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ABSTRACT

Background
In mammalian cells a regulatory mechanism, known as nonsense-mediated mRNA decay,
degrades mRNA harboring premature termination codons. This mechanism is intron-dependent
and functions as a quality control mechanism to eliminate abnormal transcripts and modulates
the levels of a variety of naturally occurring transcripts.

Design and Methods
In this study, we explored the molecular mechanism of ADAMTS13 deficiency in two compound
heterozygous siblings carrying a 29-nucleotide deletion mutation located in exon 3
(c.291_319delGGAGGACACAGAGCGCTATGTGCTCACCA) in one allele and a single base (A)
insertion mutation (c.4143_4144insA) in the second CUB domain previously reported in the
other allele. Real-time quantitative reverse transcriptase polymerase chain reaction was used
to explore whether the premature termination codons introduced by the deletion of the 29
nucleotides triggered the nonsense-mediated mRNA decay.

Results
In vitro-expression studies demonstrated that the premature termination codons inserted by the
29 bp deletion probably lead to a reduction of ADAMTS13 mRNA levels through the regulatory
mechanisms of nonsense-mRNA decay. Furthermore, the 4143_4144insA mutation causes an
impairment of secretion that leads to retention of the mutant protein in the endoplasmic retic-
ulum, as observed in immunofluorescence studies.

Conclusions
In conclusion, this work reports how two different ADAMTS13 gene defects acting at two differ-
ent levels, i.e, impairment of steady-state mRNA level caused by the premature termination
codon mediated decay mechanism induced by the 29 bp deletion mutation and alteration of
the secretion pathway due to 4143_4144insA, lead to a severe deficiency of ADAMTS13.
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Introduction 

Thrombotic thrombocytopenic purpura (TTP) is a
severe microangiopathy typically characterized by
thrombocytopenia, mechanical hemolytic anemia, neu-
rological and renal manifestations, and fever.1 TTP is
associated with a deficiency of  von Willebrand factor  –
cleaving protease and with an increase of uncleaved von
Willebrand factor of ultralarge molecular weight.2-4 The
protease, designated ADAMTS13 because of its charac-
teristic combination of a disintegrin-like and metallopro-
tease with thrombospondin type 1 (TSP1) motif, cleaves
the platelet adhesive protein von Willebrand factor at the
peptide bond Tyr1605 and Met1606.2,5-7 The human
ADAMTS13 gene maps to chromosome 9q34 by
genome-wide linkage analysis,8 spans 37 kb and compris-
es 29 exons that encode a polypeptide of 1427 amino acid
residues.9,10 ADAMTS13 deficiency may be either con-
genital, due to mutations in ADAMTS13, or acquired due
to neutralizing or non-neutralizing autoantibodies.11-13

Congenital TTP is a rare disorder with undetectable or
severely reduced plasma levels of ADAMTS13 as a con-
sequence of mutations in the corresponding gene. To
date, more than 80 different mutations have been iden-
tified, including missense, nonsense, and splice site alter-
ations as well as nucleotide deletions and insertions
spread across ADAMTS13.14 Until now only 30% of the
reported mutations have been characterized and ana-
lyzed for their consequences on the biosynthesis, secre-
tion and activity of the protease using in vitro-expression
studies.15-19 The present study evaluates the molecular
mechanism of two mutations observed in the compound
heterozygous state in two Turkish siblings with congen-
ital TTP. One mutation, present on the maternal allele, is
a single base (A) insertion mutation located within exon
29 (c.4143_4144insA) in the second CUB domain, lead-
ing to a frameshift and loss of the last 49 amino acids of
the protein.20 The other mutation, located on the pater-
nal allele, is a 29-nucleotide deletion mutation located in
exon 3 at codon 291 (c.291_319delGGAGGACACAGA
GCGCTATGTGCTCACCA) which causes premature
termination codons.21 The main goal of this study was to
demonstrate how the premature termination codon
introduced by the 29 bp deletion leads to a reduction of
ADAMTS13 mRNA levels through such regulatory
mechanisms as nonsense-mRNA decay. 

Design and Methods

Patients
A Turkish male patient was referred to the

Department of Pediatric Hematology of Izmir
University at the age of 15 years because of a gastroin-
testinal infection in association with abdominal pain,
fever and vomiting. Five years later, he was admitted to
the hospital with purpura, renal failure and decreased
platelet counts. Laboratory data on admission were as
follows: Coombs-negative hemolytic anemia with
schistocytes in the blood smear, hemoglobin 11.7 g/dL,
low platelet count (11×109/L, high serum levels of lac-

tate dehydrogenase (1809 UI/L), total bilirubin 2.6
mg/dL and creatinine 4.6 mg/dL. Laboratory results and
the clinical symptoms confirmed the diagnosis of TTP.
Six additional episodes occurred, usually in association
with triggers such as infections or alcohol consump-
tion. He was successfully treated with fresh-frozen
plasma (10 mL/kg) and now receives prophylaxis with
one infusion every 3 weeks. The patient’s sister devel-
oped mild thrombocytopenia and hemolytic anemia at
the age of 22 years without an acute episode of TTP up
to now.      

Measurement of ADAMTS13 activity, ADAMTS13
antigen and anti-ADAMTS13 antibody

ADAMTS13 activity was measured in plasma samples
and in the conditioned media of cells transfected by wild
type (WT) and mutant expression vectors using the col-
lagen binding assay previously described by Gerritsen et
al.22 The lower limit of sensitivity was 6% of
ADAMTS13 activity levels in pooled normal plasma
taken as the reference standard. ADAMTS13 antigen
levels were measured in plasma samples and condi-
tioned media of cells transfected by WT and mutant
expression vectors using an enzyme-linked immunosor-
bent assay previously described by Feys et al.23,24 The
presence of anti-ADAMTS13 antibodies was evaluated
by western blotting analysis as reported by Peyvandi et
al.25 The presence of antibodies neutralizing ADAMTS13
activity was determined as previously described.21

Genomic sequence analysis
Genomic DNA was isolated from peripheral blood

leukocytes.26 The coding regions and intron/exon
boundaries of the ADAMTS13 gene (NT_035014) were
amplified by polymerase chain reaction (PCR) and
sequenced using an automated ABI PRISMTM 310
Genetic Analyzer (Applied Biosystem, Foster City, CA,
USA). Details on primers and PCR conditions are avail-
able on request. The haplotype was determined using
17 intragenic ADAMTS13 single nucleotide polymor-
phisms.27

Expression vectors
The complete ADAMTS13 cDNA (kindly provided by

Dr. F. Scheiflinger, Baxter Bioscience, Vienna, Austria)
was inserted into the mammalian expression vector
pcDNATM3.1/V5-His TOPOTA (Invitrogen, Carlsbad,
CA, USA). A further V5 epitope tag was inserted at the
N-terminal, next to the prepropeptide of the
ADAMTS13 cDNA.

Construction of the ADAMTS13-insA expression vector 
The insertion of the adenine (A) at position 4143 of

the ADAMTS13 cDNA (NM_139027) was achieved by
site-directed mutagenesis of WT expression vector
using a QuickChangeTMSite Directed Mutagenesis Kit
(Stratagene, La Jolla, CA, USA) by a forward (5’CTC-
TACTGGGAGTCAAGAGAGCAGCCAGGC3’) and a
reverse primer (5’GCCTGGCTGCTCTCTTGACTC-
CCAGTAGAG3’). The presence of the insertion muta-
tion at position 4143 was confirmed by sequence
analysis.
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Construction and cloning of the ADAMTS13-29del 
expression vector

The deletion of 29 nucleotides identified in the exon 3
was inserted into the ADAMTS13 cDNA by overlapping
PCR: details are provided in an Online Supplementary
Appendix 1). 

Cell culture and transfection
Human embryo kidney (HEK) 293 cells were main-

tained in DMEM/F12 (1:1) medium (Invitrogen, Carls-
bad, CA, USA) supplemented with 10% fetal bovine
serum (Invitrogen, Carlsbad, CA, USA), antibiotics
(100 IU/mL penicillin and 100 mg/mL streptomycin),
and glutamine (10%) at 37°C in 5% CO2. Subconfluent
HEK293 cells grown in 100-mm culture dishes were
transiently transfected with 50 µg of each expression
vector using electroporation according to the manufac-
turer’s instructions (EQUIBIO/Easyject Plus; Thermo
Electron Corp, Needham Heights, MA, USA). To nor-
malize the transfection efficiency across a range of
individual transfections, the reporter plasmid pRL-TK
vector (Promega, Madison, WI, USA) was co-transfect-
ed as an internal reference (10:1 molar ratio of test
plasmid and pRL-TK). The medium was replaced by
Opti-MEM I reduced serum media (Invitrogen,
Carlsbad, CA, USA) 24 h after transfection, and cells
were incubated for an additional 72 h. Conditioned
media of cells transfected by ADAMTS13-WT,
ADAMTS13-insA and ADAMTS13-29del expression
vectors were collected separately and a protease
inhibitor (10% phenylmethylsulfonyl fluoride) was
added, clarified by centrifugation and concentrated 30-
fold using an AMICON Centricons Column (Millipore,
Bedford, MA, USA). Adherent cells were washed with
phosphate-buffered saline at pH 7.2 and subsequently
lysed with 1 mL of 1x Renilla Luciferase Assay Lysis
Buffer (Renilla Luciferase Assay System-Promega,
Madison, WI, USA). Untransfected HEK293 cells were
used as a negative control.

Western blot analysis
Equivalent volumes of cell lysates and conditioned

media of cells transiently transfected by ADAMTS13-
WT and ADAMTS13-insA expression vectors, adjusted
according to the results of the luciferase assay, were
resolved by 7% sodium dodecyl polyacrylamide gel
electrophoresis (SDS-PAGE) under reducing conditions.
The ADAMTS13-29del recombinant protein was
resolved on a 15% polyacrylamide gel in order to keep
its low molecular weight in view (6767 Da). WT and
mutant recombinant ADAMTS13 proteins transferred
to a pure nitrocellulose membrane (Bio-Rad, Hercules,
CA, USA) were detected using an anti-V5 monoclonal
antibody against the N-terminal tag of recombinant
ADAMTS13 (Invitrogen, Carlsbad, CA, USA) and visu-
alized with peroxidase-labeled anti-mouse immuno-
globulin G (Amersham Biosciences, Uppsala, Sweden).
Electrochemoluminesce detection reagents (Amersham
Biosciences, Uppsala, Sweden) followed by exposure on
autoradiographic film were used for the detection. 

Immunofluorescence studies
The African green monkey kidney, SV40 virus trans-

formed cell line COS-7 was used. Immunofluorescence
experiments were performed as previously reported.17

To detect the cellular localization of WT and mutant
ADAMTS13 recombinant proteins, transfected cells
were stained simultaneously with anti-V5 antibody and
mouse monoclonal antibodies against the protein Bip-
GRP78 (a chaperone protein involved in Golgi-endo-
plasmic reticulum transport) (BD Biosciences, Franklin
Lakes, NJ, USA). Images were captured using a Leica
DMR epifluorescence microscope (Leica Imaging
System, Cambridge, UK) equipped with a CCD camera
(Cohu, San Diego, CA, USA) and a specific filter. The
images were recorded using QFISH software (Leica
Imaging System, Cambridge, UK). 

Mini-gene expression vectors
An overlapping PCR technique, as described above

with slight modifications, was used to insert exons 4, 5
and 6 including introns 4 and 5 into the ADAMTS13
cDNA in frame with the tag. Two ADAMTS13 mini-
gene expression vectors were constructed, one con-
tained the WT exonic and intronic sequences and the
other including the 29 bp deletion mutation. The
oligonucleotides and PCR conditions are available on
request.

mRNA analysis
Subconfluent HEK293 cells grown in 100-mm dishes

were transiently transfected with 50 µg of each
ADAMTS13-WT and ADAMTS13-29del mini-gene
expression vectors. The medium was replaced by
Opti-MEM I reduced Serum Media (Invitrogen,
Carlsbad, CA, USA) 24 h after transfection, and cells
were incubated for an additional 72 h. Cells were
washed twice with phosphate-buffered saline, and
total RNA was isolated using an RNeasy Mini Kit
(QIAGEN, Milan, Italy). To ensure complete removal
of DNA contamination, DNase digestion was per-
formed according to the manufacturer’s recommenda-
tions. RT-PCR was performed with specific primers
spanning from exon 2 to 6 of ADAMTS13 cDNA using
an Access RT-PCR System (Promega, Madison, WI,
USA). 

Real-time RT-PCR
Total RNA of cells transfected with ADAMTS13-WT

and ADAMTS13-29del expression vectors with and
without intronic regions was isolated using an RNeasy
Mini Kit (QIAGEN, Milan, Italy). Primers specific to
exons 5 and 6 were used for the analysis: forward 5_-
GCTGACCTGGTCCTCTATATCAC-3_, reverse: 5_-
AATGGTGACTCCCAGGTCGA-3_. The reference
gene was glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) and was amplified using GAPDH-forward: 5’-
AAAGTGGATATTGTTGCCATCA-3’, and GAPDH-
reverse: 5’-GGTGGAATCATATTGGAACATG-3’.
Chromo4TM Detector was used as the detection system
(MJ Research, Waltham, MA, USA). The results were
analyzed using the previously described ∆Ct compara-
tive method.28
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Results

ADAMTS13 antigen and activity
Table 1 reports the ADAMTS13 antigen and activity

levels of both siblings and their parents. The siblings
had severe ADAMTS13 deficiency, while their parents
had moderately reduced plasma levels of ADAMTS13
antigen and activity. No anti-ADAMTS13 antibodies
were detectable in the patients’ plasma.

Genomic sequence analysis
Sequence analysis of the ADAMTS13 gene identified

two genetic defects in the heterozygous state in the sib-
lings. The first mutation was a deletion of 29
nucleotides located at exon 3 (c.291_319delGGAGGA
CACAGAGCGCTATGTGCTCACCA) causing a
frameshift with premature termination codons in the
metalloprotease domain.21 The second mutation was an
insertion of an adenine (A) at 4143_4144 codon in the
second CUB domain, which introduced a premature ter-
mination at codon 1381 causing the loss of the last 49
amino acids at the C-terminus of ADAMTS13.20 Table 1
reports the ADAMTS13 gene mutations observed in
both patients and their parents. 

Haplotype analysis showed that both probands were
carriers of the same haplotype linked to the 4143-
4144insA mutation, previously reported by Schneppen-
heim.27

ADAMTS13 activity and antigen in conditioned media
ADAMTS13 antigen levels in conditioned media of

cells transiently transfected by ADAMTS13-insA and
ADAMTS13-29del were 3.7±1.6% and undetectable,
respectively, in comparison with the level of
ADAMTS13-WT taken as 100% (Table 2). The reduced
amounts of ADAMTS13-insA released into the condi-
tioned media showed an ADAMTS13 activity of
10±3.7%, compared to the ADAMTS13-WT level (the
mean value of ADAMTS13-WT was set as 100%)
(Table 2). 

Western blot analysis
Western blot analysis performed on conditioned

media and lysates of cells transfected with the

ADAMTS13-WT expression vector showed a band
with a molecular weight of approximately 190 kDa
(Figure 1). The band was not detectable in the medium
of untransfected cells used as a negative control. The
lysate of cells transfected by ADAMTS13-insA expres-
sion vector showed a band with a lower molecular
weight than that of ADAMTS13-WT, which reflects the
loss of the last 49 amino acids at the C-terminus of
ADAMTS13. Interestingly, no band was observed in the
conditioned media of cells transfected by the
ADAMTS13-insA expression vector, suggesting the
retention of the ADAMTS13-insA recombinant protein
(Figure 1A). The ADAMTS13-29del recombinant pro-
tein was not detectable in the conditioned media and
cell lysates, even when a higher concentration of poly-
acrylamide gel (15%) was used (Figure 1B).

Immunofluorescence studies
Different patterns of localization of recombinant

ADAMTS13-WT and ADAMTS13-insA were observed.
ADAMTS13-WT was mainly localized in the perinu-
clear area (Figure 2). In contrast, ADAMTS13-insA was
diffusely present throughout the cytoplasm with no
perinuclear enhancement, probably consistent with a
subcellular localization in the endoplasmic reticulum
(Figure 2). Merge fluorescent studies demonstrated the
co-localization of ADAMTS13-insA recombinant pro-
tein with a BiP-endoplasmic reticulum marker confirm-
ing the hypothesis of the retention of recombinant pro-

Table 1. ADAMTS13 phenotypes and genotypes of the two Turkish siblings affected by congenital thrombotic thrombocytopenic purpu-
ra and their parents. 

ADAMTS13 activity ADAMTS13 antigen Muations
cDNA Protein

Father 55% 50% c.291_319delGGAGGACACAGAGCGCTATGTGCTCACCA p.Q97fs31X
-

Mother 67% 59% c.4143_4144insA p.S1381fs6X
-

Patient 1 (male) <6% <1% c.4143_4144insA p.S1381fs6X
c.291_319delGGAGGACACAGAGCGCTATGTGCTCACCA p.Q97fs31X

Patient 2 (female) <6% <1% c.4143_4144insA p.S1381fs6X
c.291_319delGGAGGACACAGAGCGCTATGTGCTCACCA p.Q97fs31X

Table 2. ADAMTS13 activity (CBA) and antigen levels in the con-
ditioned media of cells transiently transfected by ADAMTS13-WT,
ADAMTS13-insA and ADAMTS13-29del expression vectors. 

ADAMTS13 ADAMTS13
activity (CBA) antigen

r.ADAMTS13-WT 100% 100% 
r.ADAMTS13insA 10 % ±3.7% 3.7% ±1.6%
r.ADAMTS13-29del <6% 0%
HEK293 untransfected <6% 0%

Both ADAMTS-13 activity and antigen results are expressed as a percentage of
ADAMTS13-WT (mean ±SE) obtained by four different transient transfections
using each single mutant and WT vector.
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tein in the endoplasmic reticulum (Figure 3). For cells
transfected with ADAMTS13-29del expression vector,
immunofluorescence studies revealed that the mutant
recombinant protein stained much more faintly than
ADAMTS13-WT (Figure 2). 

mRNA analysis
Since the 29 bp deletion mutation causes a frameshift

in the reading frame introducing premature termination
codons, reverse transcription PCR (RT-PCR) was per-
formed to evaluate whether this mutation affects the
ADAMTS13 mRNA splicing process. Total RNA
extracted from HEK293 cells transiently transfected by
ADAMTS13-WT and ADAMTS13-29del mini-genes
were used as templates for the RT-PCR using specific
primers from exon 2 to 6 of ADAMTS13 cDNA. The
RT-PCR products of ADAMTS13-WT and mutant
mRNA showed two bands of 358 bp and 329 bp,
respectively (Figure 4). No aberrantly spliced products
were observed for mutant ADAMTS13 mRNA confirm-
ing that the 29 bp deletion mutation shows normal
splicing as also demonstrated by sequencing. 

Real-time RT-PCR
In order to analyze whether the premature termina-

tion codon introduced by the 29 bp deletion mutation
interferes with ADAMTS13 mRNA expression levels,
real-time RT-PCR studies were performed on total

RNA isolated from HEK293 cells transiently transfected
by ADAMTS13-WT and ADAMTS13-29del mini-
genes. It was observed that the levels of expression of
ADAMTS13-29del mRNA were reduced by approxi-
mately 70% in comparison with those of ADAMTS13-
WT. These findings indicate that the ADAMTS13-
29del mRNA bearing the premature termination codon
was most likely undergoing nonsense-mediated mRNA
decay (Figure 5). In order to elucidate the role played by
introns in the nonsense-mediated decay mechanism,
kinetics of different ADAMTS13 mRNA were evaluat-
ed in a transient transfection system using
ADAMTS13-WT and ADAMTS13-29del expression
vectors with no introns. This experiment showed a
decrease of only 15% of steady state ADAMTS13-
29del mRNA compared to ADAMTS13-WT (Figure 5)
indicating that the premature termination codon intro-
duced by the 29del mutation associated with the
introns negatively affected the steady state of
ADAMTS13 mRNA levels, perhaps triggering the non-
sense-mRNA decay mechanisms.

Discussion

We report the identification of two mutations in a
heterozygous state causing a severe deficiency of
ADAMTS13 in two Turkish siblings: a 29-nucleotide

Figure 1. Western blot analysis
of recombinant ADAMTS13 pro-
teins. The ADAMTS13-WT and
mutant expression vectors were
transiently expressed in
HEK293 cells. (A) ADAMTS13-
WT and ADAMTS13-insA recom-
binant proteins in the condi-
tioned media and cell lysates on
7% SDS-PAGE. (B) ADAMTS13-
WT and ADAMTS13-29del
recombinant proteins in the
conditioned media and cell
lysates on 15% SDS-PAGE. WT
and mutant ADAMTS13 recom-
binant proteins were detected
using an anti-V5 monoclonal
antibody against the N-terminal
tag of recombinant proteins.
Negative controls were HEK293
untransfected cells.

Figure 2. Immunofluorescence studies of the recombinant ADAMTS13 proteins in COS-7 cells. 
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deletion mutation located in exon 3 (c.291_319del
GGAGGACACAGAGCGCTATGTGCTCACCA) and
a single base (A) insertion mutation located in exon 29
(c.4143_4144insA) in the second CUB domain.20,21 With
regards to the 29bp deletion mutation, we evaluated
whether a regulatory mechanism, known as nonsense-
mediated mRNA decay, could have any role in the level
of expression of ADAMTS13 mRNA.

As reported in mammalian cells, nonsense-mediated
mRNA decay is an intron-dependent biological mecha-
nism responsible for depleting mRNA containing pre-
mature termination codons, presumably to control the
synthesis of abnormal proteins deleterious to cellular
metabolism.29-31 Not all premature termination codon -
bearing mRNA derived from genes containing introns
are unstable. They lose stability only when the prema-
ture termination codon is located at 5’ of the last intron
by about 55 or more nucleotides.32-34 We hypothesized
that the premature termination codon introduced by the
29 bp deletion mutation would lead to unstable
ADAMTS13 mRNA triggering the destruction of the
premature termination codon bearing ADAMTS13
mRNA. First we demonstrated that the 29bp deletion
mutation does not affect the ADAMTS13 mRNA splic-
ing process. We subsequently evaluated the levels of
expression, using ADAMTS13-WT and mutant mini-
genes, by a real-time RT-PCR technique. The expression
of ADAMTS13-29del mRNA was approximately 70%
lower than that of ADAMTS13-WT, indicating that the
29 bp deletion mutation negatively affects the steady
state of mRNA levels.

To confirm that the nonsense-mediated decay mech-
anism is intron dependent, kinetic studies of
ADAMTS13 mRNA using ADAMTS13-WT and
ADAMTS13-29del expression vectors without introns

were carried out. These experiments showed a decrease
of approximately 15% of steady state ADAMTS13-
29del mRNA using expression vectors with no introns,
demonstrating that the premature termination codon
introduced by the 29del mutation associated with
introns negatively affects the expression level of
ADAMTS13 mRNA, probably triggering the nonsense-
mRNA decay mechanism. To summarize, the prema-
ture termination codon introduced by the 29 bp deletion
mutation triggers a decay process reducing the expres-
sion of ADAMTS13 mRNA which probably affects the
level of ADAMTS13 protein.

In the in vitro-expression studies, the ADAMTS13-
29del recombinant protein was undetectable in condi-
tioned media and cell lysates using western blot analy-
sis. On the other hand immunofluorescence studies
revealed that the ADAMTS13-29del recombinant pro-
tein is synthesized in small amounts as a short peptide
(6767 Da) which is probably not functional and easily

Figure 4. RT-PCR analysis of ADAMTS13-WT and mutant mini-
genes. RT-PCR products on 2% agarose gel amplified from total
RNA extracted from HEK293 cells transfected with ADAMTS13-
WT and ADAMTS13-29del minigenes.  

Figure 3. Merge immunofluorescence studies of ADAMTS13-WT and  ADAMTS13-insA recombinant proteins. COS-7 cells transfected with
WT and mutant constructs stained simultaneously with anti-V5 monoclonal antibody against recombinant ADAMTS13 (green) and anti-
Bip-GRPp78 monoclonal antibody (red) against a chaperone protein of the endoplasmic reticulum compartment.  

Lane 1 – Molecular marker

Lane 2 – Negative control

Lane 3 – ADAMTS13-WT minigene

Lane 4 – ADAMTS13-29del minigene

1 2 3 4

404bp
331bp
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degradable. The lack of detection of the ADAMTS13-
29del recombinant protein in the western blots could
probably be explained by the recombinant protein hav-
ing lost the V5-tag when the cells were lysed.

With regard to the second gene variation, the
4143_4144insA mutation located in the second CUB
domain, our in vitro expression studies confirmed that
the 4143_4144insA mutation impairs the secretion
pathway associated with intracellular accumulation.
The defect may be due to the removal of the central β-
strands present in the CUB domain, resulting in the
destruction of its architecture, as previously described
by Pimanda.18 Eight different mutations in the first and
second CUB domain were reported previously and

some were analyzed by in vitro-expression studies, sug-
gesting, consistently with our results, that the CUB
domains play a critical role in the biosynthesis and
secretion of ADAMTS13.8,35,36

The 4143_4144insA mutation has been frequently
detected in patients with hereditary ADAMTS13 defi-
ciency in northern and central European countries.
Schneppenheim and colleagues, after analyzing the seg-
regation of 4143_4144insA mutation using 17 intragenic
polymorphic markers in patients and their relatives,
suggested that 4143_4144insA is a founder mutation
most probably derived from a common ancestor in cen-
tral Europe.27 The identification of the ADAMTS13 hap-
lotype linked to the 4143_4144insA mutation in our
probands from Turkey is consistent with the hypothesis
of a common ancestor in central Europe. This could also
be due to immigration from central Europe to Turkey
when, in the latter part of the 19th century, the Ottoman
Empire received refugees, particularly Hungarian and
Poles, from the Hasburg Empire. Furthermore Turkey
also became a country of refuge for approximately
100,000 Jews from German-occupied Europe who made
Turkey their country of first asylum. Hence, it is reason-
able to consider that the 4143_4144insA mutation in
our Turkish patients reflects a history of trading and
migration between countries, which has served as a
vehicle for gene flow. 

In conclusion, this work demonstrates that the two
cases of severe ADAMTS13 deficiency that we studied
are mechanistically caused by the association of two
different gene defects acting at two different levels: the
impairment of steady state mRNA levels caused by a
premature termination codon-mediated decay mecha-
nism induced by a 29 bp deletion, and alteration of the
secretion pathway caused by the 4143_4144insA muta-
tion.  
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Figure 5. Real-time RT-PCR results on total RNA from ADAMTS13-
WT and ADAMTS13-29del minigenes. Results of real-time RT-PCR
of ADAMTS13-WT and ADAMTS13-29del without introns and
ADAMTS13-WT and ADAMTS13-29del plus introns. All data are
compared to ADAMTS13-WT cDNA as a calibrator sample and
expressed as percentages of ADAMTS13-WT (mean±SE) obtained
in three independent assays.
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