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Introduction

Due to the convenience and high degree of atom econ-
omy, multicomponent reactions (MCRs) have become 
one of the most efficient tools for rapid scaffold construc-
tion and introduction of molecular diversity1,2. MCRs are 
important synthetic tools that can be useful in the prepa-
ration of biologically active compounds3. In our search 
for operationally simple, resource and cost-effective 
processes, we have been investigating pyrazole MCRs. 
Their classical syntheses in two steps were well described 
in the literature4–6. In fact, pyrazoles constitute an impor-
tant family of compounds7,8 due to their applications 
as antiviral9, as xanthine oxidase inhibitors10, as dual 
MAO-B inhibitors and anti-inflammatory analgesics11 
and have considerable chemical and pharmacological 
importance12–15. In this work, our objective is to achieve 

valuable MCR aminocyanopyrazoles and to study their 
application by diazotation in hydrochloric acid and by 
action of formic acid.

Results and discussion

Synthesis of 5-amino-4-cyano-1-substituted  
pyrazoles 4
The first step of our strategy was the formation of MCR 
5-amino-4-cyano-1- substituted pyrazoles 4. Several 
works mention the synthesis of the 5-amino-4-cyano 
pyrazoles4–6 prepared via a standard addition of hydrazine 
derivatives to ketene ethoxymethylene compounds. 
However, we were delighted to observe the sole formation 
of pyrazoles 4 when introducing equivalent amounts 
of malononitrile 1 with orthoester 2 and hydrazine 
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derivatives 3 in the presence of few drops of acetic acid in 
the ethanol heated under reflux overnight. This procedure 
gave satisfying results: phenyl hydrazines afforded the 
pyrazole in good yields (Scheme 1).

Synthesis of pyrazolotriazines 6 and 
pyrazolopyrimidinones 7
Taking advantage of the presence of the two functional 
groups in 5-amino-4-cyano-1-substituted pyrazoles 4, 
we prepared the 4-chlorotriazine by diazotation in hydro-
chloric acid16–20. In the literature amino cyano pyrazoles 
undergo diazotization reaction with NaNO

2
 in a mixture 

of HCl/AcOH and leads to the pyrazolotriazin-4-ones21. 
To the best of our knowledge 5-substituted chloropyr-
azolotriazines 5a–c are not described in the literature. 
The chlorine atom was easily substituted by a secondary 
amine to afford compounds 6a–c. We note that the mass 
spectra of triazines 5 and 6 showed a molecular mass 
decrease by the mass of two nitrogen atoms. This is has 
been mentioned in literature22.

The reaction of formic acid in the presence of H
2
SO

4
 

on anthranilonitrile and analogs is well described in the 
literature23–27. We used classical conditions to synthesize 
compound 7. 5-amino-4-cyano-1-substituted pyrazoles 
4 was refluxed with formic acid in the presence of H

2
SO

4
 

under stirring providing pyrazolopyrimidinones 7 from 
good to very good yields (Scheme 2). This protocol allows 
to generalize the synthesis of pyrazolo pyrimidinones 
and increase in some cases the yield of the reaction. The 
structures of compounds 7 were determined by IR, 1H, 
13C NMR spectra, mass spectroscopy and elemental anal-
ysis. These data spectrum demonstrate in particularly the 
disparities of CN group in the aminocyanopyrazoles.

Some of the amino-containing pyrazoles investigated 
here were converted to the corresponding sulfamides by 
reaction with sulfamoyl chloride. It is in fact well know 
that the sulfamide function is a good zinc-binding group 
for generating potent CA inhibitors28,29. Several such 
compounds, of type 8a-8c were prepared in this way.

Carbonic anhydrase inhibitory action
Compounds 4a–f and 8a–c have been tested as inhibitors 
of four carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the 
human (h) hCA I, II, IX and XII (Table 1). The inhibition/
activation of CAs are well understood processes, with 
most classes of inhibitors binding to the metal center28–34, 
whereas activators bind at the entrance of the active 
site cavity and participate in proton shuttling processes 
between the metal ion – bound water molecule and the 
environment35. It should be mentioned that recently other 
inhibition mechanisms than the binding to the metal 
center were reported for α-CAs, which do not directly 
involve the metal ion from the enzyme active site. For 
example polyamines bind to the enzyme by anchoring 
to the zinc-coordinated water/hydroxide ion36, whereas 
coumarins act as prodrugs and bind at the entrance of 
the active site cavity, rather far away from the metal ion37–

39. The compounds 4 reported here contain an amino 
moiety attached to the pyrazole ring which may bind to 
the enzyme similar to the polyamine spermine, which is 
anchored by means of one of its primary amino moieties 
to the zinc-coordinated water molecule36. Furthermore, 
some secondary/tertiary sulfonamides as those present 

Scheme 1.   

Scheme 2. 

Table 1.  hCA I, II, IX and XII I nhibition data with compounds 
1a–1c and 4.

Compound
Ki (µM)*

hCA I hCA II hCA IX hCA XII
4a 12.6 6.21 0.34 0.49
4b 10.1 7.14 0.29 0.36
4c 9.4 5.37 0.27 0.44
4d 5.4 0.79 1.24 3.12
4e 5.9 1.13 0.75 0.49
4f 3.1 0.82 0.47 0.15
1a 0.12 0.064 0.022 0.008
1b 0.09 0.051 0.011 0.012
1c 0.08 0.024 0.010 0.010
a�Mean from 3 different assays by a CO

2
 hydrase, stopped flow assay41.
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in derivatives 4d–f, were recently shown to be inhibitor, 
probably binding at the entrance of the cavity, in the 
coumarin-binding site40.

Data of Table 1 show that compounds 4 act as medium 
potency, micromolar or submicromolar inhibitors of the 
four investigated CA isoforms. Against the cytosolic hCA 
I they showed activity with inhibition constants in the 
range of 3.1–12.6 µM41–45. Sulfonamides 4d–f were more 
active than the corresponding phenyl derivatives 4a–c. 
The second cytosolic isoform, hCA II, the physiologically 
dominant one, was better inhibited by compounds 4 
compared to hCA I, with K

I
s in the range of 0.79–7.14 µM. 

The structure activity relationship (SAR) was also similar 
for the two isoforms.

The tumor-associated, transmembrane isoforms 
hCA IX and XII were better inhibited by compounds 4 
compared to the cytosolic ones mentioned above. Thus, 
against hCA IX, compounds 4 showed inhibition in the 
range of 0.27–1.24 µM, with the phenyl derivatives more 
active than the sulfonamides in this case. For hCA XII the 
inhibition constants were in the range of 0.15–3.12 µM 
and the SAR more complicated as the best inhibitor was 
the sulfonamide 4f, but the phenyl derivatives 4a–c also 
showed quite significant inhibition (Table 1).

As these compounds may not bind to the Zn(II) ion 
from the CA active site, we hypothesize that they inhibit 
the enzyme either binding similar to spermine (anchor-
ing to the zinc-coordinated water molecule) or as the 
coumarins, at the entrance of the active site cavity. This 
hypothesis should be verified by solving the X-ray crystal 
structure of adducts of these compounds with some CA 
isoforms46.

The sulfamides 8 were much more potent inhibitors of 
all CA isoforms compared to the previously mentioned 
compounds, being low nanomolar inhibitors of all four 
CA isoforms investigated here (Table 1). This is probably 
due to their direct binding to the metal ion within the 
enzyme active site28.

In conclusion, we report a novel multicomponent 
reaction of malononitrile with orthoesters and hydrazine 
derivatives that leads to the aminocyanopyrazoles 4 with 
good yields. These pyrazoles are open for further trans-
formation due to an already existing amino and cyano 
groups in their structures. These pyrazoles react with 
sodium nitrite followed by secondary amine reagent and 
with formic acid to lead respectively to pyrazolotriazines 
6 and pyrazolopyrimidinones 7. This new protocol was 
employed for the rapid synthesis of compounds 5 and 6 
and for the amelioration of yield of compounds 7. Many 
of therse compounds showed interesting CA inhibitory 
activity.

Materials and methods

Anhydrous solvents and all reagents were purchased from 
Sigma-Aldrich, Alfa Aesar and TCI. All reactions involving 
air- or moisture-sensitive compounds were performed 
under a nitrogen atmosphere using dried glassware and 

syringes techniques to transfer solutions. IR spectra were 
determined in KBr on a JASCO FT-IR-420 spectrometer 
which precision is of 2 cm−1 covering field 400–4000 cm−1. 
The spectra of NMR 1H and NMR 13C were recorded on 
an AC Bruker 250 MHz or Bruker Advance III 400 MHz 
spectrometers in CDCl

3
 or DMSO-d

6
 and the chemical 

shifts are expressed in ppm. The multiplicities of the sig-
nals are indicated by the following abbreviations: s: sin-
glet, d: doublet, t: triplet, q: quadruplet, m: multiplet, brs: 
broad singlet and the coupling constants are expressed 
in Hz. The assignment of exchangeable protons (OH and 
NH) was confirmed by the addition of D

2
O. The melting 

points were determined in Electrothermal 9100 appara-
tus and are uncorrected. The reactions were monitored 
by thin layer chromatography (TLC) using aluminium 
sheets with silica gel 60 F

254
 (230–400 mesh ASTM) as the 

stationary phase and ethylacetate/n-hexane or MeOH/
DCM were used as eluants. The mass spectrometer 
was operated in EI mode at 70 eV and MS spectra were 
recorded from m/z 50 to 650.

General procedure for synthesis of 
aminocyanopyrazoles (4)
A solution of malononitrile 1 (33 mmol), orthoester 2 (34 
mmol), hydrazine (33 mmol) 3 and few drops of acetic 
acid in ethanol (30 mL) was heated under reflux over-
night. The product, which precipitates, was filtered and 
recrystallized from ethanol.

5-Amino-1-phenyl-1H-pyrazolo-4-carbonitrile (4a)
Yield 83%, white solid; mp = 166°C (methanol); IR (cm−1): 
1594, 1640, 2217 (CN), 2917, 3432, 3221, 1H NMR (δ ppm, 
DMSO): 6.82 (2H, s, NH

2
), 7.40–7.55 (6H, m), 13C NMR 

(δ ppm, DMSO): 144.60 (C-3), 73.48 (C-4), 152.74 (C-5), 
114.17 (CN), 117.08–137.52 (C-arom).

5-Amino-3-methyl-1-phenyl-1H-pyrazolo-4-carbonitrile (4b)
Yield 85%, white solid; mp = 133°C (methanol); IR (cm−1) 
1598, 1645, 2215 (CN), 3331, 3227, 1H NMR (δ ppm, 
DMSO) 2.15 (3H, s, CH

3
), 6.66 (2H, s, NH

2
), 7.35–7.52 (5H, 

m);13C NMR (δ ppm, DMSO) 11.28 (CH
3
), 74.23 (C-4), 

115.57 (CN), 124.40–138.03 (C-arom), 150.56 (C-5), 
151.96 (C-3); MS m = e/z 199 [M + 1]+, 100%.

5-Amino-3-ethyl-1-phenyl-1H-pyrazolo-4-carbonitrile (4c)
Yield 82%, white solid; mp = 137°C (methanol); IR (cm−1) 
1597, 1647, 2209 (CN), 3433, 3296; 1H NMR (δ ppm, 
DMSO) 1.18 (3H, t, J = 7.1 Hz, CH

3
), 2.53 (2H, q, J = 7.1 

Hz, CH
2
), 6.61 (2H, s, NH

2
), 7.35–7.53 (5H, m); 13C NMR (δ 

ppm, DMSO) 12.88 (CH
3
), 21.13 (CH

2
), 73.22 (C-4), 115.47 

(CN), 124.43–138.11 (C-arom), 152.13 (C-3), 155.58 (C-5); 
MS: m = e/z 213 [M + 1]+, 100%, 158 [M-54]+, 5%.

5-Amino-1-tosyl-1H-pyrazolo-4-carbonitrile (4d)
Yield 70%, white solid; mp = 192°C (methanol); IR (cm−1) 
1527, 1616, 2211 (CN), 3347, 3225; 1H NMR (δ ppm, 
DMSO) 2.27 (3H, s, CH

3
), 7.11 (2H, s, NH

2
), 7.13–7.51  

(5H, m); 13C NMR (δ ppm, DMSO) 21.28 (CH
3
), 75.51 
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(C-4), 113.81 (CN), 138.58 (C-3), 145.55 (C-5), 124.66–
129.07 (C-arom).

5-Amino-3-methyl-1-tosyl-1H-pyrazolo-4-carbonitrile (4e)
Yield 72%, white solid; mp = 185°C (methanol); IR (cm−1) 
1534, 1628, 2216 (CN), 3381, 3227; 1H NMR (δ ppm, 
DMSO) 2.04 (3H, t, CH

3
), 2.39 (3H, s CH

3
), 7.63 (2H, s, 

NH
2
), 7.47–7.87 (4H, m); 13C NMR (δ ppm, DMSO) 13.06 

(CH
3
), 21.53 (CH

3
), 73.97 (C-4), 113.71 (CN), 127.89–

133.44 (C-arom), 146.80 (C-3), 154.87 (C-5).

5-Amino-3-ethyl-1-tosyl-1H-pyrazolo-4-carbonitrile (4f)
Yield 74%, white solid; mp = 178°C (methanol); IR (cm−1) 
1526, 1643, 2215 (CN), 3346, 3222; 1H NMR (δ ppm, 
DMSO) 0.87 (3H, t, J = 7.0 Hz, CH

3
), 2.16 (2H, q, J = 7.0 Hz, 

CH
2
), 2.38 (3H, s, CH

3
), 7.38 (2H, s, NH

2
) 7.38–7.68 (5H, 

m); 13C NMR (δ ppm, DMSO) 10.81 (CH
3
), 21.52 (CH

2
), 

23.30 (CH
3
), 73.50 (C-4), 114.32 (CN), 128.20–136.42 

(C-arom), 143.49 (C-3), 144.26 (C-5).

General procedure for synthesis of 
chloropyrazolotriazines (5)
A solution of sodium nitrite (11.4 mmol) in water (7 mL) 
was added over 15 min to a suspension of the foregoing 
5-amino-4-cyano-1-substituted pyrazole (8.1 mmol) 
at 0-5°C in concentrated hydrochloric acid (16 mL). 
The resulting mixture was stirred at 0°C for a further 
40 min and then allowed to stand at room temperature 
overnight. The reaction mixture was quenched in water 
(100 mL). The precipitate was washed twice with 15 mL of 
water, and dried under room temperature, recrystallized 
in methanol.

4-Chloro-7-phenyl-7H-pyrazolo[3,4-d][1,2,3]triazine(5a)
Yield 79%; mp = 170°C [methanol]; IR (cm−1) 1590 (C=N); 
NMR 1H (δ ppm, DMSO) 7.75 (1H, s, H

5
), 7.23 ppm (5H, 

s); 13C NMR (δ ppm, DMSO) 93.01 (C-4a), 131.15 (C-7a), 
136.63 (C-5), 159.87 (C-4), 124.54–129.33 (C-arom); 
GC-MS: m/z (%) 204 (100), 154 (24), 141 (17); C

10
H

6
ClN

5
 

Calculated (%): C 51.85, H 2.61, N 30.23, Found (%) C 
51.79, H 2.60, N 30.25.

4-Chloro-5-methyl-7-phenyl-7H-pyrazolo[3,4-d][1,2,3]
triazine(5b)
Yield 75% mp = 159°C [methanol]; IR (cm−1) 1586 (C=N); 
1H NMR (δ ppm, DMSO) 2.38 (3H, s, CH

3
), 7.26–7.64 ppm 

(5H, m); 13C NMR (δ ppm, DMSO) 13.52 (CH
3
), 94.54 

(C-4a), 112.26 (C-7a), 137.38 (C-5), 153.08 (C-4), 120.01-
133.11 (C-arom); GC-MS: m/z (%)218 (100), 168 (36), 155 
(14); C

11
H

8
ClN

5
 Calculated (%): C 53.78, H 3.28, N 28.51, 

Found (%) C 53.79, H 3.30, N 28.53.

4-Chloro-5-ethyl-7-phenyl-7H-pyrazolo[3,4-d][1,2,3]
triazine(5c)
Yield 76%; mp = 179°C [methanol]; IR (cm−1) 1587 (C=N); 
NMR 1H (δ ppm, DMSO) 1.35 (3H, t, J = 7.1 Hz, CH

3
), 

2.80 (2H, q, J = 7.1 Hz, CH
2
), 7.51 ppm (5H, s); 13C NMR 

(δ ppm, DMSO) 12.74 (CH
3
), 21.52 (CH

2
), 93.13 (C-4a), 

112.01 (C-7a), 137.03 (C-5) 157.91 (C-4), 125.04-132.89 
(C-arom), GC-MS: m/z (%) = 232 (100), 204 (43), 182 (51), 
169 (15), 142 (30), C

12
H

10
ClN

5
 Calculated (%): C 55.50, H 

3.88, N 26.97, Found (%) C 55.48, H 3.89, N 26.96.

General procedure for synthesis of 
aminopyrazolotriazines (6)
The chloropyrazolotriazine 5a–c (1 mmol) and corre-
sponding amine (10 mL) were refluxed for 6 h. The mix-
ture was cooled at room temperature. When a precipitate 
was formed, it was filtered, washed twice with 15 mL of 
water and twice with 8 mL of diethyl ether, and dried at 
room temperature overnight. The products were recryst-
allised in methanol to give products 6.

4-Morpholino-7-phenyl-7H-pyrazolo[3,4-d][1,2,3]triazine (6a)
Yield 79% mp = 170°C [methanol]; IR (cm−1) 1556 (C=N), 
1453 (C=N), 1422 (N=N); NMR 1H (δ ppm, DMSO) 3.15 
(4H, t, J = 7.1 Hz, CH

2
), 3.64 (4H, t, J = 7.1 Hz, CH

2
), 7.34-

7.68 ppm (5H, m), 7.75 (1H, s, H
5
); 13C NMR (δ ppm, 

DMSO) 51.10 (CH
2
), 68.12 (CH

2
), 115.15 (C-7a), 93.01 

(C-4a), 156.63 (C-5), 159.87 (C-4), 124.54 (C-arom); 
GC-MS m/z (%) 255 (100), 197 (23), 119 (66), C

14
H

14
N

6
O 

Calculated (%): C 59.50, H 5.00, N 29.77, O 5.67 Found (%) 
C 59.52, H 5.03, N 29.78, O 5.65.

5-Methyl-4-morpholino-7-phenyl-7H-pyrazolo[3,4-d][1,2,3]
triazine (6b)
Yield: 75%. mp = 159°C [methanol]. IR (cm−1): 1560 (C=N), 
1467 (C=N), 1431 (N=N); NMR 1H (δ ppm, DMSO): 2.28 
(3H, s, CH

3
), 3.17 (4H, t, J = 7.1 Hz, CH

2
), 3.66 (4H, t, J = 

7.1 Hz, CH
2
); 7.35-7.62 ppm (5H, m); 13C NMR (δ ppm, 

DMSO) 13.31 (CH
3
), 50.53 (CH

2
), 66.63 (CH

2
), 82.18 

(C-4a), 115.39 (C-7a), 152.41 (C-5), 153.80 (C-4), 124.17–
139.23 (C-arom); GC-MS m/z (%) 269 (100), 211 (53), 133 
(22), C

15
H

16
N

6
O: Calculated(%): C 60.80, H 5.44, N 28.36, 

O 5.40 Found (%): C 60.82, H 5.45, N 28.34, O 5.42.

5-Ethyl-4-morpholino-7-phenyl-7H-pyrazolo[3,4-d][1,2,3]
triazine (6c)
Yield 76%; mp = 170°C [methanol]; IR (cm−1) 1590 (C=N), 
1526 (C=N), 1460 (N=N); NMR 1H (δ ppm, DMSO) 1.30 
(3H, t, J = 7.1 Hz, CH

3
), 2.72 (2H, q, J = 7.3 Hz, CH

2
), 

3.18 (4H, t, J = 7.3 Hz, CH
2
), 3.66 (4H, t, J = 7.3 Hz, CH

2
), 

7.33-7.63 ppm (5H, m); 13C NMR (δ ppm, DMSO) 12.86 
(CH

3
), 21.28 (CH

2
), 50.18 (CH

2
), 66.32 (CH

2
), 80.71 (C-4a), 

115.12 (C-7a), 153.52 (C-5), 157.26 (C-4), 123.85–138.89 
(C-arom); GC-MS: m/z(%) 283 (100), 213 (25), 147 (36). 
C

16
H

18
N

6
O: Calculated (%): C 61.92, H 5.85, N 27.08, O 

5.16 Found (%): C 61.90, H 5.83, N 27.10, O 5.17.

General procedure for synthesis of 
pyrazolopyrimidinones (7)
5-amino-4-cyano-1-substituted pyrazole 4 (10 mmol) 
was added portionwise over 1 h to a mildly refluxing 
formic acid solution (20 mL) containing concentrated 
sulphuric acid (1.2 mL). After an additional 30 min, 
the solution was cooled to 0°C and poured on crushed 
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ice. The resulting precipitate was collected by filtration, 
washed with water, and dried to give pyrazolopyrimidi-
nones 7.

1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (7a)
Yield 82% mp = 164°C [methanol]; IR (cm−1) 1663 (C 
= O), 1583 (C=N), 1545 (C=N), 1500 (C=C); NMR 1H (δ 
ppm, DMSO) 7.34-7.65 (5H, m);7.72 (1H, s, H

3
); 7.75 (1H, 

s, H
6
); 8.01 ppm (1H, s, NH); 13C NMR (δ ppm, DMSO): 

93.01 (C-3a), 131.15 (C-7a), 136.63 (C-3), 142.00 (C-6), 
159.87 (C-4), 124.54–129.33 (C-arom); GC-MS: m/z (%) 
213 (100), 168 (28), 102 (58); C

11
H

8
N

4
O: Calculated (%): C 

62.26, H 3.80, N 26.40, O 7.54 Found (%): C 62.28, H 3.81, 
N 26.42, O 7.55.

3-Methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 
(7b)
Yield: 86%. mp = 159°C [methanol]. IR (cm−1): 1665 (C=O); 
1580 (C=N); 1541 (C=N); 1506 (C=C); NMR 1H (δ ppm, 
DMSO): 2.25 (3H, s, CH

3
), 7.34-7.68 (5H, m), 7.72 (1H, s, 

H
6
); 8.00 ppm (1H, s, NH); 13C NMR (δ ppm, DMSO) 13.76 

(CH
3
), 93.00 (C-3a), 135.55 (C-3), 135.55 (C-7a), 139.76 

(C-6), 160.30 (C-4), 124.54–129.33 (C-arom); GC-MS: 
m/z (%) 227 (100), 200 (36), 182 (12), 168 (50), 131 (33), 
116 (44), 104 (20).

3-Ethyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (7c)
Yield 90%; mp = 168°C [methanol]; IR (cm−1) 1665 (C = 
O), 1580 (C = N), 1541 (C = N), 1506 (C=C); NMR 1H (δ 
ppm, DMSO) 3.15 (3H, t, J = 7.1 Hz, CH

3
); 3.64 (2H, q, J = 

7.1 Hz, CH
2
); 7.34–7.60 (5H, m, CH = C); 7.78 (1H, s, H

6
); 

8.05 ppm (1H, s, NH); 13C NMR (δ ppm, DMSO): C
2
 93.01 

(C-3a); C
3
131.15 (C-7a); C

1
 136.63 (C-3); C

5
 145.76 (C-6); 

C
4
 159.87 (C-4); 124.54–129.33 (C-arom); GC-MS m/z (%) 

= 241 (100), 186 (60), 141 (45), C
13

H
12

N
4
O: Calculated (%): 

C 64.99, H 5.03, N 23.32, O 6.66 Found (%): C 64.97; H 
5.00; N 23.35; O 6.65.

General procedure for the synthesis of compounds 
(8a–c)47

Scheme 3 shows the preparation of sulfamides 8a–c. 
Freshly prepared sulfamoyl chloride (2.0 eq) was added to 
a 2.0 M solution of 5-amino-1-phenyl-1H-pyrazole-4-car-
bonitrile 4a–c in dry DMA under a nitrogen atmosphere 

and the solution was stirred at r.t. until starting material 
was consumed (TLC monitoring). Then the solution was 
quenched with slush and extracted with ethyl acetate 
(3 × 20 mL). The combined organic layers were washed 
with H

2
O (4 × 20 mL), brine (3 × 20 mL) dried over Na

2
SO

4
, 

filtered and concentrated in vacuo to give a sticky residue 
that was purified to afford the desired sulfamides 8a–c as 
white solids.

Synthesis of 1-phenyl-5-sulphamido-1H-pyrazole-4-
carbonitrile (8a)
5-Amino-1-phenyl-1H-pyrazole-4-carbonitrile 4a 
(0.05 g, 1.0 eq) was treated according to the general pro-
cedure previously described. The obtained residue was 
purified by silica gel column chromatography eluting 
with 50% ethyl acetate/n-hexane to afford 8a as a white 
solid (Figure 1).

1-Phenyl-5-sulphamido-1H-pyrazole-4-carbonitrile 
8a: 54% yield; silica gel TLC R

f
 0.09 (50% ethyl acetate/n-

hexane); δ
H

 (400 MHz, DMSO-d
6
) 9.60 (1H, brs, exchange 

with D
2
O, NH), 7.60 (8H, m, Ar-H, 3-H, SO

2
NH

2
), 7.42 (2H, 

s, exchange with D
2
O, SO

2
NH

2
); δ

C
 (100 MHz, DMSO-d

6
) 

155.5, 154.1, 141.3, 130.2, 125.0, 120.0, 117.0, 79.8.

Synthesis of 3-methyl-1-phenyl-5-sulphamido-1H-pyrazole-4-
carbonitrile 8b
5-Amino-3-methyl-1-phenyl-1H-pyrazole-4-carbonitrile 
4b (0.05 g, 1.0 eq) was treated according to the general 
procedure previously described. The obtained residue 
was purified by silica gel column chromatography elut-
ing with 70% ethyl acetate/n-hexane to afford 8b as a 
white solid (Figure 2).

3-Methyl-1-phenyl-5-sulphamido-1H-pyrazole-4-
carbonitrile 8b: 48% yield; silica gel TLC R

f
 0.11 (50% 

ethyl acetate/n-hexane); δ
H

 (400 MHz, DMSO-d
6
) 9.99 

(1H, brs, exchange with D
2
O, NH), 7.53 (5H, m, Ar-H), 

7.42 (2H, s, exchange with D
2
O, SO

2
NH

2
), 2.18 (3H, s 

Scheme 3.  Preparation of sulfamides 8a–c. Figure 1. 
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CH
3
); δ

C
 (100 MHz, DMSO-d

6
) 156.0, 155.1, 141.0, 130.1, 

125.2, 119.0, 117.2, 80.0, 14.9.

Synthesis of 3-ethyl-1-phenyl-5-sulphamido-1H-pyrazole- 
4-carbonitrile (8c)
5-Amino-3-ethyl-1-phenyl-1H-pyrazole-4-carbonitrile 
4c (0.05 g, 1.0 eq) was treated according to the general 
procedure previously described. The obtained residue 
was purified by silica gel column chromatography elut-
ing with 70% ethyl acetate/n-hexane to afford 8c as a 
white solid (Figure 3).

3-Ethyl-1-phenyl-5-sulphamido-1H-pyrazole-4-
carbonitrile 8c: 52% yield; silica gel TLC R

f
 0.13 (50% ethyl 

acetate/n-hexane); δ
H

 (400 MHz, DMSO-d
6
) 9.98 (1H, 

brs, exchange with D
2
O, NH), 7.66 (2H, d, J 9.6, Ar-H), 7.54 

(3H, m, Ar-H), 7.41 (2H, s, exchange with D
2
O, SO

2
NH

2
), 

4.10 (2H, q, J 7.2, CH
2
), 1.21 (3H, t, J = 7.2 Hz, CH

3
); δ

C
 (100 

MHz, DMSO-d
6
) 157.2, 155.0, 141.0, 130.2, 125.1, 119.0, 

117.4, 79.8, 23.9, 14.2.

CA inhibition
An Applied Photophysics stopped-flow instrument has 
been used for assaying the CA catalysed CO

2
 hydration 

activity41. Phenol red (at a concentration of 0.2 mM) 
has been used as indicator, working at the absorbance 
maximum of 557 nm, with 20 mM Hepes/TRIS (pH 7.5 for 

α-CAs, and 8.4, for β-CAs) as buffer, and 20 mM Na
2
SO

4
 

(for maintaining constant the ionic strength), following 
the initial rates of the CA-catalyzed CO

2
 hydration reac-

tion for a period of 10–100 s43. The CO
2
 concentrations 

ranged from 1.7 to 17 mM for the determination of the 
kinetic parameters and inhibition constants. For each 
inhibitor at least six traces of the initial 5–10% of the reac-
tion have been used for determining the initial veloc-
ity. The uncatalyzed rates were determined in the same 
manner and subtracted from the total observed rates. 
Stock solutions of inhibitor (0.1 mM) were prepared in 
distilled-deionized water and dilutions up to 0.01 nM 
were done thereafter with the assay buffer. Inhibitor and 
enzyme solutions were preincubated together for 15 min 
at room temperature prior to assay, in order to allow for 
the formation of the E-I complex. The inhibition con-
stants were obtained by non-linear least-squares meth-
ods using PRISM 3, as reported earlier42, and represent 
the mean from at least three different determinations. All 
CA isofoms were recombinant ones obtained in house as 
reported earlier43–45.
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