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Abstract

A series of new 4-(3-(4-substitutedphenyl)-3a,4-dihydro-3H-indeno[1,2-c]pyrazol-2-yl) benzene-
sulfonamides (7–12) was synthesized starting from 2-(4-substitutedbenzylidene)-2,3-dihydro-
1H-inden-1-one (1–6) and 4-hydrazinobenzenesulfonamide. The substituted benzaldehydes
from which the key intermediate was prepared by introducing 2- or 4-substituents such as
fluorine, hydroxy, methoxy, or the 3,4,5-trimethoxy moieties. The compounds were tested for
their cytotoxicity, tumor-specificity and potential as carbonic anhydrase (CA, EC 4.2.1.1)
inhibitors. The 3,4,5-trimethoxy and the 4-hydroxy derivatives showed interesting cytotoxic
activities, which may be crucial for further anti-tumor activity studies, whereas some of these
sulfonamides strongly inhibited both human (h) cytosolic isoforms hCA I and II.
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Introduction

Cancer is the second cause of death all over the world. Although
radiation and surgery are used for the treatment of cancer,
chemotherapy is the most widely used therapeutic approach for
it. Available anticancer drugs in markets have several problems
such as side effects, toxicity, cross resistance, and low
selectivity1.

The sulfonamides are an important class of drugs known with
antibacterial, anti-carbonic anhydrase, diuretic, anti-diabetic or
hypoglycemic, and antithyroid activities2–5. A large number of
sulfonamide derivatives have recently been reported to show
remarkable antitumor activity both in vivo and/or in vitro. Some
of these sulfonamide derivatives are currently being evaluated in
clinical trial leading to consider them as novel alternative anti-
cancer drugs, devoid of the side effects of presently available
pharmacological agents5. Recently, new pyrazolines bearing
benzene sulfonamides were synthesized and their anticancer
activities were investigated6. In this study it was observed
promising anti-proliferative activities with GI50 values less than
2mM particularly against MOLT-4 (1.94), 5R (1.28) in leukemia
cancers, EKVX (1.88) in non-small cell lung cancer, COLO 205
(1.69) in colon cancer for the compound 2f (4–(3-(3-chloro-
6-hydroxy-2,4-dimethylphenyl)-5–(4-(dimethylamino)phenyl-4,5-
dihydro-1H-pyrazol-1-yl) benzenesulfonamide). In the another

literature7, it was reported that substituted pyrazoline compound
(4–(5-(2,5-dimethylphenyl)-3-(trifluoromethyl)-4, 5-dihydro-1H-
pyrazol-1-yl)benzenesulfonamide) and (1–(4-aminosulfonylphe-
nyl)-3-trifluoromethyl-5-[3,5-di-(tri-fluoromethyl)-phenyl]-4,5-
dihydro-pyrazole) showed improved antitumoral activity in the
treatment of cancer, especially for colon and/or prostate cancer,
although these compounds do not inhibit cyclooxygenase-1
and/or cyclooxygenase-2.

Indane or indanone-bearing compounds had been reported to
show their several bioactivities including cytotoxic/anticancer
activities8–15, inhibition of b-amyloid plaques, which were
stimulated by acetylcholinesterase16, and effects on mitochondrial
respiration by inhibition of reactive oxygen species17.

Chalcones are widely used precursor molecules for the
preparation of pyrazoles and pyrazolines. Chalcones and their
derivatives have several bioactivities such as cytotoxic/anticancer
activities18–24, topoisomerase I inhibitory25, carbonic anhydrase I
and II inhibitory15,26 activities.

Pyrazolines are prominent nitrogen bearing five membered
heterocylic compounds with antimicrobial27, anti-inflammatory28,
antihipertansive29 activities. Medicinally important pyrazolines
are 1,3,5-trisubstituted derivatives and their antiinflamma-
tory30,31, dual antimicrobial and antiinflammatory27, analgesic
and antimicrobial32, and selective COX-2 inhibitory (i.e.
Celecoxib)33 activities were reported.

The carbonic anhydrases (CAs) are the metalloenzymes
containing zinc ions (Zn2+), which classically participate in the
maintenance of pH homeostasis. CAs catalyze the reversible
hydration of carbon dioxide (CO2) in two-step reaction to yield
bicarbonate (HCO3

�) ion and proton (H+)34. The inter-conversion
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of these chemical species is shown in following equation, which
however is too slow to meet the physiological needs of most
biochemical processes35.

CO2 þ H2O,
CA

H2CO3 , HCO�3 þ Hþ

CAs have six genetically and distinct enzyme families: the a-,
b-, g-, e-, z- and Z-CA. Mammals, including humans, generally
contain a-CAs, the most popular CA family. Until now, sixteen
different a-CA isoenzymes have been identified in various tissues
and organs with different expression levels, kinetic and molecular
properties and oligomeric rearrangements34. According to the
known cellular localization, some of them are cytosolic (CA I, CA
II, CA III, CA VII and CA XIII), other CA isoenzymes are
membrane bound (CA IV, CA IX, CA XII and CA XIV), two of
CAs are mitochondrial (CA VA and CA VB) and one of CAs is
salivary (CA VI)36. CA XV is not synthesized in humans and
other primates and is abundantly found in rodents and other
vertebrates as an isoform. Three acatalytic forms are also reported
and named as CA related proteins (CARP), CARP VIII, X and XI,
which are found in the cytosol37.

The two important CA isozymes (CA I and CA II) are present
at higher concentrations in the cytosol in erythrocytes. hCA I, and
II have various medical applications and shows optimal activity at
physiological pH and temperatures. Carbonic anhydrase inhibitors
(CAIs) have many clinical usages of major diseases such as
diuretics, antiglaucoma, gastroduodenal ulcers, anti-obesity
drugs, acid-base disequilibria, and antiepileptic. CAIs are useful
for the treatment of some neurological disorders such as
idiopathic intracranial hypertension38,39. The inhibition and
activation mechanisms of CAs are well-understood processes at
the molecular level. Usually most classes of CAIs bind to the
metal center thus causing disruption of the CO2 hydration
reaction3. The classical CAIs are the primary sulfonamides,
RSO2NH2, which are in clinical use for more than seventy years
as diuretics and systemically acting anti-glaucoma drugs34.

The aim of this study was to design and synthesize new
compounds including pyrazoline, sulfonamide, and indane
pharmacophores all together to investigate their cytotoxicities,
potential carbonic anhydrase inhibition properties to find out a
leader compound/s for further studies.

Materials and methods

Melting points were determined using an Electrothermal 9100
(IA9100, Bibby Scientific Limited, Stone, UK) instrument and are
uncorrected. 1H NMR (400 MHz) and 13C NMR (100 MHz)
spectra were obtained using a Varian Mercury Plus spectrometer
(Varian Inc., Palo Alto, CA). Chemical shifts (d) are reported in
ppm. Mass spectra were undertaken on an HPLC-TOF Waters

Micromass LCT Premier XE (Waters Corporation, Milford, MA)
mass spectrometer using an electrospray ion source (ESI). All
reactions were carried out in CEM Discover microwave synthesis
systems (CEM, Matthews, NC).

General procedure for the synthesis of 2–(4-substituted-
benzylidene)-2,3-dihydro-1H-inden-1-one (1–6)

Aqueous solution of sodium hydroxide (10% w/v, 10 mL) was
added into the ethanol (6 mL) solution of 1-indanone (20 mmol)
and suitable substitute benzaldehyde (20 mmol) (Scheme 1). The
mixture was stirred overnight at room temperature and then it was
poured on ice-water (100 mL) in the beaker. The mixture was
neutralized with hydrochloric acid (10% w/v, 10 mL). The colored
precipitate formed was filtered and crystallized from water-
ethanol for the compounds (1–6)13–15,17,40,41. Chemical structure
of the compounds 1–6 were confirmed by 1H NMR, 13C NMR,
HRMS and the literature reported melting points of the
compounds. Data are not presented here.

General procedure for the synthesis of pyrazoline
derivatives (7–12)

A solution of 2–(4-substituted benzylidene)-2,3-dihydro-1H-
inden-1-one (1–6, 1.00 mmol) and 4-hydrazinobenzensulfonamide
hydrochloride (1.10 mmol) in ethanol (50 mL) was heated in
(100 �C, 200 Watt, 3–7 barr) for 10–120 min [20 min, 3 barr (7),
60 min, 7 barr (8, 11); 30 min, 7 barr (9); 10 min, 7 barr (10);
120 min, 3 barr (12)]. The reactions were monitored by TLC.
When the reaction was stopped, the volume of the reaction
mixture was concentrated to the half and the precipitate formed
was filtered, washed with cold ethanol, and the compounds were
purified by crystallization from ethanol to obtain 7–12. Chemical
structures of the compounds 7–12 were confirmed by 1H NMR,
13C NMR, and HRMS.

4–(3-Phenyl)-3a,4-dihydro-3H-indeno[1,2-c]pyrazol-2-yl)
benzenesulfonamide (7)

M.p. 243–246 �C. Yield: 8.4% 1H NMR (400 MHz, CDCl3, ppm)
d 7.76 (d, 1H, Ar-H, J¼ 8.4 Hz), 7.67 (d, 2H, Ar-H, J¼ 9.1 Hz),
7.34–7.19 (m, 6H, Ar-H), 7.03 (bs, 4H, Ar-H), 5.59 (d, 1H, C3-H,
J¼ 10.9 Hz), 4.28–4.21 (m, 1H, C3a-H), 2.91 (dd, 1H, C4-Ha,

J¼ 15.9, 8.7 Hz), 2.17 (dd, 1H, C4-Hb, J¼ 15.9, 7.6 Hz); 13C
NMR (100 MHz, CDCl3, ppm) d 163.9, 151.7, 148.1, 134.3,
131.0, 130.7, 129.8, 128.9, 128.4, 128.3, 127.9, 127.3, 126.6,
122.9, 112.5, 67.5, 55.2, 29.9; Mass spectrum: 390.12 (M++1);
HRMS (ESI-MS) Calc.: 390.1276 for C22H20N3O2S [M + H]+,
found: 390.1281.

N N

SO2NH2

R

O

H

O

+

O

R

R

i
ii

1-6 7-12

Scheme 1. 4–(3-(4-substitutedphenyl)-3a,4-dihydro-3H-indeno[1,2-c]pyrazol-2-yl) benzenesulfonamide 7–12. (i) aq. NaOH 10%, EtOH, r.t, 12 h; (ii)
4-hydrazinobenzensulfonamide hydrochloride, EtOH, 100 �C, 200 Watt, 3-7 barr, 10’-120’. R: H (1, 7), 4-OCH3 (2, 8), 2-OCH3 (3, 9), 3,4,5-(OCH3)3

(4, 10), 4-F (5, 11), 4-OH (6, 12).
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4–(3-(4-Methoxyphenyl)-3a,4-dihydro-3H-indeno[1,2-c]
pyrazol-2-yl)benzenesulfonamide (8)

M.p. 172–176 �C. Yield: 19.3% 1H NMR (400 MHz, CD3OD,
ppm) d 7.73–7.71 (m, 1H, Ar-H), 7.64–7.62 (m, 2H, Ar-H), 7.35–
7.30 (m, 2H, Ar-H), 7.26–7.24 (m, 1H, Ar-H), 7.06 (d, 2H, Ar-H,
J¼ 8.4 Hz), 6.96 (bs, 2H, Ar-H), 6.77 (d, 2H, Ar-H, J¼ 7.7 Hz),
5.74 (d, 1H, C3-H, J¼ 10.9 Hz), 4.29–4.23 (m, 1H, C3a-H), 3.69
(s, 3H, OCH3), 2.94 (dd, 1H, C4-Ha, J¼ 15.9, 8.9 Hz), 2.14 (dd,
1H, C4-Hb, J¼ 15.9, 7.4 Hz); 13C NMR (100 MHz, CD3OD, ppm)
d 164.3, 159.6, 152.0, 148.1, 131.6, 131.1, 130.5, 128.5, 127.6,
127.4, 126.5, 126.3, 122.1, 114.1, 112.3, 67.3, 54.9, 54.4, 29.3;
Mass spectrum: 420.13 (M++1); HRMS (ESI-MS) Calc.:
420.1382 for C23H22N3O3S [M + H]+, found: 420.1399.

4–(3-(2-Methoxyphenyl)-3a,4-dihydro-3H-indeno[1,2-c]
pyrazol-2-yl)benzenesulfonamide (9)

M.p. 245–247 �C. Yield: 3.6% 1H NMR (400 MHz, DMSO-d6,
ppm) d 7.67–7.65 (m, 1H, Ar-H), 7.56 (d, 1H, Ar-H,
J¼ 9.1 Hz), 7.34–7.28 (m, 2H, Ar-H), 7.21–7.17 (m, 1H, Ar-
H), 7.07 (d, 1H, Ar-H, J¼ 8.1 Hz), 7.01 (s, 2H, Ar-H), 6.87 (bs,
2H, Ar-H), 6.67 (t, 1H, Ar-H, J¼ 7.5 Hz), 6.44 (d, 1H, Ar-H,
J¼ 7.7 Hz), 5.95 (d, 1H, C3-H, J¼ 10.9 Hz), 4.32–4.30 (m, 1H,
C3a-H), 3.89 (s, 3H, OCH3), 2.99 (dd, 1H, C4-Ha, J¼ 16.2,
8.4 Hz), 1.93 (dd, 1H, C4-Hb, J¼ 16.2, 7.5 Hz); 13C NMR
(100 MHz, DMSO-d6, ppm) d 164.8, 157.9, 152.1, 147.3, 132.9,
131.3, 131.0, 129.8, 128.4, 128.0, 127.3, 122.7, 121.4, 121.2,
112.2, 111.8, 62.4, 56.3, 54.2, 29.9; Mass spectrum: 420.13
(M++1); HRMS (ESI-MS) Calc.: 420.1382 for C23H22N3O3S
[M + H]+, found: 420.1373.

4–(3-(3,4,5-Trimethoxyphenyl)-3a,4-dihydro-3H-
indeno[1,2-c]pyrazol-2-yl)benzenesulfonamide (10)

M.p. 266–269 �C. Yield: 41.5% 1H NMR (400 MHz, DMSO-d6,
ppm) d 7.71–7.69 (m, 1H, Ar-H), 7.58 (d, 2H, Ar-H, J¼ 9.1 Hz),
7.36–7.32 (m, 3H, Ar-H), 7.05–7.01 (m, 4H, Ar-H), 5.80 (d, 1H,
C3-H, J¼ 10.6 Hz), 4.30–4.27 (m, 1H, C3a-H), 2.97 (dd, 1H, C4-
Ha, J¼ 16.1, 8.7 Hz) 2.02 (dd, 1H, C4-Hb, J¼ 16.1, 7.7 Hz); 9
hydrogen peaks of three methoxy groups were under the peak of
solvents DMSO-d6. 13C NMR (100 MHz, DMSO-d6, ppm) d
164.6, 153.7, 152.3, 147.8, 137.3, 133.2, 131.2, 131.1 131.0,
128.5, 127.9, 127.4, 122.9, 112.6, 67.4, 60.6, 56.4, 56.5, 54.9;
Mass spectrum: 480.15(M++1); HRMS (ESI-MS) Calc.:
480.1593 for C25H26N3O5S [M + H]+, found: 480.1599.

4–(3-(4-Florophenyl)-3a,4-dihydro-3H-indeno[1,2-c]
pyrazol-2-yl)benzenesulfonamide (11)

M.p. 162–165 �C. Yield: 16.5% 1H NMR (400 MHz, CD3OD,
ppm) d 7.73 (d, 1H, Ar-H, J¼ 4.2 Hz), 7.65 (d, 2H, Ar-H,
J¼ 9.1 Hz), 7.34–7.32 (m, 2H, Ar-H), 7.26 (d, 1H, Ar-H,
J¼ 4.3 Hz), 7.07–6.97 (m, 6H, Ar-H), 5.81 (d, 1H, C3-H,
J¼ 10.6 Hz), 4.32–4.25 (m, 1H, C3a-H), 2.97 (dd, 1H, C4-Ha,
J¼ 15.8, 8.9 Hz), 2.09 (dd, 1H, C4-Hb, J¼ 15.8, 7.6 Hz); 13C
NMR (100 MHz, CD3OD, ppm) d 164.2, 151.9, 147.9, 131.9,
130.9, 130.8, 130.6, 129.3, 127.7, 127.5, 126.4, 122.2, 115.6,
115.4, 112.3, 66.9, 54.8, 29.4; Mass spectrum: 408.11(M++1);
HRMS (ESI-MS) Calc.: 408.1182 for C22H19N3O2SF [M + H]+,
found: 408.1174.

4–(3-(4-Hydroxyphenyl)-3a,4-dihydro-3H-indeno[1,2-c]
pyrazol-2-yl)benzenesulfonamide (12)

M.p. 267–271 �C. Yield: 8.8% 1H NMR (400 MHz, CD3OD, ppm)
d 7.73–7.71 (m, 1H, Ar-H), 7.64 (d, 2H, Ar-H, J¼ 9.1 Hz), 7.34–
7.25 (m, 3H, Ar-H), 7.06 (d, 2H, Ar-H, J¼ 8.0 Hz), 6.87 (bs, 2H,

Ar-H), 6.64 (d, 2H, Ar-H, J¼ 7.3 Hz), 5.70 (d, 1H, C3-H,
J¼ 10.6 Hz), 4.28–4.21 (m, 1H, C3a-H), 2.94 (dd, 1H, C4-Ha,
J¼ 16.0, 8.9 Hz), 2.21–2.13 (m, 1H, C4-Hb); 13C NMR (100 MHz,
CD3OD, ppm) d 164.4, 157.1, 152.0, 148.1, 131.5, 131.1, 130.4,
128.5, 127.5, 127.3, 126.4, 125.3, 122.1, 115.4, 112.3, 67.5, 54.9,
29.3; Mass spectrum: 406.12 (M++1); HRMS (ESI-MS) Calc.:
406.1225 for C22H20N3O3S [M + H]+, found: 406.1214.

Assay for cytotoxicity

The compounds were assayed towards human oral squamous cell
carcinoma cell lines (Ca9-22, HSC-2, HSC-3, HSC-4), and human
oral normal mesenchymal cells [gingival fibroblast (HGF), pulp
cell (HPC) and periodontal ligament fibroblast (HPLF)] based on
a literature procedure with some minor modifications42,43. In
brief, cells were cultured in DMEM supplemented with 10% fetal
bovine serum (FBS). Varying concentrations of the compound in
dimethylsulfoxide were added to the medium and incubated at
37 �C for 48 h. The viable cell numbers were determined by the
MTT method except for HL-60 cells, the viable cell number of
which was counted with a hemocytometer after staining with
0.15% trypan blue. The 50% cytotoxic concentration (CC50) value
was determined from the growth curves plotted at different
concentrations of each compounds in triplicate wells.

Carbonic anhydrase enzyme assay

The Carbonic Anhydrase (CA) I, and II isoenzymes were purified
from fresh human blood erythrocytes using by Sepharose-4B-L-
Tyrosine-sulfanilamide affinity chromatography44,45. This method
contains the purification of CA isoenzymes via a single step
described previously46.

CA isoenzyme activity was determined spectrophotometricaly
at 348 nm as described by Verpoorte et al.47. According to this
method the absorbance changes were measured during the time of
3 min at 25 �C as p-nitrophenylacetate (PNA) converted to
4-nitrophenylate ion. These type of spectrophotometric determin-
ations are described in detail in our previous studies48.

Bradford method was used to quantify the amount of protein
during the purification steps. This spectrophotometric assay has
been explained previously49. Bovine serum albumin was used as
standard protein50.

After the purification process of the CA isoenzymes, SDS-
polyacrylamide gel electrophoresis (SDS–PAGE) has been carried
out51. Stacking and resolving gel containing 3% and 10%
acrylamide, and 0.1% SDS was used for running the process
using a Minigel system (Mini-PROTEAN� system Casting stand,
Catalog 1658050, Bio-Rad Laboratories, Inc., China). The
method used for visualization of protein has been explained in
detail in our previous studies52. According to this method, the gel
was fixed then stained with Coomassie Brilliant Blues R-250 later
on the gel stained by using standard methods for detecting protein
bands that are belong to purified CA isoenzymes53.

The effects of novel benzenesulfonamides (7–12) derivatives
were examined using the hydratase activity and recorded in
triplicate analysis at each concentration used54. For this purpose,
different concentrations of novel benzenesulfonamides (7–12)
derivatives were determined in preliminary assays. CA isoenzyme
activities were measured in the presence of different quantity of
them. The control sample activity in the absence of a novel
benzenesulfonamides (7–12) derivatives were taken as 100%55.
For each novel benzenesulfonamides (7–12), an activity
(%)-[Benzenesulfonamides] was drawn using Excel program.
IC50 of each novel benzenesulfonamides (7–12) derivatives was
calculated from graphs. IC50 value is a measure of the effective-
ness of benzenesulfonamides (7–12) derivatives in inhibiting both

DOI: 10.3109/14756366.2016.1160077 Synthesis & bioactivity studies of benzenesulfonamides compounds 1621
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CA isoenzymes56. For determination of Ki values, three different
benzenesulfonamides (7–12) concentrations were used. Ki values
reflect the binding affinity of benzenesulfonamides (7–12) to both
CA isoenzymes. In this way, Value is converted to an absolute
inhibition constant Ki value. In this experiment, PNA was used as
substrate at five different concentrations. Then, Lineweaver–Burk
curves were drawn57.

Result and discussion

Condensation between 1-indanone and the appropriate benzalde-
hyde afforded the compounds 1–6. These compounds reacted with
4-hydrazinobenzensulfonamide hydrochloride to produce pyrazo-
line derivatives, the compounds 7–12. 1H NMR, 13C NMR, and
HRMS spectroscopies confirmed the chemical structures.

The cytotoxicity data (Table 1), hCA I and II inhibition
percentages data (Table 2) of the compounds were presented in
Tables 1 and 2, respectively.

When the cytotoxicity data of the compounds were con-
sidered, the first question to be addressed is whether the
compounds 7–12 have anti-neoplastic properties. The results
portrayed in Table 1 reveal that in general the CC50 of 7–12 are
in the range of 4.6–58.0 mM towards Ca9–22, HSC-2, HSC-3,
and HSC-4 cells. The potency of the compounds 7–12 towards
tumor cell lines was compared with a reference compound 5-
Fluorouracil (5-FU). Compounds 7 was more potent than 5-FU
towards HSC-4 cells.

The second aspect of these compounds to be considered is
whether they are tumor-specific cytotoxins since tumors are
surrounded by different types of normal cells. Selectivity index
(SI) figures were generated which are quotients of average CC50

values of normal cells and CC50 figure of a compound towards a
specific cell line. The results in Table 1 reveal that SI values of
greater than 1 were obtained in general. Exceptions were 12
towards HSC-2, HSC-3, and HSC-4 cell lines and 7 towards HSC-
2 cells.

When the most-selective compounds (SI) toward tumorous
cells were considered, the following sets of combination were
found to be the best: 12 (SI: 6.9) towards Ca9–22, 10 (SI: 1.9)
towards HSC-2, 7 (SI: 3.8) towards HSC-3, 7 (SI: 7.2) towards
HSC-4 cell lines.

Tumor-specificity (TS) value reflects the selectivity of the
compounds against cancer tissues rather than normal ones. In this
study, two types TS values were calculated. First, TS was also
calculated by dividing the mean CC50 value of each compound
against three human oral normal cells (Column D) to mean CC50

value against four human OSCC cell lines (Column B) (Table 1).
Second, TS was calculated by dividing the CC50 value of each
compound against HGF cells (Column C) to the CC50 value
against Ca9–22 cell line (Column A), both cells being originated
from the same tissue (gingiva) (Table 1). All compounds showed
lower TS values than reference drug 5-FU by these two types of
criteria for TS. According to TS values obtained by first
calculation method, the order of potency of TS values of the
compounds was as follows: The compound number (TS value): 10
(2.3)47 (1.9)49 (1.7)411 (1.6)48 (1.5)412 (1.3). When the
second calculation was considered, the order of potency of TS
values of the compounds was as follows: 12 (6.9)410 (3.9)48
and 9 (2.6)411 (2.1)47 (1.4).

When the esterase assay with 4-nitrophenyl acetate as substrate
were applied to the compounds 7–12, all benzenesulfonamide
compounds 7–12 behaved as powerful inhibitors against
slow cytosolic isoenzyme hCA I with Ki values in
ranging of 324.61 ± 47.16 – 550.21 ± 103.2 nM. Compound 10
(Ki: 324.61 ± 47.16 nM), which is 3,4,5-trimethoxy derivative,
and compound 11 (Ki: 328.92 ± 31.02), which is 4-fluoro
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derivative, inhibited hCA I activity more potently than reference
drug AZA (Ki: 460.27 ± 192.8), which is used for the treatment of
idiopathic intracranial hypertension, cystinuria, glaucoma, alti-
tude sickness, epileptic seizure, periodic paralysis, central sleep
apnea and dural estasia. Since hCA I isoenzyme is found in many
tissues and involved in retinal and cerebral edema, its inhibition
by the compounds 7–12 may be a valuable tool for fighting
against these symptoms. On the other hand, the compounds 7–12
demonstrated Ki values ranging between 262.92 ± 72.05 and
500.87 ± 122.5 nM towards hCA II. The compounds 10 (Ki:
262.92 ± 72.05 nM) and 11 (Ki: 318.06 ± 120.1 nM) inhibited
hCA II activity more potently than reference compound AZA (Ki:
455.28 ± 146.0 nM), like in the case of hCA I experiment. Since
CAII isoenzyme involved in several diseases, such as glaucoma,
edema, epilepsy, and altitude sickness, its inhibitory property of
7–12 may be applicable for fighting these diseases.

As a result, the compounds 10, which is 3,4,5-trimethoxy
derivative, and 12, which is 4-hydroxy derivative, seem candidate
cytotoxic compounds for further studies in terms of tumor-
specificity according to two types of TS calculations while the
compounds 10 and 11, which is 4-fluoro derivative, seem
candidate compounds as both hCA I and II inhibitors for further
studies.
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