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Abstract

Caffeic acid phenethyl ester (CAPE) is an active component of honeybee propolis extracts.
Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread and intensively studied metalloenzymes
present in higher vertebrates including humans as many diverse isoforms. Acetylcholinesterase
(AChE) is responsible for acetyl choline (ACh) hydrolysis and plays a fundamental role in nerve
impulse transmission by terminating the action of the ACh neurotransmitter at cholinergic
synapses and neuromuscular junctions. Butyrylcholinesterase (BChE) is another enzyme
abundantly present in the liver and released into blood in a soluble form. Lactoperoxidase
(LPO) is an enzyme involved in fighting pathogenic microorganisms whereas glutathione
S-transferases (GSTs) are dimeric proteins present both in prokaryotic and eukaryotic organisms
and involved in cellular detoxification mechanisms. In the present study, the inhibition effect of
CAPE on human carbonic anhydrase (hCA) isoforms I, II, IX, and XII, AChE, BChE, LPO, and GST
was evaluated. CAPE inhibited these enzymes with Kis in the range between micromolar to
picomolar. The best inhibitory effect was observed against AChE and BChE.
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Introduction

Polyphenolic compounds derived from natural products are
well known to possess a range of biological activities such as
antioxidant1, antitumoral2, anti-inflammatory, anti-viral, and
immunomodulatory properties3,4. Anti-allergic5, anti-carcino-
genic6, neuroprotective7, anti-atherosclerotic, and anti-free rad-
icals properties were also reported for these derivatives8–11. They
incorporate one or more hydroxyl moieties bonded directly to an
aromatic carbon atom12–19 with the substitution patterns on the
aromatic ring creating a large chemical variety20–25.

Caffeic acid phenethyl ester (CAPE) is a biologically active
ingredient of honeybee propolis. It has the ability to suppress lipid
peroxidation26 and is also a potent inhibitor of nuclear factor-
kappa b activation27. This naturally bioactive and hydrophobic
polyphenolic ester is found in numerous plants28. CAPE has
important biological activities including anti-viral29, anti-inflam-
matory30, and antioxidant activities14.

Carbonic anhydrases (CAs, EC 4.2.1.1) represent a superfam-
ily of widespread enzymes, which catalyze a crucial biochemical

reaction, the reversible hydration of carbon dioxide (CO2) to
bicarbonate (HCO�3 ) and protons (H+)31–37. These enzymes are
present in all organisms, from the very simple to the complex
ones. This metalloenzyme superfamily includes six distinct
genetic families (the a-, b-, g-, d-, z-, and Z-CAs) known to
date, which constitute an interesting example of convergent
evolution at the molecular level38–42. These six CA families vary
in their preference for the catalytic metal ions used within the
active site43–45, since Zn2+, Cd2+, or Fe2+ can be used within their
active sites46–52. The a-CA isoforms differ significantly in their
localization and tissue distribution. CA I, II, III, VII, and XIII are
cytosolic isoforms, CA IV, IX, XII, and XIV are membrane-
bound, CA VA and VB are mitochondrial, whereas CA VI is
secreted. CA IX and XII are known as the membrane tumor-
associated CAs, being found in a limited number of normal
tissues, such as the gastrointestinal mucosa and body cavity
lining53–55. An important role of CA IX and XII as tumor pH-
regulating enzymes, involved in the survival/proliferation of the
tumor cells within the hypoxic, acidic niche typical of many solid
cancers56–59.

Cholinesterases (ChE) are an enzyme family that catalyze the
hydrolysis of acetyl choline (ACh) into choline and acetic acid, an
essential process for the restoration of the cholinergic neuro-
transmission. There are two cholinesterase types:
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acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinester-
ase (BChE; EC 3.1.1.8)11,60–64. AChE is known to be abundant in
the muscle, brain, and erythrocyte membrane, whereas BChE has
a higher activity in liver, intestine, heart, kidney, and lung65.
AChE and BChE share 65% amino acid sequence homology and
have similar molecular forms and active sites despite being
products of different genes on the human chromosomes66. Both
cholinesterases participate in cholinergic neurotransmission by
hydrolyzing ACh in the central and peripheral nervous system67.
The symptomatic Alzheimer’s disease (AD) treatment involves
the use of cholinesterase inhibitors (ChEIs) such as Rivastigimine.
ChEIs are the first-line drugs in the symptomatic treatment of AD,
as by inhibiting cholinesterase they lead to an increased synaptic
level of the neurotransmitter68,69.

Lactoperoxidase (LPO, E.C.1.11.1.7) is of growing interest
due to its distinctive biological activity, such as biocidal and
biostatic ones70–73. The mechanism of the LPO antimicrobial
action has been studied thoroughly regarding the conversion of
thiocyanate (SCN�) to antimicrobial products, such as hypothio-
cyanite ion (OSCN�), hypothiocyanous acid (HOSCN),
and some other highly reactive and short-lived oxidation
products. These oxidations occur in the presence of hydrogen
peroxide74–77. LPO, a member of the mammalian peroxidase
family, with antibacterial properties is found in the salivary
glands, in the breast secretory epithelial cells, lacrimal glands
and in their secretions, such as saliva, milk, and tears78–80.
Based on its antibacterial characteristics, currently LPO has
extensive applications including preservation of raw milk during
collection or transportation to processing plants in dairy
industry, the extending shelf-life of pasteurized milk, and the
supplementation of salivary peroxidase antimicrobial system in
toothpastes and mouth rinses to reduce acid production by oral
microorganisms81.

Glutathione S-transferases (GST, EC 2.5.1.18) belong to the
superfamily of phase II detoxification enzymes. They are
multifunctional enzymes for the cellular defense against xeno-
biotics and provide protection for organism. They are essential
and found in all kingdoms of life82. The subfamily of GSTs is
further distinguished into at least 14 classes (a-, b-, d-, e-, z-, y-,
k-, �-, m-, �-, s-, �-, u-, and �-GST)83. This classification is based
on the substrate specificity, sensitivity to inhibitors, N-terminal
amino acid sequence and antibody cross-reactivity. Each GST
contains a G-site, which is the glutathione substrate binding site
and an H-site, which is hydrophobic substrate binding site82. The
G-site is conserved in the N-terminal region among the different
enzyme classes. On the other hand, the H-site is highly diverse,
being characterized by a significant variation in sequence and
topology and thus accounting for the variability of enzyme
activity in the GST superfamily83.

In this study, we investigated the inhibition effect of CAPE
against human carbonic anhydrase (hCA) isoenzymes hCA I, II,
IX, and XII, AChE, BChE, LPO, and GST.

Experimental section

Determination of hCA isoenzymes activity and inhibition

An Applied Photophysics stopped-flow instrument was used to
assay the catalytic/inhibition of four CA isozymes, as reported by
Khalifah84. Briefly, phenol red (20 mM) was used as an indicator,
with an absorbance maximum of 557 nm, with HEPES (10 mM,
pH 7.4) as a buffer and 0.1 M Na2SO4 or NaClO4 for maintaining
constant the ionic strength; these anions are not inhibitory at the
used concentration. The CA-catalyzed CO2 hydration was
followed for a period of 10–100 s.

For the determination of the kinetic parameters and inhibition
constants, the saturated CO2 concentrations ranged from 1.7 mM

to 17 mM. For CAPE, at least six traces of the initial 5–10% of the
reaction were used for determining the initial velocity. The
uncatalysed rates were determined in the same manner and
subtracted from the total observed rates. Stock solutions of
inhibitor (10 mM) were prepared in distilled–deionized water, and
dilutions up to 0.01 mM were performed with distilled–deionized
water. CAPE and enzyme solutions were preincubated together
for 15 min at room temperature prior to the assay to allow for the
formation of the EI complex. The inhibition constant of CAPE
was obtained by non-linear least-squares methods using PRISM 3,
as reported earlier, and represents the mean from at least three
different determinations. All hCA isozymes were prepared in
recombinant form as reported earlier by our group85–87.

Determination of AChE/BChE activity

The inhibitory effect of CAPE on AChE/BChE activities were
measured according to spectrophotometric method of Ellman
et al.88 Acetylthiocholine iodide or butyrylthiocholine iodide
(AChI/BChI) were used as substrates of the reaction. 5,50-Dithio-
bis(2-nitro-benzoic)acid (DTNB, D8130-1G, Sigma-Aldrich,
Steinheim, Germany) was used for the measurement of the
AChE/BChE activities. Briefly, 100 mL of Tris/HCl buffer (1 M,
pH 8.0), 10 mL of sample solution dissolved in deionized water at
different concentrations and 50 mL AChE/BChE (5.32� 10�3 U)
solution were mixed and incubated for 10 min at 25 �C. Then
50 mL of DTNB (0.5 mM) was added. The reaction was then
initiated by the addition of 50 mL of AChI/BChI. The hydrolysis
of these substrates was monitored spectrophotometrically by
formation of the yellow 5-thio-2-nitrobenzoate anion as the result
of the reaction of DTNB with thiocholine, released by enzymatic
hydrolysis of AChI/BChI, with an absorption maximum at a
wavelength of 412 nm81,89.

Purification studies of lactoperoxidase

Cyanogen bromide-activated-Sepharose 4B was used for purifi-
cation of LPO from bovine milk according to the method of
Atasaver et al.79 The purity of LPO was checked by sodium
dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-
PAGE)90 as previously reported91–93. Protein concentration was
determined according to the Bradford method94. The stacking and
running gels contained 3% (w/v) and 10% (w/v) acrylamide,
respectively, and 0.1% (w/v) SDS, according to a previously
published procedure95–99.

Determination of acetylcholinesterase and
butyrylcholinesterase inhibition

In order to determine the effect of CAPE on AChE, different
CAPE concentrations were added into the reaction medium. The
enzyme activity was measured, and an experiment in the absence
of drug was used as control66. The IC50 values were obtained from
activity (%) versus CAPE concentration plots. To determine the Ki

constant in the media with CAPE as inhibitor, different substrate
(ACh/BCh) concentrations were used. Inhibitor solution was
added into the reaction medium, resulting in three different fixed
concentrations of inhibitor. Lineweaver–Burk graphs100 were used
to determine Vmax and other kinetic parameters. The Ki was
calculated from these graphs.

Determination of glutathione S-transferase inhibitions

The kinetic constants of GST-catalyzed reaction were determined
using 2,4-dinitrochlorobenzene (25 mM, 20 mL, %95’lik), or
glutathione (20 mM, 50 mL) in sodium phosphate buffer (pH 7.2,
50 mM, 200 mL) at room temperature. GST activity was measured
as described previously101. The enzyme solution replaced by

2 _I. Gülçin et al. J Enzyme Inhib Med Chem, Early Online: 1–7
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phosphate buffer was used as the control. The rate of reaction was
used to construct a double-reciprocal Lineweaver–Burk plot of
1/V versus 1/S and the kinetic constants100. Also, in this
experiment, varying CAPE concentrations were used to measure
their ability to inhibit the GST. CAPE solution was added into the
reaction medium, resulting in three different fixed concentrations
of CAPE as inhibitor.

Results and discussion

Phenols are biologically active substances and possess antioxi-
dant, anticancer, antimutagenic, anticarcinogenic, antiviral, anti-
bacterial, and anti-inflammatory activities102–104. CAPE is an
active phenolic component of honeybee propolis and has been
used as a folk medicine for many years14. CAPE has a possible
beneficial effect on antioxidant enzyme activity in diabetic rats. It
inhibits lipid peroxidation and regulates antioxidant enzymes
in the diabetic heart105. CAPE was able to inhibit the gene
expression; production and the activity of matrix metalloprotei-
nases induced by lipopolysaccharide and also increased the gene
expression of human monocytic cell line106. At the molecular
level, it modulates the activities of focal adhesion kinase107,
inducible human immunodeficiency virus integrase108, nitric
oxide synthase109, lipoxygenase110, and cyclooxygenase
(COX)111. CAPE also inhibits proliferation of human keratino-
cytes and interferes with the epidermal growth factor regulation of
ornithine decarboxylase112. It was reported that it blocks neuronal
death through inhibiting inflammation and mitochondrial cyto-
chrome c release113. Since nitric oxide synthesized by inducible
nitric oxide synthase has been known to be involved in
inflammatory and autoimmune-mediated tissue destruction.
Also, CAPE inhibits nitric oxide synthase gene expression and
enzyme activity109. With regard to the anti-inflammatory action
of CAPE, it has been reported that CAPE inhibits the enzyme
activities of COX. In addition, it suppresses the transcriptional
expression of COX, resulting in diminished synthesis of prosta-
glandins, the major mediators of inflammation111,114. It was
reported that pretreatment with intraperitoneal CAPE signifi-
cantly diminished the tissue myeloperoxidase activity115. CAPE
blocks production of reactive oxygen species in human neutro-
phils and xanthine/xanthine oxidase system110. In the present
study, CAPE significantly reduced the high nitric oxide levels and
adenosine deaminase activity116. It was reported that the
neuroprotective effect of CAPE could be related to the inhibition
of caspase117.

Phenolic compounds are slightly acidic and have weak
tendencies to lose the proton (H+) ion from the hydroxyl group
(–OH), resulting in the highly water-soluble phenolate anion.
Phenols effectively inhibit CA isoenzymes45. The inhibition
profile of various isozymes with this class of agents is variable,
with inhibition constants ranging from the millimolar to the
submicromolar range for many simple phenols45. Also, they
inhibit the CA isozymes because of the presence of different
functional groups in their scaffold, mainly the phenolic -OH and
-COOH groups, which may bind to the Zn(II) ion or the water
coordinated to the zinc ion from the CA active site39. In addition
to the well-known sulfonamides, sulfamates, and sulfamides,
phenolic compounds are another type of effective carbonic
anhydrase inhibitors39,118. The classical CAIs are the primary
sulfonamides, which are in clinical use as diuretics and
systemically acting antiglaucoma drugs119. The design of
CAIs as therapeutic agents is related to the large number of
isoforms in humans, their rather diffuse localization in many
tissues or organs. CAIs have lately emerged that CAIs could have
potential as anticancer, anti-obesity, and anti-infective
drugs31,41,55,120–123.

Phenolic compounds may constitute interesting lead molecules
for identifying novel CAIs. Here, we report the inhibition effect of
CAPE on four catalytically active isoforms, hCA I, II, IX, and XII,
as well as against AChE, BChE, LPO, and GST. CAPE possesses
two phenolic moieties in its scaffolds. We discovered nanomolar
inhibition against some of these metabolic enzymes. The inhib-
ition data of CAPE reported here are shown in Table 1, and the
following comments can be drawn from these data:
(1) Cytosolic hCA I is expressed in the body and can be found in

high concentrations in the blood and gastrointestinal tract.
CAPE exhibited a weak inhibitory activity against this
cytosolic isoenzyme hCA I with a Ki values 3.467mM
(Table 1). On the other hand, in another study, we found that
acetazolamide (AZA), which is used as clinical CAs inhibitor
and treatment of glaucoma, cystinuria, altitude sickness,
epilepsy, periodic paralysis, idiopathic intracranial hyperten-
sion, dural ectasia, and central sleep apnea had been shown
Ki value 0.184mM45. In our previous study, we determined
the effect of CAPE on hCA I (Ki: 115.0mM), and II (Ki:
473.0 mM) purified from human erythrocyte using
Sepharose-4B-L-tyrosine-sulphanilamide affinity chroma-
tography14. It has been reported that phenolics are not
biologically active unless substitution at either the ortho- or
para-position has increased the electron density at the –OH
group and lowered the oxygen–hydrogen bond energy. As
can see in Figure 1, CAPE has two –OH groups at para-
position.

(2) With regard to the profiling assay against cytosolic hCA II,
CAPE was slightly more active, with a Ki value 0.797mM.
For comparison, AZA, which was used as clinical CAs
inhibitor showed a Ki value 0.061mM43. This result clearly
showed that CAPE is a rather effective inhibitor for the
cytosolic isoform hCA II. Many studies have demonstrated
that the inhibition of CA II is due to the ability of an inhibitor
to mimic the tetrahedral transition state when binding to the
catalytic Zn2+ located in the active site. CA II protein fold,
Zn2+ ion, and its coordination by histidine residues124. It was
reported that phenols, which bind by interacting with a
water molecule/hydroxide ion coordinated to Zn2+ through

Table 1. Inhibition constants (Ki) of caffeic acid phenethyl ester (CAPE)
against four human carbonic anhydrase isoenzymes (hCA I, II, IX, and
XII) acetylcholinesterase enzyme (AChE), butyrylcholinesterase enzyme
(BChE), lactoperoxidase enzyme (LPO), and glutathione S-transferase
(GST) enzyme.

Enzymes Ki

Acetylcholinesterase (AChE) 517.93 pM
Butyrylcholinesterase (BChE) 322.02 pM
Lactoperoxidase (LPO) 430.03 nM
Glutathione S-transferase (GST) 0.453 nM
Human carbonic anhydrase (hCA I) 3.467 mM
Human carbonic anhydrase (hCA II) 0.797 mM
Human carbonic anhydrase (hCA IX) 4.258 mM
Human carbonic anhydrase (hCA XII) 4.467 mM

Caffeic acid phenethyl ester (CAPE)

HO

HO

O

O

Figure 1. Chemical structures of caffeic acid phenethyl ester (CAPE).
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hydrogen bonding85. The physiologically dominant cytosolic
isoform hCA II is ubiquitous and is being involved in several
diseases, such as epilepsy, edema, glaucoma, and altitude
sickness125.

(3) So far, 16 isoforms of hCA have been discovered; among
them the dimeric transmembrane glycoproteins hCA IX and
XII are also human associated CA isoforms having extracel-
lular active site and are found in a broad spectrum of hypoxic
tumor types125,126. Many sulfonamide derivatives have been
investigated for their CA inhibition activity in the search for
selective hCA IX and hCA XII inhibitors because their lack
of selectivity is the major challenge for the wide use of
chemotherapeutic agents in cancer therapy43. Both CA IX
and XII are overexpressed in many such tumors in response
to the hypoxia inducible factor pathway, and research on the
involvement of these isozymes in cancer has progressed
significantly in recent years125,127. hCA IX showed moderate
inhibition activity with CAPE, with an inhibition constant of
4.258mM.

(4) hCA XII was also poorly inhibited by CAPE, with a Ki value
of 4.467 mM. On the other hand, AZA, a positive standard for
CA inhibition, showed an effective inhibitory activity with a
Ki value 0.006 mM43.

(5) The compounds possessing AChE inhibitory effects are used
for the treatment of AD. However, these drugs have many
undesired side effects. Thus, the development and utilization
of new effective antioxidants as well as AChE compounds is
highly desired47. Currently the most prescribed ChEIs are
donepezil, galantamine, and rivastigmine. These drugs are
used to treat patients with mild-to-moderate AD128. BChE
has a specific role in cholinergic neurotransmission and it has
been associated with AD129. Individual ChEIs differ from
each other with respect to their pharmacologic properties.
Donepezil and galantamine are short-acting reversible com-
petitive inhibitors, whereas rivastigmine is actively metabo-
lized by ChE. Primary target of donepezil and galantamine is
AChE, however, rivastigmine shows equal affinity for both
AChE and BChE enzymes130. These agents do not stop
disease progression, but clinical studies have shown that they
temporarily stabilize cognitive impairment and help to
maintain global function, often delaying the need for patient
placement in nursing homes by several months131. BChE
levels in the body exceed those of AChE in all tissues except
muscle and brain. The human body contains ten times more
BChE than AChE132. It was reported that in AD, AChE is
lost up to 85% in specific brain regions, whereas BChE levels
rise with disease progression129,133. It was also shown that
the main AChE inhibitory effect was primarily associated
with aromatic compounds and, to a lesser degree, with
aliphatic compounds134. AChE was very effectively inhibited
by CAPE, with Ki value of 51 793 nM (Table 1). The Ki value
of CAPE for AChE was calculated from Lineweaver–Burk
plots100. On the other hand, donepezil hydrochloride, which
is used for the treatment of mild-to-moderate AD and various
other memory impairments, had been shown to lower AChE
inhibition activity (IC50 of 55 nM)135.

(6) It was reported that caffeine has therapeutic role on
cholinergic system136. LPO is very important protein owing
to the fact that LPO is found in the milk of all mammals. Our
investigation showed CAPE inhibited LPO with a Ki value of
430.03 nM.

(7) Recently, many studies demonstrated that GST plays import-
ant functions in cellular defense against chemical toxicity. It
was reported a link between the lack of GST enzyme activity
and the susceptibility to develop different types of cancer
including oral, gastric, and bladder cancers137. GST was

effectively inhibited by CAPE, with a Ki value of 0.453 nM
(Table 1). It was reported that the inhibitor of GST-bearing
suitable linkers could concomitantly bind to two active sites
of GST and usually possess Ki values at nanomolar levels and
excellent enzyme-selectivity138.

Conclusion

The effect of CAPE against hCA I, II, IX, XII isoenzymes, AChE,
BChE, LPO, and GST was evaluated. CAPE demonstrated
micromolar inhibition against four CA isoenzymes, nanomolar
inhibition against LPO, and GST, picomolar inhibition against
AChE, and BChE. The results showed that CAPE moderately
inhibited four CA isoenzymes but effectively inhibited the other
metabolic enzymes (AChE, BChE, LPO, and GST) with diverse
inhibition profiles. These data may explain the beneficial health
effects of some of these compounds and may lead to enzyme
researchers and drug design campaigns.
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purification of lactoperoxidase from bovine milk by affinity
chromatography. Food Chem 2013;136:864–70.
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93. Arabaci B, Gülçin _I, Alwasel S. Capsaicin: a potent inhibitor
of carbonic anhydrase isoenzymes. Molecules 2015;19:
10103–14.

94. Bradford MM. A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-
dye binding. Anal Biochem 1976;72:248–51.
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