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Abstract

The human pathogen Mycobacterium tuberculosis contains three b-carbonic anhydrases
(CAs, EC 4.2.1.1) in its genome. Inhibition of some of these CAs was shown to modulate the
growth of M. tuberculosis. 3D-QSAR Comparative molecular field analyses (CoMFA) were carried
out on inhibitors of the enzyme Rv3588c (also denominated mtCA 2). A series of sulfonamides
known to inhibit mtCA 2, including some diazenylbenzenesulfonamides, was considered in our
study. The predictive ability of the model was assessed using a test set of seven compounds.
The best model has demonstrated a good fit having predictive r2 value of 0.93 and cross-
validated coefficient q2 value as 0.88 in tripos CoMFA region. Our results indicate that the steric
and electrostatic factors play a significant role in mtCA 2 inhibition for the investigated
compounds. We proposed nine new not yet synthesized mtCA 2 inhibitors, all of them
probably with significantly improved anti-Rv3588c inhibitory activity.
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Introduction

The carbonic anhydrases (CAs, EC 4.2.1.1) are enzymes widely
distributed throughout the phylogenetic tree, with five genetically
unrelated classes (a, b, g, � and z) known to date1,6. These
proteins which catalyze the interconversion between carbon
dioxide and bicarbonate, with release of a proton, are involved
in crucial physiological processes connected with respiration and
transport of CO2/bicarbonate between metabolizing tissues and
lungs, pH and CO2 homeostasis, electrolyte secretion in a variety
of tissues/organs, biosynthetic reactions (such as gluconeogenesis,
lipogenesis and ureagenesis), bone resorption, calcification,
tumorigenicity and many other physiologic/pathologic pro-
cesses2–6.

The widely spread human pathogen Mycobacterium tubercu-
losis contains three b-CA genes in its genome, that is,
Rv1284 (encoding for a protein we named mtCA 1), Rv3588c
(encoding for mtCA 2) and Rv3273 (encoding for a third
enzyme, mtCA 3)7–10. Other, Mycobacterium related infections
(e.g. Mycobacterium avium) affect a large number of the world
population, with an estimated 8.7 million new cases each year,
many (1.4 million) of which leading to deaths11–14.

Multi-drug resistant and extensively multi-drug resistant
tuberculosis (TB) worsens even more the situation, as such

strains are now present in many countries, and posing serious
concern to the global healthcare system, as this disease is largely
unresponsive to the presently available drugs11. The drug
resistance problem of antifungals and antibiotics represents a
serious medical problem15.

b-CAs inhibition offers the possibility to discover new drug
targets, belonging to the anti-infective classes (antifungal and
antibacterial agents), possessing a different mechanism of action
compared to the classical pharmacological agents in clinical use
for a long period, for which pathogenic fungi and bacteria
developed various degrees of resistance16–18. One of our groups
reported the characterization and inhibition studies with a panel of
sulfonamides for the M. tuberculosis b-CA, the one encoded by
gene Rv3588c and denominated mtCA 210. This enzyme has been
reported and characterized crystallographically by Covarrubias
et al.7,8.

3D quantitative structure-activity relationship (3D-QSAR)
studies have been found to be of great importance to design and
develop potent drugs. Comparative molecular field analysis
(CoMFA) used for the 3D-QSAR methodology correlates the
biological activity of a series of molecules with their 3D shape
and their electrostatic and steric characteristics. Thus, attempts
have been made to design and develop potent inhibitors for the
b-CA from M. tuberculosis (mtCA 2 encoded, by the gene
Rv3588c) for the treatment of TB. QSAR finds the parameters of
the compounds that govern their biological activities and throw
the light on their mechanism of action. Both these aspects of
QSAR greatly help modify the structures of the compounds
leading to compounds of high therapeutic value19–25.
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Materials and methodology

Calibration set (experimental data)

Recently, one of our groups has reported10 the first inhibition
study against M. tuberculosis, a b-CA (encoded by gene Rv3588c
also denominated mtCA 2) with a series of sulfonamides. The set
of 25 sulfonamide and their inhibitory activities against mtCA 2 is
presented in Figure 1 and Table 1. The enzyme inhibition data KI

values in the micromolar range were converted in ‘‘A’’ according
to the formula A¼ log (3.460� 103/KI) and subsequently, used as
the dependent variable for 3D-QSAR study (Table 1). The
inhibitory activity (A) value of the molecules under the study
spanned a wide range from 1 to 4.

Validation set (test set)

For the validation of the method, we have proceeded to a QSAR
study with a validation set (test set) and reduced calibration set

(training set). The test set was extracted from the homogenized
calibration set. For the present work, the selection of the test set
was done based on the hierarchical clustering technique26. Cluster
analysis26 is a method of arranging objects into groups. In the
present work, the molecules with rank 2, 4, 6, 10, 13, 22 and 24
have constituted the test set and the remaining as the training set.
The test set of seven molecules (28% of database) has captured all
the features and spans the activity range of the entire dataset. The
series of inhibitory activity (A) values and compounds chosen to
be part of the training and test sets are listed in Tables 1 and 2.

Prediction set (design of new compounds)

The prediction set contains nine other not yet synthesized
substituted sulfonamides generated by Brood27 software
having unknown observed values of activity (Table 3) and their
structure is provided in Figure 2. Brood uses the shape and
attachment geometry of the query fragment to identify a family of

Figure 1. Structural details of benzene sulphonamide and diazenylbenzenesulfonamides as mtCA 2 inhibitor (index with asterisk * molecules of
test set).
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similar fragments. The search for new mtCA 2 inhibitors
is important for medicinal chemistry. Therefore, the structures
of the prediction set molecules were selected mainly by
their possibility to be synthesized in laboratory conditions and
taking into account the commercial availability of the raw
materials.

Template selection and alignment

In the development of the 3D-QSAR models, the choice of the
template conformation is important to provide the illustration of a
reliable pharmocophore model. Compound no. 21 was selected as
a molecular template. This compound was chosen mainly for its
importance as a lead structure; in addition, compound no. 21 is

one of the most potent inhibitors of mtCA 2. There are three
different methods of alignment in the CoMFA viz Multifit, Atom
fit and Database. We have used database alignment in the CoMFA
study on mtCA 2 inhibitor.

CoMFA

The initial CoMFA model was calculated using the Sybyl 7.2
molecular modeling software, for the calculation of charges, the
Gastiger–Huckel method was used as implemented in Sybyl 7.2.
The aligned data set molecules were placed in a 3D grid box, such
that a entire set was included in it, CoMFA fields were generated
using sp3 carbon probe atom carrying þ1 charge to generate
steric (Lennard–Jones) 6–12 potential, and electrostatic
(Coulombic potential) fields at each grid point. The steric and
electrostatic energy values in CoMFA were truncated at 30 Kcal/
mol. The CoMFA fields were sealed standard tripos CoMFA. The
CoMFA fields with observed biological activity (A) were included
in a molecules spread sheet and Partial Least Square (PLS)28

method was applied to generate 3D-QSAR models. The PLS
algorithm with the leave-one-out (LOO)29 cross-validation
method was employed to choose optimum number of component
and assess the statistical significance of each model. All cross-
validation PLS analyses were performed with a column filters
values of 2.0.

The cross-validated coefficient, q2 was calculated using

q2ðr2
cvÞ ¼ 1�EðY predicted� Y observedÞ2

EðY observed� Y meanÞ2
ð1Þ

where Y predicted, Y observed and Y mean are predicted, actual
and mean values of the target inhibitory activity (A), respectively.

The optimum number of components was chosen which gave
less SE of prediction and high r2

cv. In addition, the r2
cv and

number of components, the conventional correlation coefficient
r2 and its SE were also computed for model. The predictive
r2 (r2

pred) value was calculated using

r2
pred ¼ SD� PRESS=SD ð2Þ

where SD is the sum of squared deviation between biological
activity of the test set and mean activity of training set molecules,
and PRESS is the sum of squared deviation between the actual
and the predicted activity values for every molecule in the test set.
The CoMFA results were graphically interpreted by field
contribution maps, using the stDEV�COEFF: field type. The
used statistical method does not identify outlier molecules in
calibration set.

Results and discussion

The CoMFA 3D-QSAR methods are used on the assumption that
the changes in binding affinities of ligands are related to changes
in molecular properties represented by fields. The alignment rule
and the bioactive conformation are crucial variables in any 3D-
QSAR analysis as both will affect outcome of statistical analysis.
We have used database alignment in the study and compound no.
21 was used a template for the molecules. The best fit
conformation and sub structure used for alignment are shown in
Figure 3.

CoMFA 3D-QSAR analysis

Steric and electrostatics CoMFA fields were generated using
standard procedure. The calibration set of 25 modulators was
aligned (Figure 4) to derive the conventional CoMFA models.

Table 1. Observed, estimated, residual, values of mtCA 2
inhibitory activity (A) for the molecules used in the
calibration set for CoMFA (tripos standard region).

Compound no. Obs. Est. Res.

1 2.011 1.985 0.026
2 2.068 2.043 0.0248
3 2.086 2.063 0.023
4 1.949 1.928 0.021
5 2.052 2.075 �0.023
6 2.075 2.096 �0.021
7 2.078 1.967 0.111
8 2.096 2.014 0.082
9 2.039 2.125 �0.086

10 2.028 2.009 0.019
11 2.068 2.040 0.028
12 2.027 2.164 �0.137
13 3.032 3.067 �0.0345
14 3.179 3.145 0.034
15 3.119 3.108 0.011
16 1.956 2.038 �0.082
17 2.00 1.95 0.05
18 1.946 1.972 �0.026
19 3.708 3.736 �0.028
20 3.559 3.612 �0.053
21 4 3.961 0.039
22 2.80 2.739 0.061
23 2.727 2.775 �0.048
24 3.242 3.181 0.061
25 3.211 3.205 0.006

Table 2. Observed log KI, calculated log KI and residual values
of compound used in the test set for CoMFA (tripos region).

Compound no. Obs. Est. Res.

2 2.068 2.021 0.047
4 1.949 1.924 0.025
6 2.075 2.253 �0.178

10 2.028 1.988 0.04
13 3.032 3.151 �0.119
22 2.80 3.009 �0.209
24 3.242 3.019 0.223

Table 3. Estimated inhibitory activity (A) of mtCA 2
(Mycobacterium tuberculosis) inhibitors of not yet synthesized
molecule.

Compound no. Est. Compound no. Est.

1 3.954 6 4.072
2 4.002 7 4.083
3 3.136 8 3.907
4 3.804 9 3.779
5 3.217
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Thus, one model was generated, with template molecule using
database alignment rule.

In this study, we have used the default CoMFA setting, which
included both steric and electrostatic fields, and use by alignment
in tripos standard region. The LOO cross-validated PLS analysis
of the best model gave rise to a cross-validated value (q2) of 0.88

at three component suggesting that the model is a useful tool for
predicting mtCA 2 inhibitory activity. The correlation coefficient
between the calculated and experimental activities of non cross
validated value (r2) of 0.993 with SE 0.058 indicates that the
fitness of analyzed results is 99% compared to experimental
results. The steric and electrostatic fields contribution of the
model is (58:42), indicating that the contribution of steric fields
and electrostatics both are requirement on ligand fields
interaction.

The statistical parameters of CoMFA analysis of calibration set
compounds are summarized in Table 4. Based on the above
observation, the best CoMFA model obtained with database

Figure 2. The chemical structure of predic-
tion set molecules not yet synthesized having
unknown observed values of activity (A).

Figure 3. Best fit conformation.

Figure 4. Alignment of molecule in database.
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alignment was then chosen for further analysis. The observed and
estimated inhibitory activity (A) values of the calibration set are
shown in Table 1. The correlation of observed vs. estimated
inhibitory activity of the calibration set are shown in Figure 5.

Predictive ability of CoMFA models

The predictive ability of CoMFA models can be evaluated based
on q2, the cross-validated LOO correlation coefficient, which
quantifies the predictive ability of the model. Models are
considered to be good predictive power when q2 is 40.5. A test
set was to further validate the predictive power of CoMFA
models, a predictive r2 value (pred-r2). In the presence of the test
set, we obtained the 3D-QSAR CoMFA model for the training set
(for 18 molecules); predicted results are summarized in Table 4.

Table 4 exhibit the q2 and r2
pred are 0.854 and 0.934, respectively,

so the 3D-QSAR model should be suitable for the design of new
mtCA 2 inhibitors. The observed and estimated inhibitory activity
(A) values of test set are shown in Table 2. We can state that the
estimated value for the molecules in the test set (validation set)
are close to the mtCA 2 experimental inhibitory value and has
ordered the molecules in a sequence similar enough to the real
one inhibitory value. The correlation of observed vs. estimated
inhibitory activity of the training and test set are shown in
Figure 6.

The contour map of CoMFA divided in region

The CoMFA steric field, the green (stererically favorable) and
yellow (stererically unfavorable) contour’s represent 80% and 20%
level contribution shown in Figure 7. The red (negative charge
favorable) and blue (positive charge favorable) contours in the
CoMFA electrostatic field also represent 20% and 80% level
contribution shown in Figure 8.

The steric and electrostatic contour map elucidate the CoMFA
models with the highly active inhibitor compound no. 21 (A¼ 4)
as a reference. The steric contour map for the CoMFA model
Figure 7 shows that one region at benzene ring positions
(diazenylbenzenesulfonamides) has been identified with green
polyhedron, which indicate that bulky substituents at these
positions may improve the activities. So, addition of a bulky
group at this position is favorable to the binding affinities. The
greater values of bioactivity measurement are correlated with
more bulk near green, less bulk near yellow.

The electrostatic contour map for the CoMFA models Figure 8
shows that two regions of the both side of benzene ring positions
have been identified with blue polyhedron, which indicate that the
electropositive groups at these positions may improve the
activities and the big red region between the two benzene ring
shows that the electronegative group at this position may also

Figure 6. Observed versus estimated inhibi-
tory activity (A) of training set and test set.
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Figure 5. Observed versus estimated inhibi-
tory activity (A) of calibration set.
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Table 4. Summary of 3D-ASAR analysis on mtCA 2 inhibitors of
CoMFA on tripos standard region.

PLS statistics
Calibration set

(all compounds) Training set

q2 (leave-one-out cross-validated pre-
dicted power of model r2

cv)
0.88 0.854

R2(correlation coefficient squared of
PLS analysis)

0.993 0.989

N (optimum number of components
obtained from cross-validated PLS
Analysis and the same used in final
non cross-validated analysis)

3 2

SEE (SE of estimate) 0.058 0.079
F-test value (F-value) 239.097 723.316
Steric field contribution from CoMFA 0.58 0.59
Electrostatic field contribution from
CoMFA

0.42 0.41

Predictive r2 (r2
pred) 0.934
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improve the activity. So, Figure 8 indicates that the more positive
charge near blue and more negative charge near red, favorable to
the binding affinities.

Prediction set (design of virtually new compounds)

This work allowed the prediction of a set compounds shown
in Figure 2, not yet synthesized molecule, and their inhibi-
tory activity (A) has also been calculated by the PLS method.

We have proposed a library of nine new structures, some of which
may show improved mtCA 2 inhibitory activity (Table 3) in
comparison with the parent compounds. This hypothesis should
be verified experimentally.

Conclusions

This is the first study which evidenced by means of 3D-QSAR
calculations specific features for the inhibition of Rv3588c (mtCA
2), in its interaction with sulfonamide inhibitors. The developed
model possesses promising predictive ability as discerned by the
test set of seven compounds which were not included in training
set. So, the model should be useful to explain the relationship
between compound structures and biological activities and to
facilitate design of more potent compounds as mtCA 2 inhibitors.

The contour plots provided many useful insights into relation-
ships between structural features and inhibitory activity and also
give a picture of the main chemical features responsible for the
significant inhibitory activity. The steric and electrostatic fields
were shown to be the most important parameters controlling the
inhibitory activity. These fields identified the functional group
and atoms possibly related to the binding and inhibition. Thus, the
proposed models can used to predict the biological activity of
compounds before their actual biological testing and provide
some insight into structural features for screening of compounds
for mtCA 2 inhibitory activities in early drug development stage.
The proposed nine molecules (not yet synthesized, belonging to
the diazenylbenzenesulphonamide class) prediction set includes
molecules presumably having high inhibitory activity.
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