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Introduction

The proteasome 26S, a multi-catalytic protease1, is an 
essential component of the ubiquitin-proteasome path-
way (UPP) that degrades many proteins in eukaryotic 
cells. Fundamental cellular functions are linked to an 
ubiquitin- and ATP-dependent degradation of proteins 
involved in different pathways such as stress response, 
cell cycle control and differentiation, apoptosis and the 
regulation of transcription factors generation2. Proteins 
destined to degradation are tagged by a covalently linked 
polyubiquitin chain in a process involving three enzymes 
in a successive action E1 (Ubiquitin-activating enzyme), 
E2 (Ubiquitin-conjugating enzyme) and E3 (Ubiquitin-
ligase)3,4. Poliubiquitin chain linked to proteins rep-
resents the signal for degradation by multi-catalytic 
complex that contains a central barrel-like core and a 
20S proteolytic chamber composed of four stacked rings 
capped by two 19S structures5,6. The two outer rings of the 
20S are composed of seven α-subunits, whereas the two 
inner rings are made up by seven different β-subunits, 
and each β-ring contains three different active sites. In 
particular, the β1 subunit contains a post-acidic (PGPH) 
active site, the β2 subunit expresses trypsin-like (T-L) 
activity, and a chymotrypsin-like (ChT-L) proteolytic 

function is carried out by the β5 subunit. All the proteo-
lytic cavities utilize the γ-hydroxyl function as a nucleo-
phile and the α-amine as a proton donor-acceptor of the 
N-terminal threonine residue in the catalytic cycle7,8.

A proteasome isoform can be formed in response 
to cytokine signalling that induces the expression of 
different β-subunits and regulatory cap to constitute 
immunoproteasome capable to generate epitopes for 
presentation by MHC class I molecules9.

Considering the crucial implication of the proteasome 
in various cellular processes, modulation of enzymatic 
activities is extremely interesting from a therapeutic 
perspective10–12. Natural and synthetic products have 
been tested as inhibitors of the different multi-catalytic 
complex subunits13–21. In vitro and in vivo studies dem-
onstrated that proteasome inhibitors showed anti-pro-
liferative and pro-apoptotic activities against solid and 
haematologic tumours. In particular, the boron deriva-
tive PS341 (Bortezomib) was used in the treatment of 
multiple myeloma22,23. Other molecules were evaluated 
for their effect on many disease states, including inflam-
mation and cancer, as well as on modulation of immune 
responses24.
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Our studies report the development of numerous 
series of peptide-based proteasome inhibitors contain-
ing a different pharmacophoric moiety as a potential 
substrate for the catalytic threonine through a mecha-
nism similar to that of the well-known vinyl sulphone 
inhibitors, and as recently reported25, to that the natural 
pseudopeptidic compound Syringolin A and, even if in 
minor way, the analogue Syringolin B that irreversibly 
inhibits the β2 and β5 subunits of the proteasome, using 
the same catalytic mechanism.

Generally, our C-terminal pharmacophoric units 
(arecoline, vinyl ester and α,β-unsatured N-acylpyrrole) 
present a carbonylic function conjugated to a double 
bond. These electrophilic trap at the C-terminous are 
capped with oligopeptides (three residues) variously 
functionalized at the N-terminal. The electrophilic part 
of the molecules represents a potential substrate for the 
Michael addition by catalytic threonine, whereas ami-
noacidic sequences and groups at N-terminous interact 
with binding pockets of the enzymatic subunits and 
determine active site selectivity26–28.

Herein, we describe the synthesis and biological 
activities of novel vinyl ketone-based peptide deriva-
tives (Figure 1). The aim of our work was to evaluate the 
capacity of the new C-terminal vinyl ketone pharma-
cophoric unit to interact with catalytic threonine, and 
the influence of the N-derivatized peptide portions on 
the inhibition potency and specificity. We synthesized 
and tested molecules containing a central tripeptidic 
sequence Leu-Leu-Leu (compounds 1–5) or Val-Ser-Leu 
(compounds 6–10) carrying 3-Hydroxy-2-methylbenzoyl 
(HMB), Z-protected 6-aminohexanoyl or 8-aminooc-
tanoyl groups at the N-terminous, in accordance with the 
results obtained in previous series.

Matherials and methods

Chemistry-general
Amino acids, amino acid derivatives and chemicals were 
purchased from Bachem, Novabiochem and Fluka, respec-
tively (Switzerland).Crude products were purified by pre-
parative reversed-phase HPLC using a Water Delta Prep 
4000 system with a Waters PrepLC 40 mm Assembly column 
C

18
 (30 × 4 cm, 300 Å, 15 μm spherical particle size column). 

The column was perfused at a flow rate of 30 mL/min, with 
a mobile phase-containing solvent A (10%, v/v, acetonitrile 
in 0.1% TFA), and a linear gradient from 0 to 100% of solvent 
B (60%, v/v, acetonitrile in 0.1% trifluoroacetic acid (TFA)); 
30 min was the time adopted for elution of the compounds. 
HPLC analysis was performed using a Beckman System 
Gold with a Hypersil BDS C18 column (5 μm; 4.6 × 250 mm). 
Analytical determination and capacity factor (K′) of the pep-
tides were assayed via HPLC conditions in the above solvent 
system (solvents A and B), programmed at flow rates of 1 
mL/min, using the following linear gradients: (i) from 0 to 
90% B for 25 min and (ii) from 30 to 100% B for 25 min. No 
pseudopeptide showed more than 1% impurity when moni-
tored at 220 and 254 nm. The molecular weights of the com-
pounds were determined by electrospray ionisation (ESI) 
(MICROMASS ZMD 2000), and the values are expressed as 
[MH]+. TLC was performed on pre-coated plates of silica gel 
F254 (Merck, Darmstadt, Germany), exploiting the following 
solvent systems: (iii) AcOEt/n-hexane (1:1, v/v), (iv) CH

2
Cl

2
/

methanol (9.5:0.5, v/v), (v) CH
2
CL

2
/methanol (9:1, v/v) and 

(vi) CH
2
CL

2
/methanol/toluene (17:2:1, v/v/v). Ninhydrin 

(1%) or chlorine iodine spray reagents were employed to 
detect the peptides. Melting points were determined by a 
Kofler apparatus and are uncorrected. Optical rotations 
were determined by a Perkin–Elmer 141 polarimeter with 
a 10-cm water-jacketed cell. 1H NMR spectroscopy was 
obtained using a 400 spectrometer.

Synthesis
Vinyl ketone pseudotripeptides 1–10 were prepared using 
a C-terminal stepwise elongation. Following the strategy 
reported in Scheme 1, C-terminal dipeptide H-Xaa-
Leu-VK was synthesized starting from leucine acylation 
by Boc-protected succinimidyl ester residue (Leu or Ser). 
Pharmacophoric unit was introduced by a Wittig reaction 
between dipeptide aldheyde29, and the ylide [(methyl-
carbonyl)methylidene]triphenylphosphorane. Boc was 
removed by TFA and N-terminal residues were condensed 
using water soluble carbodiimide/N-hydroxybenzotri-
azole (WSC/HOBt) to complete the pseudotripeptide 
sequence 1,6 that after TFA treatment permitted to obtain 
the corresponding free N-terminal analogues. Finally, 
the other derivatives were obtained from 2 and 7, respec-
tively by acylation with 3-hydroxy-2-methylbenzoic (3,8), 
Z-protected 6-aminohexanoic (4,9) or 8-aminooctanoic 
acids (5,10) always with WSC/HOBt as coupling reagent.

All products were purified and isolated by preparative 
RP-HPLC, and the homogeneity of the lyophilized prod-
ucts was assessed by HPLC. Analytical characterization 
was then achieved by electrospray ionisation (ESI) mass 
spectrometry (Table 1) and 1H NMR spectroscopy.

General synthetic procedures
TFA deprotection
Boc was removed by treating intermediates with aque-
ous 90% TFA (1:10, w/v) for 30–40 min. After evaporation, 
the residue was triturated with Et

2
O, centrifuged and the 

resulting solid was collected and dried.
Figure 1.  General structure of the vinyl ketone pseudotripeptides.
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Coupling with WSC/HOBt
The deprotected α-amine intermediate (1 mmol), 
N-methylmorpholine (NMM) (2 mmol) WSC (1 mmol) 
and HOBt (1 mmol) were added to a solution of carbox-
ylic component (1 mmol) in dimethylformamide (3 mL) 
at 0°C. The reaction mixture was stirred for 1 h at 0°C 
and 18 h at rt; then the solution was diluted with AcOEt  

(80 mL) and washed consecutively with HCl 0.1 N, 
NaHCO

3
 and brine. The organic phase was dried (MgSO

4
) 

and evaporated to dryness. The residue was treated with 
Et

2
O and the resulting solid separated by centrifugation.

1H NMR of the selected compounds
Boc-Leu-Leu-Leu-VK (1). 1H NMR (CDCl

3
): δ 1.01–1.12 

(m, 18H); 1.50–1.77 (m, 15H); 1.89-1.97 (m, 3H); 2.41 (s, 
3H); 4.11 (m, 1H); 4.37–4.49 (m, 2H); 6.18 (d, J = 16.2, 1H); 
6.87 (dd, J = 16.1, 1H); 7.36 (br s, 3H).

Z-NH-(CH
2
)

5
-CO-Leu-Leu-Leu-VK (4). 1H NMR 

(CDCl
3
): δ 0.98–1.08 (m, 18H); 1.27 (m, 2H); 1.50–1.65 

(m, 6H); 1.81-1.94 (m, 7H); 2.24 (t, 2H); 2.33 (s, 3H); 2.88 
(t, 2H); 4.17 (m, 1H); 4.49–4.60 (m, 2H); 5.18 (s, 2H); 6.21 
(d, J = 16.4, 1H); 6.85 (dd, J = 16.3, 1H); 7.11–7.23 (m, 5H); 
7.58 (br s, 4H).

HMB-Val-Ser-Leu-VK (8). 1H NMR (CDCl
3
): δ 1.01–

1.12 (m, 12H); 1.47 (m, 2H); 1.85 (m, 1H); 2.25 (br s, 1H); 
2.34 (s, 3H); 2.45 (s, 3H); 2.83 (m, 1H); 4.10–4.19 (m, 2H); 
4.38 (m, 1H); 4.58-4.70 (m, 2H); 5.08 (br s, 1H); 5.97 (d,  
J = 16.0, 1H); 6.72 (dd, J = 16.2, 1H); 7.05–7.21 (m, 3H); 
7.76 (br s, 3H).

Z-NH-(CH
2
)

7
-CO-Val-Ser-Leu-VK (10). 1H NMR 

(CDCl
3
): δ 1.04–1.13 (m, 12H); 1.31-1.42 (m, 6H); 1.55-

1.64 (m, 6H); 1.87 (m, 1H); 2.15 (br s, 1H); 2.24 (t, 2H); 
2.39 (s, 3H); 2.73 (m, 1H); 3.01 (t, 2H); 4.11 (m, 2H); 4.28 
(m, 1H); 4.50-4.59 (m, 2H); 5.37 (s, 2H); 6.07 (d, J = 16.3, 
1H); 6.92 (dd, J = 16.1, 1H); 7.09–7.23 (m, 5H); 7.83 (br s, 
4H).

Biological investigation
Proteasome purification
Proteasomes were isolated from lymphoblastoid cell 
lines (LCL) as previously described30.

Proteasome subunit inhibition assays
Suc-LLVY-AMC, Boc-LRR-AMC and Z-LLE-AMC (Sigma) 
were used to measure chymotrypsin-like, trypsin-like 
and post-acidic proteasome activities, respectively. 
Substrates were incubated at 37°C for 30 min with pro-
teasomes, untreated or pre-treated with 0.001–10 μM 
of test compounds, in activity buffer. Fluorescence was 
determined by a fluorimeter (Spectrafluor plus, Tecan, 

Table 1.  Analytical data and physicochemical properties of the novel pseudotripeptides 1–10.

No. Compound
HPLC

a[α]
D

20 m.p. (°C) M + H+KI (a) KI (b)
1 Boc-Leu-Leu-Leu-VK 7.01 5.47 −10.9 130–133 482.35
2 H-Leu-Leu-Leu-VK 6.31 4.72 −14.9 138–140 382.55
3 HMB-Leu-Leu-Leu-VK 5.80 4.61 −9.2 128–130 516.34
4 Z-NH-(CH

2
)

5
-CO-Leu-Leu-Leu-VK 7.59 6.63 −8.5 118–121 629.42

5 Z-NH-(CH
2
)

7
-CO-Leu-Leu-Leu-VK 7.89 6.95 −8.7 140–142 657.45

6 Boc-Val-Ser-Leu-VK 6.30 5.21 −22.3 145–148 442.29
7 H-Val-Ser-Leu-VK 5.70 4.43 −11.4 141–143 342.23
8 HMB-Val-Ser-Leu-VK 5.47 3.97 −12.9 135–137 476.27
9 Z-NH-(CH

2
)

5
-CO-Val-Ser-Leu-VK 7.07 6.32 −10.67 123–125 589.36

10 Z-NH-(CH
2
)

7
-CO-Val-Ser-Leu-VK 7.22 6.54 −9.98 119–124 617.39

ac = 1, MeOH.

Scheme 1.  Synthesis of new vinyl ketone derivatives 1–10.
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Salzburg, Austria), using an excitation of 360 nm and 
emission of 465 nm. Activity was evaluated in fluores-
cence units and the inhibitory activity of the compounds 
is expressed as IC

50
. The data were plotted as percentage 

control (the ratio of percentage conversion in the pres-
ence and absence of inhibitor) versus inhibitor concen-
tration, and fitted with the equation Y = 100/1 + (X/IC

50
)A, 

where IC
50

 is the inhibitor concentration at 50% inhibi-
tion and A is the slope of the inhibition curve.

Enzymatic stability assays
The stability of the vinyl ketones under proteases degra-
dation was studied in human plasma. Test compounds 
were incubated with plasma (0.6 mL) in a total volume 
of 1.5 mL of 10 mM Tris-HCl buffer, pH 7.5. Incubation 
was performed at 37° C for 360 min. The incubation was 
terminated by addition of ethanol (0.2 mL), the mixture 
poured at 21°C, and, after centrifugation (5000 rpm for 
10 min) aliquots (20 µL) of the clear supernatant were 
injected into an RP-HPLC column. HPLC was performed 
as described in analytical determinations. The degrada-
tion half-life (T

1/2
) was obtained by a least-squares linear 

regression analysis of a plot of the logarithmic inhibi-
tor concentration versus time, using a minimum of five 
points.

Results and discussion

Vinyl ketone pseudotripeptides 1–10 were synthesized 
following the strategy reported in Scheme 1.

Inhibition of β1, β2 and β5 active sites of the 20S 
proteasome, previously purified from lymphoblastoid 
cell lines, was determined using fluorogenic substrates 
specific for the three main proteolytic activities of the 
enzymatic complex. Suc-LLVY-AMC, Boc-LRR-AMC 
and Z-LLE-AMC were used to measure chymotrypsin-
like, trypsin-like and caspase-like proteasome activi-
ties, respectively. Substrates were incubated, at 37°C for 
30 min, with the proteasome, pre-treated with incre-
mented concentrations (from 0.001 to 10 µM) of the new 
vinyl ketone derivatives in activity buffer. Activity was 

evaluated in fluorescence units, and the inhibitory activ-
ity of the compounds is expressed here as IC

50
.

General analysis of the activity profile shows that the 
new compounds have a low capacity to inhibit the pro-
teasome activities suggesting that the C-terminal new 
pharmacophoric group is not a good substrate for the 
catalytic threonine. Indeed, all compounds were less 
active compared to previously described inhibitors26–28.

Chymotrypsin-like activity was in a µM range for ana-
logues presenting N-terminal linear amino acids with 
a long Z-protected chain on the terminal amine group. 
Likewise, inhibition of the trypsin-like was relatively 
pronounced, with IC

50
 values in the order of 3–10 µM 

for compounds 4, 5, 9 and 10. Furthermore, 3-Hydroxy-
2-methylbenzoyl N-functionalized derivative showed 
mild inhibitory capacity of the trypsin-like activity of 
the proteasome. Generally, the biological response was 
independent from the central tripeptide sequence but it 
correlated to N-terminal substituents; in particular, com-
pounds 5 and 10 with the more bulky groups resulted the 
best analogues of the series. All compounds were unable 
to inhibit post-acidic (PGPH) activity.

The susceptibility of five selected vinyl ketone deriva-
tives to enzymatic hydrolysis was determined by incu-
bation at 37°C in human plasma. The pseudopeptides, 
according to terminal modifications of the peptide chain, 
showed great stability to plasma proteases (Table 2).

Conclusions

The UPP plays an important role in many cellular pro-
cesses. Considering the high therapeutic potential of 
inhibitors selective and specific for the catalytic subunits 
of the 20S proteasome, we synthesized and tested new 
peptide-based compounds with new C-terminal phar-
macophoric units. Clinical trials indicate that inhibitors 
exhibit toxic effects during prolonged drug treatment, 
therefore the availability of new potent and selective 
molecules without side-effects is ever required. In this 
optic, we prepared a new series of peptide-based com-
pounds containing a vinyl ketone pharmacophoric unit 

Table 2.  Inhibition of proteasome subunits and metabolic stability of vinyl ketone derivatives.

N Compound
Isolated enzyme LCL aIC

50
 (µM) Half-life (min) 

human plasmaChT-L T-L PGHP
1 Boc-Leu-Leu-Leu-VK >10 >10 >10
2 H-Leu-Leu-Leu-VK >10 >10 >10
3 HMB-Leu-Leu-Leu-VK >10 8.53 >10 >360
4 Z-NH-(CH

2
)

5
-CO-Leu-Leu-Leu-VK 9.13 4.22 >10 >360

5 Z-NH-(CH
2
)

7
-CO-Leu-Leu-Leu-VK 7.95 3.81 >10 >360

6 Boc-Val-Ser-Leu-VK >10 >10 >10
7 H-Val-Ser-Leu-VK >10 >10 >10
8 HMB-Val-Ser-Leu-VK >10 >10 >10
9 Z-NH-(CH

2
)

5
-CO-Val-Ser-Leu-VK 8.54 8.02 >10 >360

10 Z-NH-(CH
2
)

7
-CO-Val-Ser-Leu-VK 6.41 6.65 >10 >360

aThe values reported are the average of three independent determinations.
ChT-L, chymotrypsin-like; LCL, lymphoblastoid cell lines; T-L, trypsin-like.
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at the C-terminal as potential substrates of the catalytic 
γ-hydroxy threonine side-chain in Michael addition. 
Generally, inhibition of active subsites of the proteasome 
is detectable in a µM range only for some derivatives. The 
biological response is function of the N-terminal substit-
uent and not dependent by physicochemical properties 
of the central tripeptidic sequence. Finally, vinyl ketone 
is not a favourable electrophilic functionality for the pri-
mary interaction with the proteasome catalytic subunits.
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