the three turbulence intensities
along the pole (dotted lines in the panels) are almost identical.
This means that the advection of the turbulence in the
completely radial magnetic field does not introduce any
differences.

In the equatorial plane, the inward propagating mode
intensity is smaller than that of Case 1, intensity is larger than
that of Case 1, while that of outward propagating modes is
almost identical. These different trends can be understood from
the terms related to the Alfvén velocity in Equation (17), i.e.,
the term including b in Equation (14), since the relative
amplitude of VA and its gradient relative to U are larger in Case
2 than in Case 1. Therefore, the difference between inward and
outward propagating modes, i.e., cross-helicity, tends to be
amplified (see Figure 3(d)) with the heliocentric distance. This
is a consequence of the difference in the Parker spiral of IMF
between the two cases, since the magnetic field alignment
∣ ∣ ∣ ∣B Br decreases faster in Case 2. This effect can suppress the
mixing of turbulence in the inner region compared to Case 1.

From observations, it is known that for turbulence in the
slow solar wind is balanced, having the same amplitude for
inward and outward propagating modes. Thus, cross-helicity
should be around zero. However, the results of our model with
slow wind show a non-zero cross-helicity distribution. This can
be caused by the use of inappropriate boundary values for the
three turbulence intensities and corresponding correlation
lengths. Although an improvement of the values for the slow
solar wind is needed for more realistic studies, this is beyond
the scope of the current study.

3.3. Effect of IMF Strength

Case 3 differs from Case 1 in that a different IMF strength is
assumed, where the strength is reduced to half that of Case 1.
The comparison of the radial profiles to Case 1 is shown in
Figure 4. Because the solar wind speed is the same as in Case
1, the shape of the Parker spiral is identical (the ratio between
the azimuthal and radial components seen in Figure 4(c)).
Hence the mixing terms related to the magnetic field alignment
are the same while the terms related to the amplitude of Alfvén
velocity (namely · VA) are halved.

The differencein the turbulence intensities is slight, though
they can be seen at both the equator and the pole. This can be
understood as the effect of an Alfvén velocity that is relatively
small in the high-speed solar wind (Case 3).

3.4. Effect of a Source of Turbulence

Cases 4a (Figure 5) and 4b (Figure 6) are comparative cases
to show that the source term (Zank et al. 1996; Adhikari
et al. 2015a) is necessary to reproduce quantitatively the radial

profiles of both inward and outward propagating turbulence.
Case 4a neglects the source terms and Case 4b assumes source
terms two times larger than those of Case 1, while the solar
wind and IMF are identical to those in Case 1.
All three turbulence intensities in Case 4a (Figure 5) are

reduced compared to those of Case 1 and the reduction in
amplitudes is approximately similar (> a factor of fivesmaller)
at both the equator and the pole. The radial dependence of the
intensities also differs from those observed. Corresponding to
the reduction in intensity, all the correlation lengths are ∼5
times longer. Because the relative amplitudes are different in
their intensities, the difference in normalized cross-helicity sC
and residual energy sD is not so different compared to the
difference in turbulent intensities.
In contrast to Case 4a, all the turbulence intensities in Case

4b (Figure 6) are increased by a factor of about 1.5 compared to
those of Case 1. Corresponding to the increase in the
intensities, the correlation lengths are reduced by the same
factor. That increase by a factor of∼1.5, which is smaller than
the factor of the source terms, can be understood as the increase
in the nonlinear dissipation caused by the shorter correlation
lengths. The radial profiles of the turbulence intensities in Case
4b show good agreement with the observed radial profiles
(Figures 6(g), (h), and (i)).
In both Cases 4a and 4b, the increase (decrease) in the

turbulence intensities is inversely related to the corresponding
correlation lengths. This can be interpreted as follows.In our
numerical models, the time variation of the correlation
variables L and LD are solved using Equations (15) and
(16). Because the background solar wind and IMF and the
boundary conditions of the correlation variables L and LD are
identical to those in Case 1, the distributions for L and LD are
also identical. In contrast to L and LD, the turbulence
intensities are different reflecting the difference in the source
terms. Because the correlation lengths are obtained by dividing
the correlation variables by the intensities (i.e., l =+ +L f ,
l =- -L g, l = L ED D

D) , they are inversely related to the
turbulence intensities.

3.5. Effect of Boundary Conditions on Turbulence

Case 5 (Figure 7) is one for which the inner boundary
conditions of the inward and outward propagating modes ( f
and g) and corresponding correlation variables ( L ) are
swapped as well as the source term (S±). Because of the
dominance of the inward propagating mode, the cross-helicity
has negative values. The increase of residual energy in vicinity
of the inner boundary is suppressed at both the equator and the
pole. This indicates that the energy density in the inward and
outward propagating modes in Case 5 is more inefficiently
converted to the residual energy than in Case 1, i.e., more
energy is dissipated through the nonlinear terms. The
turbulence intensity of each dominant mode ( f in Case 5) at
r=6 au is smaller by a factor of>1.5 than g in Case 1 in both
the equatorial plane and over the pole.
The radial intensity profiles of inward ( f ) and outward (g)

propagating modes and the residual energy (ED) finally
converge to the same value of ∼100 km2 s−2 at the poles
(red dotted lines in Figures 7(g)–(i)) at r=6 au. This indicates
that the turbulence over the pole is similar isotopically to that
observed in the slow solar wind. In contrast to the pole, in the
equatorial plane, the intensity of the dominant (inward
propagating) mode f is a factor of 1.5 times higher than that
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Figure 4. Comparison between Case 1 (black) and Case 3 (red). The format is the same as in Figure 3.
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Figure 5. Comparison between Case 1 (black) and Case 4a (red). The format is the same as in Figure 3.
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Figure 6. Comparison between Case 1 (black) and Case 4b (red). The format is the same as in Figure 3.
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Figure 7. Comparison between Case 1 (black) and Case 5 (red). The format is the same as in Figure 3.
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of the outward propagating mode g (Figure 7(h)). This
indicates that the radial dependence of the turbulence
intensities is strongly dependent on the values specified at the
inner boundary. Around lower latitudes, the mixing between f
and g is less efficient and their dissipation is stronger than at
the pole.

The result shows the importance of the choice in boundary
values for turbulence intensities and indicates that the highly
asymmetric nature of turbulence in the fast solar wind is very
likely generated in the inner heliosphere, i.e., within the inner
boundary of the simulation in this study.

4. Effect of Three-dimensional Structure

In this section, we describe the effect of a non-axisymmetric
solar wind and IMF on the evolution of turbulence in the inner
heliosphere. First, we describe the effect of inhomogeneity of the
solar wind speed (Case 6) in the next subsection, then the related
effect of the IMF (Case 7a).

4.1. Effect of Inhomogeneous Solar Wind Speed

For Case 6, a tilted bimodal solar wind is introduced with the
identical IMF boundary used condition in Case 1. Figures 8 and
9 show distributions of the background solar wind and
turbulence variables in the meridional and equatorial planes,
respectively.

In spite of the spherically symmetric radial magnetic field on
the inner boundary, the magnetic field has a 3D distribution
(Figures 8(b), (c), 9(b), and (c)). The radial distributions of the
variables along the solid lines in Figures 8(a) and 9(a) are
displayed with solid lines in each panel of Figure 10. The
smallest radial flow velocity along the solid line is located around
2 au (Figure 10(a)). The magnetic field strengths of both
components are enhanced behind this region and reduced ahead
of it (Figures 10(b) and (c)). Before the slowest radial flow
velocity, the radial gradient of the flow speed is negative, and
therefore the divergence of the flow is negative, i.e., corresp-
onding to compression (Equations (1) and (3)). Beyond the radial
flow minimum, there is a positive gradient, i.e., expansion. A
slight enhancement of the IMF results from the expansion and
compression of the flow due to its interaction with the solar wind
distribution (Figures 8(a) and 9(a)). The slightly enhanced field
region ahead of fast solar wind streams is called a stream
interaction region, or co-rotating interaction region (CIR) in
general.

Corresponding to the IMF enhancement, the turbulence
intensities of the inwardly propagating modes and the residual
energy are enhanced and reduced at the same locations when
considered along the equator line (the black solid lines). In
contrast to the case without the flow inhomogeneity (Case 1,
Figure 2), the difference in inward propagating mode intensity
between on the equator (black) and 30° (blue) is within a factor
of 0.1 in logarithmic scale. For Case 6, the enhancement is
more than a factor of 0.2 in the equatorial plane behind the
velocity minimum. In addition to the divergence and
convergence effects, the solar wind speed itself affects the
amplitude of the turbulence intensities as shown in Section 3.2.
The slow speed effect and the expansion can explain the strong
reduction in the turbulence intensities ahead of the radial flow
velocity minimum (Figures 10(g) and (i)).

A consequence of the decrease in the intensities of theinward
propagating mode is the rapid decrease of the cross-helicity

(Figure 10(d)). In contrast, ahead of the flow speed minimum, the
cross-helicity increases. The decrease ahead of the radial flow
minimum can be seen in the residual energy. This results in a
rapid increase in the normalized residual energy (Figure 10(e))
and Alfvén ratio (Figure 10(f)).
The various enhancements discussed above (i.e., strong

inhomogeneity of the solar wind speed) can be seen mainly in
the radial profiles in the equatorial plane shown in Figure 10.
Because the tilt of the bipolar flow on the inner boundary is
30°, the slow wind streams located along the parallel plane are
distributed in at latitudes below 30°. Spiky increases and
decreases in the turbulence variables are prominent at the
equator. That is interpreted as a consequence of shock
formation occurring due to the nonlinear steepening of the
global MHD structure.

4.2. Effect of an Inhomogeneous IMF

For Case 7a, the magnetic field boundary condition is
replaced by a tilted dipole that aligns with the bipolar flow
specified in Case 6. The 2D distributions in the equatorial plane
are shown in Figure 11 and radial plots along a line in the
equatorial plane and over both poles are shown in Figure 12.
Profiles for the same locations as in Case 6 are overplotted in
Figure 12 with black lines.
A comparison between Case 6 (Figure 9) and Case 7a

(Figure 11) shows the effect of the inhomogeneous background
IMF. Note that we specified a tilted dipole field whose strength
is not spherically symmetric. The difference in the field
strength can cause a slight difference in the solar wind speed
profile (Figure 12(a)) compared to that of Case 6. The sign of
magnetic field changes at the line perpendicular to the axis of
the dipole, at which the solar wind is slowest in this model. The
field strength near the magnetic neutral line is close to 0. As the
solar wind propagates, the compressions and expansions
described in Section 4.1 developed similarly to Case 6.
However, there is no enhancement around the converging area
in Case 7a. This can be understood since the compression
toward the magnetic neutral line (surface) can cause the
enhancement of the weak field strength region and might cause
magnetic reconnection. The flow due to the reconnection can
contribute to a change in the solar wind speed profiles.
Because we did not take into account the effect of the magnetic

field polarity on the assumed boundary values of the turbulence,
over part of the inner hemisphere (north in Case 7a and south in
Case 7b, which is mentioned in the next section), the turbulence
boundary values and magnetic field polarity are inconsistent. The
source terms also depend on the sign of the IMF. As discussed in
Section 3.5, when inappropriate turbulent intensities are specified
on the boundary (Case 5) the intensity of the dominant mode
decrease more rapidly than the case with appropriate boundary
conditions (Case 1). Along a line on the equatorial plane in Case
7a, the polarity of the IMF is opposite before and after ~r 2 au
(Figure 12(b)). The IMF in the inner region ( <r 2 au) is the
same polarity as in Case 6 and that in the outer region is opposite.
Comparing the turbulence intensities in the outer region in Case 6
and Case 7a shows that the influence of the boundary condition
appears as a decrease in the dominant propagating mode g. In this
region, g seems to be a factor of 1.3 smaller than that in Case 6.
This is consistent with the results of Case 5 shown in Section 3.5.
The other two intensities donot change as much. The correlation
lengths in this region are shorter for the outward propagating
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mode intensity f here but the other two are not different from
those of Case 6.

5. Comparison with Observations

Let us now consider a fully general solar wind model with a
tilted dipole magnetic field and bipolar flow (Case 7a) for the
solar minimum conditions illustrated in Figures 11 and 12. The
basic properties of the various turbulence moments can be
understood in terms of the discussion above. However, the
discussion above was based on the profiles along specific radial
directions at a particular latitude and longitude. The results of
our model shown above indicate a clear latitudinal distribution
of the turbulence intensities. We focus here on a comparison of

the model predictions with the turbulence data set used in
Adhikari et al. (2015a, 2015b). As discussed above, there are
certain caveats that one needs to bear in mind about combining
Helios and Ulysses data, but with our 3D model, we can at least
capture the 3D heliographic dependence.
Figure 13(a) shows modeled and observed profiles of the

intensities of inward and outward propagating turbulent
fluctuations along the orbits of Helios 2 (<1 au) and Ulysses
(>1.3 au). As discussed in Section 4.2, for half of the numerical
domain in Case 7a, the boundary conditions for the turbulence
intensities and IMF polarities are inconsistent. We ran an
auxiliary case (Case 7b) in which the turbulence boundary
values and the source terms are swapped. Then the appropriate

Figure 8. 2D plots in the meridional plane for Case 6. The format of each panel is the same as in Figure 1. In Panels (a) and (b), eightsolid, dotted, and dotted–dashed
lines display the four latitudes (0°, 30°, 60°, 90°), along which 1D profiles are drawn in Figure 10.
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hemispheres in Cases 7a and 7b are combined into a complete
sphere. Taking into account the actual trajectories of Helios and
Ulysses in the heliosphere and the effect of the rotation of the
Sun, the turbulence intensities are sampled. In the model,we
specified a tilted bimodal solar wind. As a result of the rotation
of the Sun, a spacecraft experiences a different longitude of the
tilted wind structure every 27 days. The fluctuations in the
modeled profiles in Figure 13 reflect this effect. Since the
observed turbulence intensities are obtained for fast solar wind
(Adhikari et al. 2015a, 2015b), the modeled profiles in the fast
solar wind can account for part of the observations. The profiles
of the turbulence intensities of inward and outward propagating
modes are divided into two with higher background solar wind

speed (>520 km s−1) areas highlighted with deep colors (red
and blue, respectively). The profiles of the high-speed solar
winds show qualitative agreement in the radial dependence of
the Elsässar intensities between 1–3 au,though the amplitudes
( r 3 au) are slightly smaller than those observed by Helios
and Ulysses. Helios flew in the inner and near the ecliptic plane
where slow solar wind streams exist in the model. Since the
boundary conditions for the turbulence are taken for the fast
solar wind in our model, the boundary conditions for
turbulence in the slow solar wind may be inappropriate.
We ran an additional pair of simulations (Cases 8a and 8b)

assuming the identical solar wind and IMF used in Cases 7a
and 7b but now assuming that the source terms for the

Figure 9. 2D plots on the equatorial plane for Case 6. The format of each panel is the same as in Figure 1. In Panels (a) and (b), eightsolid and dotted lines display the
four latitudes 0°, along which 1D profiles are drawn in Figure 10.
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Figure 10. 1D plots along four different latitudes (0°, 30°, 60°, 90°) for Case 6. Observed values of turbulent intensities and normalized variables (Adhikari
et al. 2015a) are overplotted with cross symbols in panels (d)–(i).
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turbulence intensities are set to two times larger. As shown in
Section 3.4, the twice larger source term results in a ∼1.5 factor
larger amplitudes in the turbulence intensities. The results
ofturbulence distributions along the trajectories of Helios and
Ulysses using the same method for Cases 7a and 7bare shown
in Figure 13(b). The results show better quantitative agreement
with the observed values.

To further understand the turbulence parameters along the
trajectories of Helios and Ulysses, we collected the various
modeled and observed turbulence parameters in Figure 14. It is
found that the radial dependence of all parameters except forlD

are well captured by our model. Furthermore, all the profiles
except lD are quantitatively comparable between model and
observations.
The behavior of the Alfvén ratio is closely related to the

residual energy (sD : normalized residual energy), and the
figure for sD shows that the kinetic and magnetic energy
density in fluctuations is almost equal at 0.3 au, i.e.,
approximately Alfvénic. With increasing heliocentric dis-
tance, the normalized residual energy sD becomes increas-
ingly negative, both in terms of the presented observations
and the model, meaning that the fluctuations are dominated

Figure 11. 2D plots in the equatorial plane for Case 7a. The format of each panel is the same as in Figure 9 except the dashed lines that indicate thepolarity inversion
line of IMF.
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Figure 12. Comparison between Case 6 (black) and Case 7a (red). Solid line of each color in each panel displays the1D radial plot along the equatorial line (lat=0°),
while dotted and dashed lines showthat along the north and south poles (lat.=90°) respectively.
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increasingly by magnetic energy and not kinetic energy. In
this sense, it is reasonable to suggest that the turbulence is
becoming dominated by magnetic structures and is less
Alfvénic. This is consistent with the conclusion of Tu &
Marsch (1993).

6. Summary and Discussion

For the purpose ofunderstanding the coupling between
turbulence and solar wind, we have developed a turbulent

transport model coupled with a global MHD model of solar
wind on the basis of the observed photospheric magnetic field.
We adopt virtually the complete form of the equations of the
turbulence transport model developed by Zank et al. (2012).
The unique point of this study is to take into account the effect
of axisymmetric turbulence transport perpendicular to the local
IMF B direction in the transport model by Zank et al. (2012),
which is neglected in the previous study by Adhikari et al.
(2015a). We found axisymmetric transport to be essential in

Figure 13. Modeled and observed profiles of the strength of inward and outward propagating turbulence along the orbits Helios 2 (<1 au) and Ulysses (>1.3 au). The
modeled profiles where the solar wind speed exceeds 520 km s−1 are colored with blue (outward) and red (inward) curves while those in slower speed regions are
colored with cyan (outward) and yellow (inward) curves. Observed values are displayed with diamond symbols of blue (outward) and red (inward). Panels (a) are
synthesized from the results of Cases 7a and 7b, while the results in panel (b) are synthesized from the results of Cases 8a and 8b.

Figure 14. Modeled and observed profiles of all turbulence variables derived from the results of Cases 8a and 8b. Profiles with light gray color identify the slow solar
wind while those with dark gray color correspond to fast solar wind.

20

The Astrophysical Journal, 837:75 (25pp), 2017 March 1 Shiota et al.



determining the latitudinal distribution of turbulence in
collaboration with the global distribution of the IMF, i.e., the
Parker spiral.

We performed six comparative case studies with spherically
symmetric solar wind and boundary conditions to investigate
the role of different background solar wind and IMF and in the
sources of turbulence on the turbulence distributions. We found
that all the factors considered can cause differences in the
distribution characteristics of the turbulence variables. The
terms of Equations (18)–(20) represent genuine source terms of
turbulence driven by shear due to the presence of fast and slow
streams. They are of course parametric source terms but they
are not amplification terms as discussed in Section 2.3.2. The
form of the residual energy arises from the definition of the
residual energy based on the source terms for the inward and
outward energies.

We also considered a non-axisymmetric solar wind speed
distribution with a spherically symmetric IMF. Because of the
interaction of solar wind flows (compression and expansion)
the turbulence intensities developed complex distributions.
Behind the slow solar wind, strong compression led to the
formation of shocks associated with CIRs. Reflecting the
compression, distributions of the inward propagating mode
intensity and the residual energy exhibited spiky enhancements
in these regions.

We investigated the distribution of turbulence obtained from
a steady-state solar wind associated with a tilted dipole and the
bipolar flow. Based on these results, synthetic profiles of the
turbulence variables were calculated along the trajectories of
Helios and Ulysses. The distributions are in reasonable
quantitative agreement with the observed radial dependence
despite our not trying to adjust boundary conditions or
parameters to achieve an accurate fit.

The cross-coupling between MHD and turbulence, validated
with observations in present and future missions such as Solar
Orbiter and Solar Probe Plus, is expected to improve the model
and yield greater understanding of turbulence in the solar wind.
The parameters would be improved by the validation with
present and future observations.

In this study, we adopt only the effects of global solar wind
inhomogeneity on the turbulence transport. However, in the
actual solar wind, the heating of the solar wind caused by its
interaction with turbulence is expected to play an important
role in the dynamics of the solar corona and solar wind. A
more advanced model considering cross-coupling in both
directions between MHD and turbulence is expected to
reproduce a more realistic distribution of solar wind and
turbulence.

One of the key factors in our modeling is the boundary
values of the turbulence variables. In this paper, we did not
study the appropriate boundary values. It is known that
properties of turbulence are very different between fast and
slow solar winds (Bruno & Carbone 2005, 2013). In fast solar
wind, the turbulence has anisotropic (the cross-helicity s ~ 1C )
and highly Alfvénic (the residual energy s ~ 0D ) properties,
while s ~ 0C and s ~ -1D in the slow wind. The boundary
values used in the current study are those for the fast solar
wind. Hence the turbulence intensities in slow solar wind
regions are not well modeled. Further studies are needed to
specify the appropriate values.
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Appendix A
Derivation of the Turbulent Transport Equations

The transport equations describing low-frequency MHD
turbulence in a large-scale inhomogeneous flow are derived by
taking moments of Equation (7) (Zank et al. 2012), corresp-
onding to Equations (42), (43), (44), (27), and (29) of Zank
et al. (2012):
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where n is the axisymmetric direction of turbulence. With the
assumption =n B B, Equations (25) to (29) are reduced as
follows:
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are mixing terms. In the final line of Equation (35), we obtain a
simple form by assuming the approximation =U eUr r . The third
and fourth terms of the right side of Equation (36) (including ρ)
must vanish because they are identical. As described in Zank et al.
(2012), we are free to choose the parameters a and b. We chose
=a 1 2 and =b 1 2 invoking two-dimensional turbulence

perpendicular to the global magnetic field.

Appendix B
The Auto-Correlation Function and the Correlation Length

In comparing our theoretical model against observations, we
used the results derived by Adhikari et al. (2015a) from Helios
2 data for the inner boundary conditions at 0.3 au and as
observations at different distances against which to compare
the theoretical model. Specifically, this included a derivation of
the auto-correlation functions and the various correlation
lengths from the plasma and magnetometer data sets obtained
by Helios 2. In the main text, we showed the observed
correlation lengths corresponding to forward and backward
propagating modes, and the residual energy at distances of
0.87, 0.65, and 0.29 au. A study of the correlation length l-
estimated from the observed auto-correlation function at
0.29 au and 0.87 au was presented by Marsch & Tu (1990;
their Figure 1), where they obtained a value that is larger by an
order of magnitude than the one used here. We show here that
the analysis of Marsch & Tu (1990) over-estimates the
correlation length and that the correct value is that given in
Adhikari et al. (2015a). As discussed below, the primary
difference between the two studies resides in the fact that,
unlike Marsch & Tu (1990), we properly take into account the
non-stationarity of the solar wind.

At the distances of 0.29 au and 0.87 au, Helios 2 sampled a
high-speed stream coming from the same source region at the
Sun during three consecutive solar rotations (Bruno 1992). Here,
we consider the derivation of the auto-correlation functions and
the related correlation lengths of forward and backward
propagating modes. To derive the correlation length, we first
calculate the auto-correlation function of a time series data set as
a function of lag L. The lag L is the separation distance between
two-point measurements, i.e., ( ) ( )á + ñ+ +z zx x L , where we
assume Taylor’s frozen-in condition to translate time and
velocity to a spatial lag L. To estimate the correlation length,
we integrate the two-point auto-correlation function over L, i.e.,

( ) ( )ò lá + ñ = á ñ
¥ + +

+
+z zx x L dL z

0
2 , where á ñ+z 2 is the auto-

correlation evaluated at L=0. It is sufficiently accurate to
integrate up to e1 of the maximum value of the auto-correlation
function at zero lag. Recall that the use of e1 is in fact
consistent with the derivation of the auto-correlation function
(see Bruno & Carbone 2013) or from the assumption that
turbulent decay is inversely proportional to the correlation
length. It is extremely important to note that the lengths of the
interval of the data sets have to be chosen carefully when
seeking correlations in solar wind fluctuations. The reason for
the importance is because, as one increases the interval length, it
is possible that one can (inadvertently) include the structure of
streams, for example, which then results in an increased auto-
correlation function and correlation length. Consequently, a
longer interval data set may not necessarily be of help in
determining correlations within the inertial range in solar wind
turbulence.

To account for the possibility that the solar wind is not
stationary, we considered a statistical set of 12 hr intervals
within a period of two days for all three heliocentric distances.
We assumed that 12 hours of data is sufficient to determine the
correlations existing between the turbulent fluctuations in the
inertial range. In performing the analysis over a 12 hr window,
we moved in steps of 81 seconds (the Helios 2 sampling time)
along the stream for two days, from day of year (DOY) 105.5
to 107.5. Since there are 2133 data points within a two day set
of data with an 81 s sampling time and a window of 12 hours
corresponds to 533 data points, the analysis was therefore
performed for 1600 different time intervals of 12 hours each
within a period of twodays. From the plasma and magnet-
ometer data sets of the Helios 2 spacecraft, we first calculated
the Elsässer variables z . The analysis yields 1600 auto-
correlation functions corresponding to -z and the same number
of correlation lengths l-. The left plot of Figure 15 shows the
auto-correlation functions of -z and the right plot the auto-
correlation functions of +z , both at 0.3 au. The average of these
functions, as well as the corresponding correlation lengths,
can be considered a reasonable estimate of the turbulence
characteristics of the non-stationary solar wind. The left plot of
Figure 15 shows black curves that correspond to the 1600 auto-
correlation functions of -z , the red curve is the average of the
black curves, and the green curve the auto-correlation function
computed in the two day period as a whole. The auto-
correlation functions are correctly normalized to the zero-lag
value. The first point shown is at a lag of 81 seconds, where the
auto-correlation function is very close to one. The large
variability of the auto-correlation functions in Figure 15 is due
to the solar wind not being stationary. The averaged estimate of
the auto-correlation function is statistically more correct than
that obtained by considering the two day data set as a whole.
Indeed, computing the auto-correlation function in the whole
two day interval means that the non-stationarity of the solar
wind has not been accounted for, thus leading to less reliable
correlation lengths. It is clear from the much larger value for
the whole two day period that the temporal solar wind has to be
accounted for in a statistical analysis of the auto-correlation
function. Unlike Marsch & Tu (1990), where the auto-
correlation functions were computed over the entire data sets,
the approach described here properly captures the non-
stationarity of the solar wind in the analysis.
Figure 15 illustrates the important result that the auto-

correlation function corresponding to the full two day interval
(green curve) is larger than that corresponding to an average
derived from auto-correlations obtained using 12 hr intervals
(red curve) spanning the two day period. In Figure 15, the
horizontal dashed line identifies e1 of the value of the auto-
correlation function at zero lag. From Figure 15, we can
estimate the correlation length directly from its definition. From
the left plot of Figure 15, the correlation lengths l-
corresponding to the red and green curves can be estimated
as ´0.11 106 km and ´1.8 106 km, respectively. Similarly,
the right plot of Figure 15 yields correlation lengths l+
corresponding to the red and green curves as approximately

´0.22 106 km and ´0.32 106 km, respectively. Quite
interestingly, despite Marsch & Tu (1990) using a different
definition of the correlation length, they found correlation
lengths fairly close to those obtained here when considering
auto-correlation functions computed over the whole data set
(green curves in Figure 15), i.e., when the non-stationarity of
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the solar wind is not properly taken into account in the analysis.
Indeed, Marsch & Tu (1990) derived the auto-correlation
functions using the entire three day period despite the presence
of time-dependent stream structure and the non-stationarity of
the solar wind plasma. This is an explicit demonstration of the
importance of accounting for non-stationarity in the analysis of
turbulent fluctuations in the solar wind.

The fact that the auto-correlation function of -z increases
when the time interval is longer (green curve of Figure 15)
suggests that the outflow speed of the solar wind plays an
important role in determining the -z auto-correlation function.
This is confirmed by the left and right plots of Figure 16, which
show that the auto-correlation function of the velocity (left plot
of Figure 16) especially increases with a longer time interval
(green curve). Conversely, the magnetic field is less dependent
on the duration of the interval (right plot of Figure 16). In
Figure 16, the solid blue curves illustrate the normalized auto-
correlation function for DOY 106–109, the green curves for
DOY 104–115, and the red curves for DOY 105–108. From the
left plot of Figure 16, the correlation lengths corresponding to
the velocity fluctuations for DOY 105–108, 106–109, and
104–115 can be estimated approximately as ´0.42 106 km,

´0.28 106 km, and ´0.72 106 km, respectively. Similarly,
the correlation lengths corresponding to the magnetic field
fluctuations for DOY 105–108, 106–109, and 104–115 can be

estimated approximately as ´0.32 106 km, ´0.28 106 km,
and ´0.38 106 km, respectively.
To complete our analysis, we investigated the dependence of

the auto-correlation function of -z on the location of the
time interval of the data set. Figure 17 shows that the -z
auto-correlation function depends not only on the length of the

Figure 16. Left: the normalized auto-correlation function of the velocity at 0.3 au as a function of lag L. Right: the normalized auto-correlation function of the
magnetic field at 0.3 au as a function of time lag. The red curves show the normalized auto-correlation function for DOY 105–108, the blue curves for DOY 106–109,
and the green curves for DOY 104–115.

Figure 15. Left: auto-correlation functions of -z at 0.3 au as a function of lag L. Right: auto-correlation functions of +z at 0.3 au as a function of lag L. The black
curves show auto-correlation functions for each 12 hr interval data set within a two day period. The red curves show the average of the auto-correlation functions. The
green curve shows the auto-correlation function for a full two day period. The horizontal dashed curves identify 0.36 of the maximum value of the auto-correlation
function at zero lag.

Figure 17. Normalized auto-correlation function -z at 0.3 au using different
intervals as a function of lag L. The red curve shows the normalized auto-
correlation function for the interval DOY 105–108, the blue curve for DOY
106–109, and the green curve for DOY 104–115.
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time interval, but also on where the time interval is taken within
the same stream. In Figure 17, the red and blue curves both
refer to a four day period, with the red curve corresponding to
the interval DOY 105–108, and the blue curve to the interval
DOY 106–109. The green curve shows the auto-correlation
function of -z for the full interval DOY 104–115. Figure 17
shows that there is a significant difference between the two
auto-correlation functions, due to the solar wind not being
stationary. On using Figure 17, the correlation lengths of -z
can be estimated for the intervals DOY 105–108, 106–109, and
104–115 as approximately ´2.2 106 km, ´0.19 106 km, and

´10.2 106 km, respectively. These correlation lengths are
derived from the auto-correlation functions, which are max-
imum at zero lag.
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