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ABSTRACT

A new method is presented which permits one to discriminate low-dimensional chaos from ran-
domness. The method consists in fitting autoregressive processes to the data and forecasting
future values of the system on the basis of the model selected. We distinguish between 2 possible
forecasting techniques of a dynamical system given by experimental series of observations. The
“global autoregressive approximation” views the observations as a realization of a stochastic
process, whereas the “local autoregressive approximation” views the observations as the realiza-
tions of a truly deterministic process. A proper comparison between the predictive skills of the
2 techniques allows us to gain insight into distinguishing low-dimensional chaos from random-
ness. The procedure has been applied to a daily temperature time series recorded in Trieste
(Italy) over the past 40 years (1950 to 1989). The analysis gives no evidence for low-dimensional
chaos, the dynamics being compatible with a limit cycle blurred by red noise.

1. Introduction

Atmospheric phenomena are typically classed as
either weather or climate. While the former refers
to the behaviour of the atmosphere over a period
ranging from few to several Hays and arising
primarily from internal instabilities, the latter
deals generally with the behaviour over a relatively
long time not only of the atmosphere but of the
entire earth system. According to Leith (1973,
1975, 1978) a climatic state is defined as a finite
time average of a weather state. Such an average is
subject to fluctuations of statistical nature arising
from day-to-day weather events that are unpre-
dictable on time scales of climatological concern.

Discussing the problem of the predictability of
climate, Leith (1973, 1975, 1978) showed that
the magnitude of the statistical error, i.e., the so-
called climatic noise, affecting a given climatic
state was related to persistence in the atmosphere.

* Corresponding author.
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Persistence is another characteristic peculiar to
weather events. In spectral terms it means that
power spectra of meteorological time series are
dominated by low frequency components. Leith
suggested that many meteorological variables
could be approximated by a Markov process and
showed that the amplitude of the climatic noise
decreases approximately as (7/c)~ "2, where T is
the averaging time and 7 is an integral correlation
time.

On meteorological time scales, quantitative
analyses of the predictability- of atmospheric
phenomena had been already undertaken by
Lorenz (1969) who estimated that the effective
number of degrees of freedom was a few hundred
in the global atmosphere. Thus, such findings were
in agreement with the above stochastic view which
assumes that irregular behaviour in nature results
of necessity from the interaction of a large number
of degrees of freedom. A stochastic approach was
also taken by Hasselmann (1976) in formulating
his stochastic models of climate.

However, according to the new ideas about the
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irregular variability of systems only a few degrees
of freedom suffice, by interacting nonlinearly, to
create deterministic chaos. According to such a
view, despite of its complexity, the weather system,
locally in time and space, may attain to a low-
dimensional attractor. On such an .attractor, we
could describe the system on the basis of few
variables, instead of the large set of the primitive
ones. Therefore determining the presence of
low-dimensional chaos from experimental time
series is not a mere academic matter, but can have
important dynamic implications.

In the past few years, many efforts have been
made to determine the dimensionality of some
underlying dynamical system for various atmo-
spheric variables with rather surprising answers of
less than 10 (e.g., Fraederich, 1986). However,
more recently, Ruelle (1990) has shown that these
low dimensions are likely to be an artifact of the
finite lengths of the time series examined. Thus, the
presence of low-dimensional chaos in weather time
series is still an open problem.

The main problem we want to address in this
paper is to distinguish between chaos and random-
ness, when the only information about a given signal
comes from the observations of the signal itself. It is
explicitly assumed that the dynamic equations which
govern the phenomenon are unknown.

So far the way to diagnose chaos has been based
on procedures aiming at estimating geometric
invariants of the attractor or Lyapunov exponents.
However, today there exists an extensive literature
indicating that such parameters are quite difficult
to estimate even when a long and accurate series of
observations is available.

Conversely the method we have devised is not
based on estimating dimensions, entropies or
Lyapunov exponents. The key point of the proce-
dure we have developed to distinguish between
chaos and randomness is the ability of forecasting
a given signal on the basis of its past events
with either stochastic-based approaches or deter-
ministic procedures.

The approach we propose consists in fitting
autoregressive processes to the data, then forecasts
can be produced on the basis of the model selected.
We distinguish between two possible strategies
of approximating a given time series with auto-
regressive processes. The global autoregressive
technique views the signal as the realization of a
stochastic process, the autoregressive model is
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fitted to all the data points at once and estimates
of the autoregression coefficients are computed
consistently with the above assumption of ran-
domness. On the other hand, based on recent ideas
about the problem of forecasting chaotic time
series (Farmer and Sidorowich, 1987; Serio, 1992),
the local autoregressive technique assumes the
signal to be truly deterministic, and the autoregres-
sion coefficients, and consequently predictions, are
obtained according to such an assumption.

The predictions obtained using the local auto-
regressive technique are based on finding local
portions of a given time series in the past, which
closely resemble the present, and basing forecasts
on what happened immediately after these past
events. This strategy works well for deterministic
systems if their motions is on an attractor, regular
or chaotic as well, and provided that the attractor
dimension is not too high.

On the other hand, reflecting the infinite dimen-
sionality of the system, the ability of making good
predictions when a stochastic process is involved
increases with the number of data points that
are used to get estimates of the autoregression
coefficients. Then, for such a case the global
autoregressive technique is expected to be more
adequate.

In practice, we compare the forecast error func-
tions computed according to the two techniques.
Because both techniques use the same mathema-
tical tool (ie., autoregressive models) to build
predictors but different approaches to the estima-
tion of parameters, differences between the above
two functions are expected to be mostly due to the
dynamical characteristics of the process.

A local approach to prediction was proposed
by Lorenz (1969) in his aforementioned study
about the predictability of the global atmosphere.
However, the origin of the method goes back to
the old idea of analog weather forecasting (e.g.,
Malone (1951)). Moreover, a forecasting deter-
ministic technique was implicitely suggested by
Eckmann and Ruelle (1985). Finally, the deter-
ministic approach was discussed by Farmer and
Sidorowich (1987) who clarified the interrela-
tionships between the predicting procedure and
the geometric and dynamical invariants of the
underlying attractor. More recently, Serio (1992),
based on the local linearization of dynamical
systems, proposed to construct local predictors
which were autoregressive processes.

Tellus 46A (1994), 3
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In this paper we have concentrated on analysing
the possible presence of low-dimensional chaos in
one metereological time series of daily average
ambient temperature. However the procedure
could be applied to any time series. Therefore we
shall discuss the mathematical background of such
a procedure (Section 2), before applying it to the
observations (Section 3). Conclusions are drawn
in Section 4.

2. Mathematical background

2.1. The global autoregressive prediction

Let x(¢) denote a certain signal, or function of
time. We shall assume that the signal is sampled
at equal interval of time, say Af, then writing
x(t=nAt)=x(n), the sequence {x(n)}, n=1,..,N
(N being the number of data) constitutes a discrete
time series.

According to linear prediction a forecast
X(n+1) of x(n+ 1), standing at origin n A¢, is
given by a linear function of current and previous
observations, i.e.,

X(n+1)=¢,x(n)+ - +¢,x(n+1—p), (1)

where the weights ¢,, ..., ¢, are to be determined.
Such a forecast function gives an optimal estimate
of x(n+1) (in a statistical sense) provided that
the weights are determined in such a way that the
series of the one step ahead forecast errors, i.e., the
residual time series: z(n+ 1) =x(n+ 1) - X(n + 1),
n=p,.., N, becomes uncorrelated (Box and Jenkins,
1976). Thus, considering the z’s as a mere set of
independent random variables or a white noise
process, the above problem of linear prediction is
equivalent to fit to the data an autoregressive
process.

A pth-order autoregressive process (Box and
Jenkins, 1976) can be expressed as:

x(n+1)=i $ix(n+1—j)+z(n+1), (2)

Jj=1

with the parameters ¢, ..., ¢, being the autoregres-
sion coefficients. Also in (2) it is required that the
z’s are mutually independent and normally dis-
tributed with zero mean and finite variance, o2.
The linear process (2) can be fitted to the data in
any of several ways. For the work reported here
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we used the well-known Yule-Walker recursive
method, while, when required, the optimal order,
Pop» Was selected by the Akaike’s Information
Criterion (Akaike, 1974), but the other Akaike
criterion, the Final Prediction Error (FPE), could
have been used as well.

For p=1, eq.(2) defines a first order auto-
regressive process which is often called Markov
process in much literature. Such a distinction is
sometimes misleading, since process (2), when
converted to a state space representation, satisfies
a first order difference equation, i.e., a pth-order
scalar autoregressive process becomes a Markov
process in a space of higher dimension. The con-
version can be made by introducing a p-dimen-
sional state vector, x(n) = (x(n), ..., x(n + 1 — p))7,
with the superscript T indicating transpose. This
state vector is governed by the state-transition
equation: x(n+ 1) = Ax(n) + z(n + 1), where
z(n+1)=(z(n+1),0,..,0)T and the p by p matrix
A is in the so-called phase-canonical form with 1’s
along the underdiagonal line and the parameters
#1, .., §, displayed on the top row:

¢1 ¢2 e ¢p—l ¢p
1 0 -~ 0 0

A= 0 1 --- O 0 1. (3)
0o 0 - 1 0

Such a conversion to a state space is referred to as
embedding in dynamical system literature.

Once the autoregression coefficients have been
estimated, the /-step ahead forecast, X(n+1); /> 1,
standing at origin n, can be obtained directly in
terms of the difference equation (2) but with the
residual part, z set equal to zero:

fn+D=Y ¢%n+1-j), 4)
j=1

where

= o x(n+l—j), ]21

x(n+1_j)_{)2(n+l—j), j<l ®)

We see that this form of the forecast function,
X(n + 1), contains observations which have already
happened at origin » and observations which have
not yet happened (when /> p, the forecast func-
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tion contains only observations which have not
yet happened). The unknown observations are
replaced by their forecasts at origin ». It should be
noted that the set of autoregression coefficients is
left unchanged at each step ..

If we write down the model for the series x(n) in
the state space representation, it is possible to
derive an equivalent expression for the forecast
function, where the initial state: (x(n), x(n—1), ...,
x(n+1— p)) is left unchanged at each step / and
the coefficients are continuously updated. The
scalar form of this forecast function reads:

Xn+)=@,()x(n)+ o, ([) x(n—1)+ ---
+@,(l) x(n+1—p), (6)

where the coefficients, {¢,(/), ¢,({), .., ¢,(/)}, are
the elements of the top row of the matrix

A=A4A-A--- A (7)

obtained by multiplying the transition matrix, in
the phase-canonical form, /-times by itself. Of
course @;(1)=¢;; j=1,.., p, and the iterative
nature of the procedure for computing the other
coefficients, ¢;(/) /> 1, is quite evident from (7).

Finally, it is possible to show (e.g., Box and
Jenkins, 1976) that the root mean square (r.m.s.)
estimation error o .(/) of the /-step ahead forecast
is given by

1—-1
a§<1)={1+ 5 w}}az, ®)

J=1

where the weights satisfy the difference equation:
Y=+ -+ o0, %

The relation between the weights ¢ and ¢ is
simply: ¥, = ¢,(j). That is, the weight y, is the first
element of the top row of the matrix 4.

For convenience ¢ .(/) can be normalized to the
r.m.s. deviation of the data, o, forming the
normalized forecast error function:

a:(/)

x

El)= (10)

From now on we shall consider only normalized
errors. The forecast error function, either nor-
malized or not, has been used by many authors in
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connection with fitting linear stochastic processes
to atmospheric variables (among many others, see
Hasselmann and Barnett (1981), Privalsky (1983),
Amato et al. (1989)).

Provided that the system attains to a stationary
state, the effectiveness of autoregression coefficient
estimation depends only on the size of the time
series, the more data we use, the better, since the
statistical error decreases as N ~'/2. Having N data
points the best we can do is of best-fitting the
model to all the data at once (hence the name
global autoregressive technique) in order to
minimize the statistical error affecting the auto-
regression coefficients.

The statistical procedure above should only be
applied to data which have at least an approxi-
mately Gaussian distribution, whereas chaotic
signals may have distributions that are highly non-
Gaussian. However, nonlinear transformations
can be considered which allow one to deal with
data having an approximately Gaussian distribu-
tion (e.g., Katz, 1982, Amato et al., 1989).

2.2. The local autoregressive prediction

As opposed to a random process, a chaotic
system evolves according to an unique path if it is
prepared in the same initial state, since the system
is governed by a deterministic state-transition
equation:

dx(z)
d:

= F(x(1)), (11)

where the function F can be highly non-linear.
The finite predictability, now, arises from the
phenomenon of sensitive dependence on initial
conditions.

Despite their different physical meaning, low-
dimensional chaos and randomness are to some
extent mathematically reconcilable. First of all,
regardless of whether the function in (11) is
linear or not, regular attractors, i.e., attractors
which describe periodic systems (limit cycles)
and quasi-periodic systems (tori) admit an exact
autoregressive representation (e.g., Serio, 1992).
That is, every one of the components, x,, of the
state vector, x, evolves, on the attractor, according
to the process (2) with 62 =0, the order p being
equal to 2x the number of frequencies. As an
example, the order of a pure sine wave (one fre-
quency) is p=2. If Fin (11) is not linear and the

Tellus 46A (1994), 3
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attractor is not regular, e.g., chaotic, we always can
linearize locally the system by developing F in a
Taylor series and retaining only the first order
terms. Such a system, when the time is discretized,
will evolve, approximately, according to a Markov
state-transition equation: x(n)=Ax(n—1) with
the random part equal to zero. Again, the com-
ponents of the state vector, x can be approximated
by a loeal linear autoregressive representation:

14
x(n)x Y ¢;(n) x(n—j), (12)

J=1

the order of autoregression being equal to the
order or degrees of freedom of the system plus one.
In (12), the notation ¢;(n) indicates that the
autoregression coefficients, now, depend on time.
Therefore if we try to estimate such coefficients by
fitting the linear autoregressive process to all the
data points at once, we will get only poor estimates
(hence forecasts), since the global technique
produces only one set of autoregression coef-
ficients, instead of the time varying functions,
#;(n), we need in order to get effective forecasts.
Indeed, in such a case we should allow for time
dependent autoregression coefficients. This can be
done by localizing the estimation procedure itself.

Let x, and x* denote two different but close
initial states, then the two paths, corresponding to
the two initial conditions, will evolve remaining
close until a certain time when the trajectories will
diverge each other. Now let us suppose that the
system evolves according to x, but the evolution
equations are not known, then a natural predictor
of the future state of the system will be x*(z),
provided that the path corresponding to xX is
known. If the system is chaotic only limited term
prediction will be possible, in general, since, by
definition itself of chaos after a certain time the tra-
jectories will diverge according to the exponential
law:

16x(2)]| = [I6x,l exp(4,2), (13)

where 6x,=x* —x_, 6x(t) = x*(t) — x(t), A, is the
largest Lyapunov exponent of the system and | -
denotes the usual Euclidean norm:

g — x,

=k —x) + -+ (XX, —x,,)%,

(14)

Tellus 46A (1994), 3

303

with x..; k=1, .., p, the kth component of the
vector x, and so on.

The key point of the deterministic prediction is
that the motion takes place in a limited region of
the state space, therefore we expect that the system
will return near to a generic initial state after a time
sufficiently long. Thus if x, denotes the current
state we can search for an analogue x¥, on which
to base predictions, simply by looking at the past
history of the system.

According to the local autoregressive approach,
to get the / step ahead forecast, X(n+1/); I>1,
starting at the origin », we again construct a
predictor which is an autoregressive filter:

Xm+y=¢n 1) x(n)+ ---

+@,(n 1) x(n—p+1). (15)
Here, x indicates a single observable of a certain
state vector x, and the notation ¢,(n, ) for the
I-step ahead autoregression coefficients indicates
that such coefficients depend on » and /.

For a given origin n, once the autoregression
coefficients have been estimated, one might com-
pute the ¢;(n,/)’s directly from the canonical
matrix as discussd in the previous section.
However, the local estimation is based on few data
compared to the global approach, therefore in
order to smooth the forecast estimates we prefer to
obtain, at each step /, the coefficients, ¢;(n, /)
directly from the data by the following procedure.

First, we consider k p-ple, x,(m;) = (x(m,), ...,
x(m;—p+1)); m;<n and i=1,.., k, that mini-
mize the Euclidean norm |x,(n)—x,(m,)||. Then,
we regard every p-ple x,(m;) as the input of
the filter (15) and x(m; + /) as the output. Finally
the coefficients ¢,(n, /), .., @,(n, I), are obtained
by best-fitting the autoregressive model to the
couples: (x,(m,), x(m + 1)) e R°xR, where R
denotes the real axis. It should be noted that, for a
given origin #, the search for the k p-ples is done
once, while the best-fitting procedure is performed
I times, that is at each step /, in order to compute
the p -/ coefficients, ¢,(n, /). The fit can be made
in any way one likes. We did least-squares by
singular-value decomposition (e.g., Press et al.,
1986). When k= p, this is equivalent to linear
interpolation which is notoriously unstable, there-
fore to ensure stability we chose k =2p.

It must be noted that the effectiveness of the
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local procedure rests, ultimately, on the presence
in the time series of good analogues of the current
state. This presence depends on the sample size, N,
1e., on the whole observing time period, on the
Lyapunov exponents and on the dimension of the
attractor. The larger such a dimension is, the larger
N must be in order to observe naturally occurring
analogues, so that only low dimensional chaos is
likely to be identified analysing samples of finite
size.

To get good predictions the minimal require-
ment p > d must be fulfilled, where d is the dimen-
sion of the attractor. Since d is unknown a priori,
we implemented the local prediction scheme start-
ing with p = 1 and repeated it for increasing values
up to a suitable upper bound p,,, then the optimal
order p,,,, was selected that minimized the one step
ahead forecast error, E(1). The procedure to com-
pute E(1), and more in general the function E(/),
is based on producing out-of-sample forecasts.

First, we divide the total number of data points,
N, into N, and N, and consider N, as the time
origin. The first N, points are used to compute the
coefficients of the predictor according to the proce-
dure discussed above. Then, the first out-of-sample
forecasts for origin N,, #(N,;+ 1), are produced
and compared with the data, x(N, + /). Next, we
move the time origin of one step and produce the
second out-of-sample forecasts, X(N,+1+1),
and so on. Finally the forecast error function is
computed as:

1 1 N+ Ny~
E2(1)=—2 Y (x(n+1)—R(n+1)),
o Na—1 o ns

1 <IS Tnax

(16)

with /., the maximum lead time at which the
forecasts are computed.

To summarize, the rationale for the selection of
the optimal order is as follows. Let x(n) a realiza-
tion of the process for which the order is to be
determined. We obtain ¢,(n,, 1), .., ¢,(n,, ),
p=1.,p, =1, 1., for each given origin n,
from x(n) by least-squares. If y(n) is another reali-
zation of the process, we can compute j(n, + /) by
using the previous observation in the series y(n)
and the coefficients from x(n). Finally we deter-
mine E(/)= {(y(n,+1)— p(n,+1)*> (with the
angular brackets denoting expectation values) and
adopt as the order of the process, p,,,, that p for
which E(1) is minimized.

V. CUOMO ET AL.

Basically, this the same rationale as the one
behind the final prediction error, FPE (Akaike,
1974), although we really use two realizations of
the process whereas Akaike’s FPE is estimated by
the same realization as the one used to compute
the autoregression coefficients. We prefer the out-
of-sample estimation procedure since it is a direct
check of the model, too. For the same reason and
for consistency with the local approach, also in the
case of the global approach, we use the out-of-
sample technique to compute the function E(/),
instead of the theoretical relation (8). However,
we found that the final results are not affected by
using either (8) or the out-of-sample procedure to
estimate E(/). What is important in our analysis is
not the particular fitting procedure itself but the
logic behind it: that is either local or global.

Finally, we want to focus the attention on how
well the local approximation works. This depends
on various geometric parameters of the attractor,
on the number of data points and on the signal-
to-noise ratio as well. According to Farmer and
Sidorowich (1987) the following empirical formula
can be used for the normalized forecast error E(/):

E(l)= E(1) exp(2hl),

(17)
C 2h
B =25,

where /1 denotes the metric entropy (it is essentially
the sum of all the positive Lyapunov exponents)
and C is a constant to be determined, providing
that we are in the limit of the so called small error,
E(/)<1 and that the signal-to-noise ratio, R,
fulfils the condition

R=-Jr 5 N

O noise (18)
The average spacing, A, of data points on the
attractor is A~o N~ therefore relation (18)
simply requires that the r.m.. deviation of the
noise is less than the typical spacing of the data.
When condition (18) is not fulfilled, the forecast
will be limited by noise. This does not mean that
valuable forecasts are no longer possible. It only
means that the noise may swamp out the geometri-
cal characteristics of the attractor, therefore
making quite difficult the estimation of the param-
eters of the attractor (i.e, Lyapunov exponents,
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dimensions and so on). Conversely, the quality of
a forecast is determined by the value of E, and
E <1 is still possible when condition (18) is not
met. This a very important point, since it means
that even in a case in which geometric invariants of
the attractor cannot be derived because of noise,
valuable predictions may be still possible.

2.3. Metric entropy and autoregressive
representation of chaotic signals

There exists a close relation between the metric
entropy of a chaotic process and the white noise
variance o2 of an autoregressive process globally
fitted to the observations of the process itself
(Serio, 1992). Let f: R” —» R” be a map with a
chaotic attractor. The attractor is mapped into
itself by f. Let x(n) = f"(x(0)); n> 1 be a sequence
of iterates under f lying on the attractor. Let us
suppose that we do not know the map f but only
the iterates x(n) from n=0 up to a given value
n=n,. Then based on this a priori knowledge we
want information about the next iterate x(n, + 1).
It can be shown (Peterson, 1983) that the metric
entropy is a measure of our average uncertainty
about where the map f moves the point x(n,).

Now, let x(n) be a time seies of a single compo-
nent of the vector x(n) belonging to the attractor.
When such a series is best fitted with an auto-
regressive process we replace the non-linear deter-
ministic map by a linear stochastic map. The
linear map is only an approximation of the true
non-linear map but it retains most of the charac-
teristics of the underlying attractor; the more data
points we have, the better. What is the average
uncertainty about where the stochastic map will
move the point x(n)? From eq. (8), we get
immediately the solution, the answer is o, or its
normalized version E(1). Thus, there is a one-
to-one relation between ¢, and A, the higher 4 is,
the higher o, will be and vice versa. It must be
stressed that it is not possible to have g, =0 for a
chaotic process, otherwise the process would not
be chaotic. Indeed, when ¢, = 0 it means that exact
predictions are possible with the linear map. This
case corresponds to regular attractors (limit cycles
and tori) which, in turn, correspond to signals
which are periodic or quasi-periodic. It is well-
known that such systems do not produce informa-
tion, that is, they are characterized by h=0.
Conversely chaotic systems are characterized by a
large production of information, the production
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rate of such information is then measured by 4 and
reflected by o.. Since the larger o, is, the worst
the forecasts based on the filter (2) are, the metric
entropy poses clear limits to the ability of forecast-
ing a chaotic signal with the global approach. This
is because only poor forecasts are to be expected
by globally fitting an autoregressive map to a
chaotic system. In this case we should resort to a
local procedure.

The considerations above are crucial to under-
stand our discriminating procedure. In practice,
it could happen that both techniques give poor
forecasts, e.g., due to insufficient statistics or too
large noise level. However, if the system is chaotic
we expect the global approach to give the worst
results.

2.4. Numerical examples

To illustrate the use of our procedure we shall
apply it to some simple non-linear and linear
dynamical systems. First, we discuss the well-
known logistic map:

yin+1)=A-y(n)(1— y(n)). (19)

We consider y(n) as the observable, while the
measurements, x(n), are modeled as having
Gaussian noise n(n) with variance oﬁ and zero
mean:

x(n) = p(n) +n(n). (20)

Selecting 4 = 3.821, the map is chaotic with the
Lyapunov exponent 1, =0.44, the metric entropy
h =~ A, and the dimension d~ 1.

Fig. 1 illustrates the effects of forecasting a
chaotic signal generated from the logistic map with
both techniques (global and local). For the cases
shown in Fig. 1, 5000 data points were generated
and the first 3000 discarded to form a sequence
of size 2000. Two levels of external noise were
considered: 6,=0 and ¢,=0.16,, (o, denoting
the standard deviation of the data).

In the case of no external noise added, the local
predictor error (lower solid line in Fig. 1) is
extremely low even when the lead time, / becomes
large. In this case we are in the small error regime,
ie, E<1, and the typical spacing of the data is
greater than the r.m.s. deviation of the noise, there-
fore the growth of the forecast error is exponential.

Conversely, the global predictor has an error
which is comparable with the variance of the series
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Normalized Forecast Error, E(l)

1 4 7 10
Lead Time, |

Fig. 1. Logistic map with a=3.821. Figure shows the
normalized forecast error function against the lead time
1. The lower solid curve refers to the local predictor and
0% external noise added; the other solid line refers to the
local predictor but for an error level of 10%. The two
curves corresponding to the global predictor are drawn
with open squares (0% error) and plus signs (10%
error).

and it is clearly inferior to the local one. According
to our discussion about the metric entropy (Sub-
section 2.3), this result is not surprising and finds
its justification in the relatively large value of 4.

The optimal order selected for the global predic-
tor was p,,, = 12, while p,, =2 was obtained for
the local predictor.

In the case of the noise level equal to 10%, the
local forecast error function (upper solid line in
Fig. 1) in about 4 steps becomes comparable with
the variance of the series, but it is quite evident
that the local predictor is still superior to the
global one. In this case we are not in the small
error limit and according to relation (18) o, is by
far larger than the typical spacing of the data on
the attractor, yet the deterministic nature of the
signal is quite distinguishable.

The optimal order selected for the global predic-
tor procedure was p,, = 12, while again p,, =2

V. CUOMOET AL.

was obtained for the local predictor, the same as
for the case with no external noise.

The logistic map permits one also to analyse the
dependence of p,,,, on the lead time, /. According to
the procedure discussed above, p,,, is selected in
correspondence of the order p for which the one
step ahead forecast error exhibits a minimum.
Someone could argue that p,,,, might change in the
case that the /-step ahead forecast error was mini-
mized instead of the one step error. This could
happen in the case E(/)= 1, since in this case the
estimate would be dominated by the external
noise. However, if we limit ourselves to case for
which E(/) < 1 the dependence of p,, on the order
of the forecast error function is not crucial. As an
example Fig. 2 shows the normalized 1-step,
2-step, 3-step ahead forecast error against the
model order, p in the case where no external noise
was added to the signal. All the curves exhibit a
clear minimum at p=2. The same results were
obtained by considering the 10% noise level
(Fig. 3).

0.5

Log(E)

0 2 4 6 8 10

Model Order, p

Fig. 2. Logistic map with a=3.821; no external noise
added. Figure shows the I-step, 2-step and 3-step ahead
normalized forecast error against the model order, p. The
cases shown in figure refers to the local procedure.

Tellus 46A (1994), 3
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0.1

3-step

2-step

Log(E)
S
=

1-step

0 2 4 6 8 10
Model Order, p

Fig. 3. As Fig. 2 but in the case of 10% external noise
added.

We have applied the above procedure to a lot of
artificial low-dimensional systems including the
Henon map (Henon, 1976), the Lorenz equations
(Lorenz, 1963), the Mackey-Glass delay-differen-
tial equation (Mackey and Glass, 1977). Such
systems are characterized by dimension lower than
4 and metric entropy ranging from x~0 to x2.5.
We found that less than 10000 data points suffices
to discriminate chaos from randomness providing
that the error level is of order of (or less than) 10 %
of the r.m.s. deviation of the data. Similar results
are implicitly contained also in the works of
Farmer and Sidorowich (1987) and Casdagli
(1989).

In contrast to the above example, now we con-
sider an autoregressive model with p =2 for the
signal: y(n) =0.75y(n — 1) — 0.5y(n — 2) + z(n),
where z(n) is chosen to be a Gaussian white noise
with zero mean and unit variance. The signal has
zero mean and variance oi =1.78. As above the
signal was corrupted with external noise having
standard deviation equal to 0.1¢,. We point out
that such a process is intrinsically characterized by
a low predictability. Even if the signal had not been
corrupted with external noise, the one step ahead

Tellus 46A (1994), 3
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Fig. 4. AR(2) process corrupted with additive white
noise (signal-to-noise ratio: 10). Figure shows the
normalized forecast error function: global technique
(open squares) and local technique (full squares).

forecast error would be as large as the standard
deviation of the endogenous noise term. The latter
is comparable with the standard deviation of the
signal itself.

From Fig. 4 we see that the global predictor
always gives better results picking up the stochastic
nature of the signal. For such an example we found
Popt =2 in the case of the global analysis, whereas
Popt = 3 was found with the local analysis.

3. Application to a meteorological time series

Now, we come back to our objective of analys-
ing the structure of a long meteorological time
series. The data we analysed consist of daily
average values of air temperature recorded over
the past 40 years at the Istituto Sperimentale
Talassografico of Trieste, Italy. Air temperature
is systematically recorded hourly on the basis of
analogue data from thermographs and electronic
thermometers which are daily calibrated by means
of a standard reference thermometer (0.05°C scale)
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and a couple of maximum-minimum thermo-
meters. The hourly data are then averaged to form
daily values.

The overall variance of the series is, 03 =
51.3°C? so that the signal to observational error
ratio, R=0 /0. is better than 140 : 1. The size
of the time series is N = 14610. There are no mis-
sing data in the whole sequence. Fig. 5 shows a
plot of the forty annual mean temperatures against
the year. Also to naked eye the stationarity of this
series is quite evident.

In the following we shall show further details
about the stochastic models which were built in
order to describe the series above. The first model
that was built is of the type cyclostationary
which describes the observations as the composi-
tion of cyclic and stochastic components. For a
meteorological daily time series the obvious cyclic
component is the annual cycle, the other one
less obvious is related to the mean fluctuations
(climatic variability)} around the annual cycle.
Following Madden (1976), (see also Trenberth
1984a, 1984b and reference therein) the annual
cycle was computed by finding the mean value for
each day of the year over all the forty years and
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Fig. 5. Plot of the forty annual average temperature
against the year. The horizontal line gives the overall
mean.
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then determining a smoothed annual cycle. This
smoothed cycle was determined by developing the
365 daily mean values in Fourier series and retain-
ing only the first few harmonics (the first in the
case of the annual cycle; the first, the second and
the third in the case of the mean fluctuations).

Let T(n) indicate the value of air temperature
recorded at day n then the time series cyclostation-
ary model is: T(n) =m(n) +s(n) wn); n=1, .., N,
where m(n) describes the smoothed annual cycle
and s(n) the behaviour of the daily standard devia-
tion (climatic variability), w(n) is a random
variable. Both m(n) and s(n) are periodic functions
with basic period equal to 365 days (one year).

The annual cycle explains more than 98 % of the
overall variance, 62, of the observations, such a
behaviour being typical of temperature time series
in the Italian climate (Amato et al., 1989). The
consequence is that the function m(n) itself
provides already a good model to forecast future
values of the variable 7. Standing at an origin n,
the forecast T(n,+/) at I steps ahead (/>0) is
simply: T(n, +1)=m(n, + !), while an estimate of
the forecast error is given by s(n, + /). Because the
average value of the time series s(n) is 2.6°C, the
function m(n) provides forecasts within a tolerance
of about 2.6°C.

The term w(n) is a stochastic process with zero
mean and unit variance describing the day-to-day
fluctuations. According to Leith’s conjecture it was
modelled by a Markov or red noise or first order
autoregressive process: w(n)=pw(n— 1)+ z(n),
where p indicates the first autocorrelation coef-
ficient and z(n) is a Wiener-Levy process (white
noise). To get an estimate 6 of p we must deter-
mine realizations of the process, w(n). These were
obtained from the time series 7(#) by removing the
annual cycle: w(n) = (T(n) — m(n))/s(n). The value
of § we obtained was p=0.81. Fig. 6 shows an
histogram of the noise term w; the empirical
frequency distribution compares well with a
Gaussian law which is also shown in the figure.

Based on the model above (hereafter referred to
as the Leith model), we obtain the following
forecast function:

T+ =mn+1)+s(n+1) p'w(n),
(>0,

T(n)—m(n)
s(n)

(21)

w(n) =

Tellus 46A (1994), 3
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Fig. 6. Histogram of the noise term, w. The comparison
with a Gaussian distribution function (solid line) with
zero mean and unit standard deviation) is shown, too.

From (21), we see that, in the limit /— oo,
T(n+1) > m(n+1), that is the forecast converges
to the value predicted by the annual cycle.

In the above model the annual cycle is regarded
as a deterministic feature of the time series that is
identical from year to year. A different approach
allows for stochastic seasonalities and trends in the
time series. According to such an approach the
general autoregressive model (2) has to be fitted to
the data directly rather than decomposing the
series in trend seasonalties and random parts. The
autoregressive filter is regarded as a device for
transforming the highly dependent, and possibly
nonstationary process T(n), to a sequence of
uncorrelated random variables z(n), that is for
transforming the process to white noise.

Using the well-known Yule-Walker recursive
method, autoregressive processes of order, p, from
0 through 400 were fitted to the observations.
The optimal order was selected by the Akaike’s
Information Criterion (Akaike, 1974). It turned
out to be p,,, = 164.

The high optimal order, p,,, = 164, is due to the
presence of strong harmonic components (i.e., the

Tellus 46A (1994), 3
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annual cycle) in the series of the observations.
Harmonic components in additive noise give rise
to a special case of an Autoregressive Moving
Average (ARMA) process (Kay and Marple,
1981). Such a special process can be still modelled
by an autoregressive process but now the order p
becomes infinity, at least theoretically. Thus the
high order observed is compatible with the struc-
ture of the series, confirming the sharp peak of the
variance spectrum at the 12-monthly cycle. At this
stage we want to point out that our objective is
not to find a parsimonius representation of the
observations, our objective is to analyse the deep
structure of the observations and to distinguish
between chaos and randomness. Once this task
has been accomplished, the problem of finding a
parsimonius representation of the data can be
addressed as one thinks best.

Based on the autoregressive model fitted to the
observations the forecast function reads:

(T(no+1)—1)

Popt A _
=Y ¢;(Tn,+1-j)=T),

i=1

(22)

where T indicates the overall mean of the data set
(T=15.1C), and with

T(n0+l_j)9
Tng+1—-j)=4 . 7Zh 23)
° = T(no+l_j)s
j<l
3.1. Results

For the work reported here the out-of-sample
forecast technique was implemented with N, =
37x365, ie, the first 37 years, so that N,
corresponds to the last 3 years of the 40 that were
analysed. With such a choice the number of data
points to estimate the function E(/) was about
1000. Furthermore, no previous Gaussian trans-
form was applied to the data, since the time series
is well approximated by a Gaussian law.

The optimal order for the local predictor turned
out to be p,,, = 4. At first, sight such a result would
seem to indicate the presence of a chaotic attrac-
tor, the result being also in agreement with the
findings of Fraedrich (1986). However the forecast
error function, E(!), computed for such a case
(p=4) is not consistent with the hypothesis of
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low-dimensional chaos since the global predictor
gives better results.

Fig. 7 shows a comparison among the different
methods we used to forecast the observations. The
forecast error function for predictions obtained on
the basis of the annual cycle is included in such a
figure, too. We see that the two global stochastic
predictors converge to the annual cycle and nearly
coincide, indicating that the series contains noth-
ing but a strong harmonic component immersed in
red noise. The local predictor gives results which
are worse than the annual cycle already at the
second day and the shape of the latter looks like
the shape of the global predictors.

The forecast error functions were also derived
for the time series T(n) — m(n), i.e., for the residual
series obtained by removing the annual cycle. The
r.m.s. deviation of this time series is about 2.7°C
while the signal-to-noise ratio is R~ 50.

The results are shown in Fig. 8. The global
forecast error function was obtained by fitting to
the data a first order autoregressive process or
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Fig. 7. Results of forecasting the daily average tem-
perature time series; multi-year sample. Leith’s model
(open squares); global autoregressive model (full
triangles); annual cycle (stars); local autoregressive
model (full squares).
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Fig. 8. Results of forecasting the residual time series.

Markov process. Again, the global predictor is
superior to the local one. The optimal order, p,,,
was found to be equal to 3 for both global and
local analysis.

A possible criticism to our analysis above is
that for studying weather processes one should
not consider the highly non-linear longtime
memory between season and years. A multi-year
meteorological time series includes long range
processes, the interannual variability and weather
phenomena in summer and winter. A dynamical
system with all such aspects has a large number of
degree of freedom and, therefore, depends on a
large number of independent variables, from which
its stochastic nature as revealed by our analysis.
Instead, the data set should be reduced to seasonal
samples before applying the above procedure.

For such a reason an analysis using seasonal
samples was also carried out. Predictions were
obtained only for the summer and winter seasons
and, as for the local predictor, the search for good
analogues was limited to past summer seasons and
the winter ones, respectively. The summer season
was defined to begin on 1 May, while the winter
season on 1 November, both lasting 120 days.

Tellus 46A (1994), 3
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Fig. 9. Results of forecasting the daily temperature time
series; seasonal samples (winter). Leith’s model (open
squares); local autoregressive model (full squares).
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Fig. 10. Results of forecasting the daily temperature time
series; seasonal samples (summer). Leith’s model (open
squares); local autoregressive model (full squares).
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To ensure a reasonable convergence of the
forecast error function, we chose N, equal to the
first 35 years. As a consequence every forecast
error function was obtained on the basis of 600
data points. For this exercise only one of the two
global predictors was considered, the Leith model.
Also, such a model was not again fitted to seasonal
samples. The fit parameters were still the ones
obtained for the whole series.

For both seasons p,,, =3 was obtained. Figs. 9
(winter) and 10 (summer) summarize the results.
We see that the global predictor always gets a
better prediction than the assumption of low-
dimensional chaos does. As expected, in winter
season predictions are worse than in summer, due
to the different climatic variability in the two
periods.

4. Conclusions and discussion

A procedure for discriminating low-dimensional
chaos from randomness has been discussed. The
procedure is based on autoregressive processes
and uses tools which are typical of the linear
prediction theory. Using autoregressive predictors
we obtain forecasts by means of two different
strategies. In the global autoregressive approach,
autoregressive models are globally fitted to all the
data points at once and forecasts are obtained on
the basis of the model selected. It has been shown
that such a strategy works well with random
processes.

In the local approach, the fitting procedure is
localized, that is, the technique is based on finding
local portions of a given time series in the past,
that closely resemble the present and then basing
forecasts on what happened immediately after
these past events. It has been shown that such a
strategy works well with chaotic systems.

The proper comparison between the forecast
error functions obtained by both methods permits
one to gain insight into the knowledge of the deep
structure of the series.

The technique has been applied to one
meteorological time series 40-year long (daily
average air temperature) and the results can be
summarized as follows.

(a) The local analysis indicates the possible
presence of a low-dimensional chaos (3, 4) how-
ever,
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(b) the lobal predictors are always superior to
the local ones, whether we consider the whole time
series or its seasonal samples,

(c) the analysis applied to the residual time
series, i.e., to the series obtained by removing the
annual cycle gives the same results.

In order to interpret properly these results the
following remarks must be considered.

First of all, according to relation (18), the
following relations should be met:

37365 = 13505, d=1
116, d=2

R> 23, de3 (24)
10, d=4

>

in order to observe exponential growth in the
forecast error function. The present value of the
signal-to-noise ratio is R=x 140, therefore if
the dimension of the underlying attractor had
been greater than 1 we would have observed an
exponential growth in the local forecast error func-
tion. However, the absence of such a growth is still
compatible with the presence of chaos assuming a
very large value for the the greatest Lyapunov
exponent. This might be compatible with the
relatively large value observed for E(1). A rough
estimate of the order of the largest Lyapunov
exponent can be obtained as follows. To fix the
ideas let us suppose d = 3. Since the incertitude in
a given initial state is of the order of the typical
spacing of the data which is A =~ 0.3C we have that
such an incertitude should grow at the first step
according to (A/o.)exp(4;)~ E(1) from which
4, = 1.8. However, according to our discussion in
Subsection 2.3, for such a value of 4, the global
predictor should give extremely poor results. It has
been shown in connection with the logistic map
example that a value of 1, ~0.44 with d~ 1 would
suffice to cause the complete failure of the global
predictor to give valuable forecasts. This a very
important point to keep in mind. Our method
is not based on observing the behaviour of the
local forecast error function but on comparing it
with the global one. A large value of the largest
Lyapunov exponent means a large value of the
metric entropy which measures the information
entropy production rate. The more entropy a
chaotic system produces, the more random the
procees will appear to a global analysis, that is, the
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more unpredictable the process will be on the basis
of autoregressive processes globally fitted to the
data.

In the case d = 1, the signal to noise ratio would
not be as great as we needed in order to observe
exponential growth. However, the number of data
points is large enough to observe E(1) < 1. But this
is not the case. Again, the hypothesis of chaos is
only compatible with a very large value of 4, (since
in this case the accuracy in the initial state is
limited by noise). Repeating the above computa-
tion with 4 x 0, ~ 0.05, we obtain 4, ~ 3.6), but
this is not confirmed by the behaviour of the global
predictor.

As far as the seasonal sample and the residual
time series are concerned the signal-to-noise
ratio is lower than the one corresponding to the
whole time series. However also in this case the
hypothesis of chaos is only compatible with the
presence of a large value of the largest Lyapunov
exponent. However, again, this is not in agreement
with the fact that the global predictors give always
better results.

Furthermore, it should be noted that the failure
of the local predictor cannot be explained on the
basis of our linear fitting approach. The lineariza-
tion of the approach is not crucial. Our discussion
in Subsection 2.2 and the results shown in Subsec-
tion 2.3 point out that the key point to forecast
successfully a chaotic system is the localization of
the procedure. Farmer and Sidorowich (1987)
point out that, in practice, predicting chaotic
systems with non-linear maps (e.g., polynomials)
does not give significant improvements over the
results obtained with linear maps.

Moreover, the type of observations we have
analysed must be definitely taken into account.
A near surface temperature time series has been
analysed. The observations could be influenced by
many sources of variations which are quasi-
independent of the dynamics of the atmosphere.
Such sources may increase the dimensionality and
the complexity of the time series therefore limiting
the possibility of observing a low order chaos
supposedly present in the atmosphere. The
application of the technique to variables of the free
atmosphere such as some large scale variables of
the weather dynamics may give quite different
results.

Finally, it must be also noted that both predic-
tors agree about a low value of p,,., providing that

Tellus 46A (1994), 3
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the seasonal components have been removed from
the time series. According to our simulations,
Popi(global)> p, . (local) is expected for a chaotic
signal. Conversely, when the underlying process is
stochastic we expect p,n{global)= p,,(local).
Indeed, providing that the signal is autoregressive,
the global approach gives superior results over the
local one, simply because it is statistically more
efficient. It uses more data to get the estimation of
the autoregression coefficients! In the limit N — oo
both methods should give similar results as far as
the forecast error function is concerned. From
Fig. 4, which illustrates the application of the

313

procedure to an autoregressive process, it is
quite clear than the two E(/)-curves have the same
shape. Such a behaviour is also peculiar to the
meteorological time series.

To sum up, the hypothesis of low-dimensional
chaos in the time series at hand can be reasonable
excluded. Conversely, our analysis supports the
Leith conjecture about the Markov dynamics of
the climatic noise. Regardless of whether the
analysis were carried out on long-term period or
short-term period (seasons), the predictability of
the meteorological time series we analysed appears
to be intrinsically limited.
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