

Central European Journal of Mathematics

On the cardinality of *n*-Urysohn and *n*-Hausdorff spaces

Research Article

Maddalena Bonanzinga¹*, Maria V. Cuzzupé^{1†}, Bruno A. Pansera^{1‡}

1 Dipartimento di Matematica e Informatica, Università di Messina, Viale F. Stagno d'Acontres 31, 98166 Messina, Italy

Abstract:	Two variations of Arhangelskii's inequality $ X \le 2^{\chi(X) \cdot L(X)}$ for pacta with first axiom of countability, Dokl. Akad. Nauk SSS D.N., Separation pseudocharacter and the cardinality of to 333–343] are extended to the classes with finite Urysohn r	or Hausdorff X [Arhang R, 1969, 187, 967–97 pological spaces, Top number or finite Hauso	gel'skii A.V., The power of bicom- 0 (in Russian)] given in [Stavrova ology Proc., 2000, 25(Summer), dorff number.
MSC:	54A25, 54D10		

Keywords: Urysohn number of a space • Hausdorff number of a space • $cl^{\mathcal{H}}$ -operator • θ -closure • $cl^{\mathcal{H}}_{\theta}$ -operator • Relative Lindelöf number • Almost Lindelöf degree of a space

© Versita Sp. z o.o.

Dedicated to Mikhail (Misha) Matveev

Received 4 October 2012; accepted 3 May 2013

1. Introduction

In [4] the Hausdorff number (finite or infinite) H(X) of a topological space X is defined as the smallest cardinal τ such that for every subset $A \subset X$, $|A| \ge \tau$, there exist neighborhoods U_a , $a \in A$, such that $\bigcap_{a \in A} U_a = \emptyset$. A space X is said to be n-Hausdorff if H(X) = n (where $n \ge 2$ is finite). Of course, a space is 2-Hausdorff iff it is Hausdorff. For every finite n, n-Hausdorff implies (n + 1)-Hausdorff, but there are (n + 1)-Hausdorff spaces which are not n-Hausdorff [4]. The notion of Hausdorff number was also used in [10].

A space X is Urysohn if for any $a, b \in X$ with $a \neq b$ there exist neighborhoods $U_a \ni a$ and $U_b \ni b$ such that $\overline{U_a} \cap \overline{U_b} = \emptyset$. In [6] the Urysohn number (finite or infinite) U(X) was introduced as the smallest cardinal τ such that for every subset $A \subset X$ such that $|A| \ge \tau$ one can pick neighborhoods $U_a \ni a$ for all $a \in A$ so that $\bigcap_{a \in A} \overline{U_a} = \emptyset$. A space X is *n*-Urysohn (where $n \ge 2$ is finite) if U(X) = *n*; of course, a space is 2-Urysohn iff it is Urysohn. The notion of Urysohn number was also used in [5–10].

^{*} E-mail: mbonanzinga@unime.it

⁺ E-mail: mariavittoria.88@hotmail.it

^{*‡*} E-mail: bpansera@unime.it

We use standard notation and terminology following [11, 13]: κ denotes infinite cardinal; ω is the first infinite cardinal, L(X), $\psi(X)$, $\psi_c(X)$, $\chi(X)$ denote the Lindelöf number of X, the pseudocharacter of X, the closed pseudocharacter of X and the character of X, respectively. Further, if A is a subset of a space X, $[A]^{\leq m}$ denotes the family of all subsets of A whose cardinality $\leq m$.

The Hausdorff pseudocharacter of X, denoted $H\psi(X)$, is the smallest κ such that for each point x there is a collection $\{V(\alpha, x) : \alpha < \kappa\}$ of open neighborhoods of x such that if $x \neq y$, then there exist $\alpha, \beta < \kappa$ such that $V(\alpha, x) \cap V(\beta, y) = \emptyset$ [14]. The cardinal function $H\psi(X)$ is defined only for Hausdorff spaces X. The following holds:

$$\psi(X) \le \psi_{c}(X) \le H\psi(X) \le \chi(X).$$

In [17] Stavrova introduced the following cardinal invariant: the Urysohn pseudocharacter of X, denoted $\cup \psi(X)$, is the smallest κ such that for each point x there is a collection $\{V(\alpha, x) : \alpha < \kappa\}$ of open neighborhoods of x such that if $x \neq y$, then there exist $\alpha, \beta < \kappa$ such that $\overline{V(\alpha, x)} \cap \overline{V(\beta, y)} = \emptyset$. The cardinal function $\cup \psi(X)$ is defined only for Urysohn spaces X. The following holds:

$$\psi(X) \le \psi_{c}(X) \le H\psi(X) \le \cup \psi(X) \le \chi(X).$$

In [4] Bonanzinga defined the *n*-Hausdorff pseudocharacter of *X* (where $n \ge 2$ is finite), denoted n-H $\psi(X)$, as the smallest κ such that for each point *x* there is a collection { $V(\alpha, x) : \alpha < \kappa$ } of open neighborhoods of *x* such that if x_1, \ldots, x_n are distinct points from *X*, then there exist $\alpha_1, \ldots, \alpha_n < \kappa$ such that $\bigcap_{i=1}^n V(\alpha_i, x_i) = \emptyset$. The cardinal function n-H $\psi(X)$ is defined only for *n*-Hausdorff spaces *X*. Of course, if *X* is a Hausdorff space, the 2-Hausdorff pseudocharacter of *X* is the Hausdorff pseudocharacter of *X*.

The following cardinal function n-U $\psi(X)$ is defined only for n-Urysohn spaces X.

Definition 1.1.

The *n*-Urysohn pseudocharacter of X (where $n \ge 2$), denoted n-U $\psi(X)$, is the smallest κ such that for each point x there is a collection { $V(\alpha, x) : \alpha < \kappa$ } of open neighborhoods of x such that if x_1, \ldots, x_n are distinct points from X, then there exist $\alpha_1, \ldots, \alpha_n < \kappa$ such that $\bigcap_{i=1}^n \overline{V(\alpha_i, x_i)} = \emptyset$.

Of course $\bigcup \psi(X) \le k$ implies $n - \bigcup \psi(X) \le k$, for every $n \ge 2$. For every $n \ge 2$, $\omega \cup \{p\}$, $p \in \omega^*$, is a countable n-Urysohn space such that $n - \bigcup \psi(X) = \omega$ which is not first countable.

In [5] an (n + 1)-Urysohn space which is not *n*-Urysohn, $n \ge 2$, is constructed. The same space can be used to construct the following example.

Example 1.2.

There is an (n + 1)-Urysohn space such that (n + 1)-U $\psi(X) = \omega$ and n-U $\psi(X)$ is not defined.

Proof. Denote $\mathbb{R}_0^n = \{x = \langle x_1, \ldots, x_n \rangle \in \mathbb{R}^n : x_1 = 0\}$. Put $X(n) = X_0 \cup X_+$, where $X_0 = \mathbb{R}_0^n \cap \mathbb{Q}^n$ and $X_+ = \{x = \langle x_1, \ldots, x_n \rangle \in \mathbb{Q}^n : x_1 > 0\}$. Pick (n-1)-dimensional hyperplanes $\pi_1, \ldots, \pi_n \in \mathbb{R}^n$ such that (1) each of π_1, \ldots, π_n contains the origin, (2) normal vectors to π_1, \ldots, π_n are linearly independent, and (3) for every $x \in X(n)$ and $i \in \{1, \ldots, n\}, (x + \pi_i) \cap X(n) = \{x\}$. Partition X_0 into n pairwise disjoint dense (in the Euclidean topology) subspaces X_0^i , $i \in \{1, \ldots, n\}$.

Topologize X(n) as follows. X_0 is open. Points of X_0^i have neighborhoods as in the restriction of the Euclidean topology of \mathbb{R}^n to X_0^i . Let $x = \langle x_1, \ldots, x_n \rangle \in X_+$. For $i \in \{1, \ldots, n\}$ and $\epsilon > 0$, denote

$$l_i(x) = (x + \pi_i) \cap \mathbb{R}^n_0, \quad i = 1, ..., n, \qquad U_{i,\epsilon}(x) = \{q \in X^i_0 : d(q, l_i(x)) < \epsilon\},\$$

where *d* is the Euclidean distance. The sets $U_{\epsilon}(x) = \{x\} \cup \{U_{i,\epsilon}(x) : 1 \le i \le n\}$ are basic neighborhoods of *x*. Since *X* is a first countable (n + 1)-Urysohn space, we have that (n + 1)-U $\psi(X) = \omega$.

The following definition is a paraphrase and combination of [17, Definitions 2, 3, 6].

Definition 1.3.

Let X be a Hausdorff space (Urysohn space, resp.) and for each $x \in X$ let $\mathcal{H}(x) = \{V(\alpha, x) : \alpha < \kappa\}$ be a collection of open neighborhoods of x which is closed under finite intersection and such that if $x \neq y$, there exist $\alpha, \beta < \kappa$ such that $V(\alpha, x) \cap V(\beta, y) = \emptyset$, resp. $\overline{V(\alpha, x)} \cap \overline{V(\beta, y)} = \emptyset$. Then we say that $\mathcal{H} = \{\mathcal{H}(x) : x \in X\}$ canonically realizes $H\psi(X) \leq \kappa$ (realizes $U\psi(X) \leq \kappa$, resp.).

We can introduce the following generalization of the previous definition.

Definition 1.4.

Let $n \ge 2$, X be an n-Hausdorff space (n-Urysohn space, resp.) and for each $x \in X$ let $\mathcal{H}(x) = \{V(\alpha, x) : \alpha < \kappa\}$ be a collection of open neighborhoods of x which is closed under finite intersection and such that if x_1, \ldots, x_n are distinct points from X, then there exist $\alpha_1, \ldots, \alpha_n < \kappa$ such that $\bigcap_{i=1}^n V(\alpha_i, x_i) = \emptyset$, resp. $\bigcap_{i=1}^n \overline{V(\alpha_i, x_i)} = \emptyset$. Then we say that $\mathcal{H} = \{\mathcal{H}(x) : x \in X\}$ canonically realizes $n - H\psi(X) \le \kappa$ (\mathcal{H} realizes $n - U\psi(X) \le \kappa$, resp.).

Many variations of Arhangelskii's inequality $|X| \le 2^{\chi(X) \cdot L(X)}$ for Hausdorff X [1] are known in the literature (see [15] for a survey). Some of these variations involve certain cardinal functions that are a priori less than or equal to the character and Lindelöf number.

The almost Lindelöf degree of X is $aL(X) = \min \{\kappa : \text{ for every open cover } \mathcal{U} \text{ of } X$, there is a subfamily $\mathcal{U}_0 \subset \mathcal{U}$ such that $|\mathcal{U}_0| \leq \kappa$ and $\bigcup \{\overline{U} : U \in \mathcal{U}_0\} = X\}$ (see [15, 17]; in [3, 19] this function is denoted as aL(X, X)). In [3] Bella and Cammaroto proved that if X is a Urysohn space, then $|X| \leq 2^{aL(X) \cdot \chi(X)}$. In [17] Stavrova strengthen this result replacing $\chi(X)$ with $\cup \psi(X)$.

Theorem 1.5 ([17]).

If X is a Urysohn space, then $|X| \leq 2^{aL(X) \cup \psi(X)}$.

Recently, relative versions of cardinal functions were considered by many authors (see, for example [2, 12, 16]). In [12] the following cardinal function was introduced: if Y is a subset of a space X, L(Y, X) is the minimum κ such that for every open cover \mathcal{U} of X there exists a subfamily $\mathcal{U}_0 \subset \mathcal{U}$ covering Y such that $|\mathcal{U}_0| \leq \kappa$. For Y = X this reduces to L(X).

Theorem 1.6 ([17]).

If X is a Hausdorff space and $Y \subseteq X$, then $|Y| \leq 2^{L(Y,X) \cdot H\psi(X)}$.

In this paper we extend Theorems 1.5 and 1.6 to the class of spaces with finite Urysohn number and finite Hausdorff number respectively.

2. Cardinality of $cl^{\mathcal{H}}()$ and $cl^{\mathcal{H}}_{\theta}()$

Recall that the θ -closure of a set A in the space X is the set $cl_{\theta}(A) = \{x \in X : \text{ for every neighborhood } U \ni x, \overline{U} \cap A \neq \emptyset\}$ [18]. A set A is called θ -closed if $A = cl_{\theta}(A)$.

Let X be a space. Consider the family $\mathcal{H} = \{\mathcal{H}(x) : x \in X\}$ where, for every $x \in X$, $\mathcal{H}(x)$ is a collection of neighborhoods of x. For every $A \subseteq X$ denote by $cl^{\mathcal{H}}(A)$ the set

$$cl^{\mathcal{H}}(A) = \{ x \in X : U \cap A \neq \emptyset \text{ for every } U \in \mathcal{H}(x) \}$$

(see the proof of [14, Theorem II] where this set is denoted as A^* and [17, Definition 7] where it is denoted as $(A)_{\mathcal{H}}$) and by $cl_{\theta}^{\mathcal{H}}(A)$ [17] the set

$$cl^{\mathcal{H}}_{\theta}(A) = \{ x \in X : \overline{U} \cap A \neq \emptyset \text{ for every } U \in \mathcal{H}(x) \}.$$

We have $\operatorname{cl}^{\mathcal{H}}(A) \subseteq \operatorname{cl}^{\mathcal{H}}_{\theta}(A)$ and $\operatorname{cl}_{\theta}(A) \subseteq \operatorname{cl}^{\mathcal{H}}_{\theta}(A)$. In [17, Lemma 2], it was proved that if A is a subset of an Urysohn space X and \mathcal{H} realizes $\cup \psi(X) \leq \kappa$, then $|\operatorname{cl}^{\mathcal{H}}_{\theta}(A)| \leq |A|^k$. The argument from [17, Lemma 2] needs only a slight modification to restate the result in terms of finite Hausdorff number and finite Urysohn numbers.

Proposition 2.1.

For a set X and $A \subseteq X$, if for each $x \in X$, $\mathfrak{H}(x) = \{V(\alpha, x) : \alpha < \kappa\}$ denotes a collection of subsets of X containing x which is closed under finite intersection and such that if x_1, \ldots, x_n are distinct points from X, then there exist $\alpha_1, \ldots, \alpha_n < \kappa$ such that $\bigcap_{i=1}^n V(\alpha_i, x_i) = \emptyset$, we have that $|cl^{\mathfrak{H}}(A)| \leq |A|^{\kappa}$.

Proof. Let $x \in cl^{\mathcal{H}}(A)$. Put $A_x = \{a(\alpha, x) \in V(\alpha, x) \cap A : \alpha \in \kappa\}$. Then $x \in cl^{\mathcal{H}}(A_x)$. We have that $x \in cl^{\mathcal{H}}(V(\alpha, x) \cap A)$ for every $\alpha \in \kappa$. Indeed, fix $\alpha \in \kappa$ and $V(\beta, x) \in \mathcal{H}$. Since \mathcal{H} is closed under finite intersection, there is $\gamma \in \kappa$ such that $V(\gamma, x) = V(\beta, x) \cap V(\alpha, x)$. From $x \in cl^{\mathcal{H}}(A)$ it follows that $\emptyset \neq V(\gamma, x) \cap A_x = (V(\beta, x) \cap V(\alpha, x)) \cap A_x = V(\beta, x) \cap (V(\alpha, x) \cap A_x)$. Put $\Gamma_x = \{V(\alpha, x) \cap A_x : \alpha \in \kappa\}$. Note that Γ_x is a centered family. Since $A_x \in [A]^{\leq \kappa}$, then $V(\alpha, x) \cap A_x \in [A]^{\leq \kappa}$, hence $\Gamma_x \in [[A]^{\leq \kappa}]^{\leq \kappa}$.

We claim that the mapping $x \to \Gamma_x$ is (< n)-to-one. Assume the contrary. Then there is a subset $K \subseteq cl^{\mathcal{H}}(A)$ such that |K| = n and Γ_x is the same for every $x \in K$. Call it just Γ . Pick $V(\alpha_x, x) \in \mathcal{H}$ for all $x \in K$ so that

$$\bigcap_{x \in \mathcal{K}} V(\alpha_x, x) = \emptyset. \tag{(*)}$$

Then for every $x \in K$, $V(\alpha_x, x) \cap A_x \in \Gamma_x = \Gamma$. So by (*), Γ is not a centered family. On the other hand since $\Gamma = \Gamma_x$ for some x, Γ must be centered. A contradiction.

So the mapping $x \mapsto \Gamma$ from $\operatorname{cl}^{\mathcal{H}}(A)$ to $[[A]^{\leq \kappa}]^{\leq \kappa}$ is (< n)-to-one and thus $|\operatorname{cl}^{\mathcal{H}}(A)| \leq n \cdot |A|^{\kappa} = |A|^{\kappa}$.

Corollary 2.2.

For a set A in a space X, if $H(X) = n \ge 2$ is finite and \mathcal{H} canonically realizes $n - H\psi(X) \le \kappa$, then $|cl^{\mathcal{H}}(A)| \le |A|^{\kappa}$.

Proposition 2.3.

For a set X and $A \subseteq X$, if for each $x \in X$, $\mathcal{H}(x) = \{V(\alpha, x) : \alpha < \kappa\}$ denotes a collection of subsets of X containing x which is closed under finite intersection and such that if x_1, \ldots, x_n are distinct points from X, then there exist $\alpha_1, \ldots, \alpha_n < \kappa$ such that $\bigcap_{i=1}^n \overline{V(\alpha_i, x_i)} = \emptyset$, we have that $|cl_{\theta}^{\mathcal{H}}(A)| \leq |A|^{\kappa}$.

Proof. Let $x \in cl_{\theta}^{\mathcal{H}}(A)$. Put $A_x = \{a(\alpha, x) \in \overline{V(\alpha, x)} \cap A : \alpha \in \kappa\}$. Then $x \in cl_{\theta}^{\mathcal{H}}(A_x)$. We have that $x \in cl_{\theta}^{\mathcal{H}}(\overline{V(\alpha, x)} \cap A_x)$ for every $\alpha \in \kappa$. Indeed, fix $\alpha \in \kappa$ and $V(\beta, x) \in \mathcal{H}(x)$. Since $\mathcal{H}(x)$ is closed under finite intersection, there is $\gamma \in \kappa$ such that $V(\gamma, x) = V(\beta, x) \cap V(\alpha, x)$. From $x \in cl_{\theta}^{\mathcal{H}}(A_x)$ it follows that $\emptyset \neq \overline{V(\gamma, x)} \cap A_x = \overline{V(\beta, x)} \cap V(\alpha, x) \cap A_x \subset \overline{V(\beta, x)} \cap (\overline{V(\alpha, x)} \cap A_x)$.

Put $\Gamma_x = \{\overline{V(\alpha, x)} \cap A_x : \alpha \in \kappa\}$. Note that Γ_x is a centered family. Since $A_x \in [A]^{\leq \kappa}$, then $\overline{V(\alpha, x)} \cap A_x \in [A]^{\leq \kappa}$; hence $\Gamma_x \in [[A]^{\leq \kappa}]^{\leq \kappa}$.

We claim that the mapping $x \mapsto \Gamma_x$ is (< n)-to-one. Assume the contrary. Then there is a subset $K \subset cl_{\theta}^{\mathcal{H}}(A)$ such that |K| = n and Γ_x is the same for all $x \in K$, call it just Γ . Pick $V(\alpha_x, x) \in \mathcal{H}(x)$ for all $x \in K$ so that

$$\bigcap_{x \in K} \overline{V(\alpha_x, x)} = \emptyset. \tag{*}$$

Then for every $x \in K$, $\overline{V(\alpha_x, x)} \cap A_x \in \Gamma_x = \Gamma$, so by (*), Γ is not centered. On the other hand, since $\Gamma = \Gamma_x$ for some x, Γ must be centered. A contradiction. So the mapping $x \mapsto \Gamma_x$ from $\operatorname{cl}_{\theta}^{\mathcal{H}}(A)$ to $[[A]^{\leq \kappa}]^{\leq \kappa}$ is (< *n*)-to-one, and thus $|\operatorname{cl}_{\theta}^{\mathcal{H}}(A)| \leq n \cdot (|A|^{\kappa})^{\kappa} = |A|^{\kappa}$.

Corollary 2.4.

For a set A in a space X, if $\bigcup(X) = n$ (where $n \ge 2$ is finite) and \mathcal{H} realizes $n - \bigcup \psi(X) \le \kappa$, then $|cl_{\theta}^{\mathcal{H}}(A)| \le |A|^{\kappa}$.

3. On cardinality of *n*-Hausdorff and *n*-Urysohn spaces, where $n \ge 2$ is finite

Now we show that Hodel's proof of [15, Theorem 3.3] works in case of *n*-Hausdorff condition instead of Hausdorff condition.

Theorem 3.1.

Let $n \ge 2$ be finite, X be a set, $Y \subseteq X$ and for each $x \in X$, $\mathfrak{H}(x) = \{V(\alpha, x) : \alpha < \kappa\}$ be a collection of subsets of X containing x which is closed under finite intersection. Assume the following:

(n-H) if $x_1, \ldots, x_n \in X$ are distinct, then there exist $\alpha_1, \ldots, \alpha_n < \kappa$ such that $V(\alpha_1, x_1) \cap \cdots \cap V(\alpha_n, x_n) = \emptyset$ (n-Hausdorff condition);

(C) for every function $f: X \to \kappa$, there exists $A \subseteq X$ with $|A| \le \kappa$ such that $Y \subseteq \bigcup_{x \in A} V(f(x), x)$ (cover condition).

Then $|Y| \leq 2^{\kappa}$.

Proof. By transfinite induction we shall define a family $\{H_{\alpha} : \alpha \in \kappa^+\}$ of subsets of X such that:

- 1. $|H_{\alpha}| \leq 2^{\kappa}$ for every $\alpha \in \kappa^+$.
- 2. For all $A \subseteq \bigcup_{\beta < \alpha} H_{\beta}$ such that $|A| \leq \kappa$,
 - 2a. $\operatorname{cl}^{\mathcal{H}}(A) \subseteq H_{\alpha}$,
 - 2b. if $f : A \to \kappa$ is a function, $W = \bigcup_{x \in A} V(f(x), x)$ and $Y \setminus W \neq \emptyset$, then $(H_{\alpha} \cap Y) \setminus W \neq \emptyset$.

Let $\alpha \in \kappa^+$ and $\{H_\beta : \beta \in \alpha\}$ already defined with properties 1.–2. Let

$$\mathcal{E}_{\alpha} = \left\{ \bigcup_{x \in A} V(f(x), x) : A \subseteq \bigcup_{\gamma < \beta} H_{\gamma}, |A| \le \kappa, f : A \to \kappa, Y \setminus \bigcup_{x \in A} V(f(x), x) \neq \emptyset \right\}$$

It easily follows that $|\mathcal{E}_{\alpha}| \leq 2^{\kappa}$ as $A \in [\bigcup_{\gamma < \beta} H_{\gamma}]^{\leq \kappa}$, $|[\bigcup_{\gamma < \beta} H_{\gamma}]^{\leq \kappa}| \leq 2^{\kappa}$, and $|\kappa^{A}| \leq 2^{\kappa}$.

For every $W \in \mathcal{E}_{\alpha}$, we choose a point $y_W \in Y \setminus W$ and let $\mathcal{C}_{\alpha} = \{y_W : W \in \mathcal{E}_{\alpha}\}$. Since $|\mathcal{E}_{\alpha}| \leq 2^{\kappa}$ we have that $|\mathcal{C}_{\alpha}| \leq 2^{\kappa}$. Finally put $H_{\alpha} = \{cl^{\mathcal{H}}(\mathcal{C}_{\alpha}) \cup \bigcup \{cl^{\mathcal{H}}(H_{\beta}) : \beta \in \alpha\}\}$. Using Proposition 2.1 we obtain that $|H_{\alpha}| \leq 2^{\kappa}$. It can be easily to see that properties 1.–2. are satisfied.

Let $H = \bigcup \{H_{\alpha} : \alpha \in \kappa^+\}$. Clearly $|H| \leq 2^{\kappa}$. Also $cl^{\mathfrak{H}}(H) = H$. To prove this it is sufficient to show that $cl^{\mathfrak{H}}(H) \subseteq H$. Let $x \in cl^{\mathfrak{H}}(H)$. For each $\gamma \in \kappa$ there exist $x_{\gamma} \in V(\gamma, x) \cap H$. By regularity of κ^+ , there exists $\alpha < \kappa^+$ such that $\{x_{\gamma} : \gamma < \kappa\} \subset \bigcup_{\beta < \alpha} cl^{\mathfrak{H}}(H_{\beta})$. Now $\bigcup_{\beta < \alpha} cl^{\mathfrak{H}}(H_{\beta}) \subset H_{\alpha}$ and so $V(\gamma, x) \cap H_{\alpha} \neq \emptyset$ for all $\gamma < \kappa$. It follows that $x \in cl^{\mathfrak{H}}(H_{\alpha})$, hence $x \in H$.

It remains to prove that $Y \subseteq H$. Suppose there is $q \in Y \setminus H$. By Proposition 2.1, $\operatorname{cl}^{\mathcal{H}}(\{q\}) = \{q\}$. Then for every $x \in H$ we can choose $\gamma_x < \kappa$ such that $q \notin V(\gamma_x, x)$. From the other side for every $x \notin H = \operatorname{cl}^{\mathcal{H}}(H)$ we can choose $\gamma_x < \kappa$ such that $V(\gamma_x, x) \cap H = \emptyset$. Define $f: X \to \kappa$ by $f(x) = \gamma_x$. By the cover condition (C), there exists $B \subseteq X$ with $|B| \le \kappa$ such that $Y \subseteq \bigcup_{x \in B} V(f(x), x)$. Put $A = B \cap H$. Then $A \subseteq H$ and $|A| \le \kappa$. Further $\{V(f(x), x) : x \in A\}$ covers $H \cap Y$. Let $W = \bigcup \{V(f(x), x) : x \in A\}$. Note that $H \cap Y \subseteq W$ and $q \in Y \setminus W$. By regularity of κ^+ , there exists $\alpha < \kappa^+$ such that $A \subseteq \bigcup_{\beta < \alpha} H_{\beta}$. By 2b., there exists $z \in (H_{\alpha} \cap Y) \setminus W$; a contradiction with $H \cap Y \subseteq W$.

The next three results are consequences of Theorem 3.1. In particular, the following result is a generalization of Stavrova's result presented in Theorem 3.4 in terms of n-Hausdorff spaces. The proof shows that Hodel's proof of [15, Corollary 3.4] works in the case of n-Hausdorff spaces.

Theorem 3.2.

If X is an n-Hausdorff space, $n \ge 2$, and $Y \subseteq X$, then $|Y| \le 2^{L(Y,X) \cdot n - H\psi(X)}$.

Proof. Let *X* be an *n*-Hausdorff space with $L(Y, X) \cdot n - H\psi(X) \le \kappa$ and let $\mathcal{H} = \{\mathcal{H}(x) : x \in X\}$ be a family canonically realizing $n - H\psi(X) \le \kappa$, where for every $x \in X$, $\mathcal{H}(x) = \{V(\alpha, x) : \alpha < \kappa\}$ is a collection of open neighborhoods of *x* which is closed under finite intersection. Of course, *V* satisfies condition (n-H) of Theorem 3.1. To check that *V* satisfies the cover condition (C) of Theorem 3.1 let $f: X \to \kappa$ be a function. Then $\{V(f(x), x) : x \in X\}$ is an open cover of *X*. Since $L(Y, X) \le \kappa$ there is $A \subset X$ such that $|A| \le \kappa$ and $\bigcup \{V(f(x), x) : x \in A\} \supseteq Y$. So, by Theorem 3.1, $|Y| \le 2^{\kappa}$.

In [15, Corollary 3.4], Hodel gives a relative version of Theorem 3.3. Recall the following relative version of aL. Let X be a space and let $Y \subseteq X$. The cardinal function aL(Y, X) is the smallest κ such that if \mathcal{U} is an open cover of X, then there exists $\mathcal{U}_0 \subset \mathcal{U}$ such that $|\mathcal{U}_0| \leq \kappa$ and $\bigcup \{\overline{U} : U \in \mathcal{U}_0\} \supseteq Y$. For Y = X this becomes aL(X). We have the following result.

Theorem 3.3.

If X is an n-Urysohn space, where $n \ge 2$ is finite, and $Y \subseteq X$, then $|Y| \le 2^{aL(Y,X) \cdot n - \bigcup \psi(X)}$.

Proof. Let X be a *n*-Urysohn space with $aL(Y, X) \cdot n - \bigcup \psi(X) \le \kappa$ and $\mathcal{H} = \{\mathcal{H}(x) : x \in X\}$ be a family realizing $n - \bigcup \psi(X) \le \kappa$, where for every $x \in X$, $\mathcal{H}(x) = \{W(\alpha, x) : \alpha < \kappa\}$ is a collection of open neighborhoods of x which is closed under finite intersection. For $x \in X$ and for every $\alpha < \kappa$, put $V(\alpha, x) = \overline{W(\alpha, x)}$. Of course, V satisfies condition (n-H) of Theorem 3.1. To check that V satisfies the cover condition (C) of Theorem 3.1 let $f: X \to \kappa$ be a function. Then $\{W(f(x), x) : x \in X\}$ is an open cover of X. Since $aL(Y, X) \le \kappa$ there is $A \subset X$ such that $|A| \le \kappa$ and $\bigcup \{\overline{W(f(x), x)} : x \in A\} \supseteq Y$, in other words, $\bigcup \{V(f(x), x) : x \in A\} \supseteq Y$. Then, $|Y| \le 2^{\kappa}$.

The next result represents a generalization of Stavrova's result presented in Theorem 3.3.

Theorem 3.4.

If X is an n-Urysohn space, where $n \ge 2$ is finite, then $|X| \le 2^{aL(X) \cdot n - \bigcup \psi(X)}$.

Acknowledgements

The authors express gratitude to the referees for suggested corrections and improvements.

References

- [1] Arhangel'skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian)
- [2] Arhangel'skii A.V., A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolin., 1995, 36(2), 303–325
- [3] Bella A., Cammaroto F., On the cardinality of Urysohn spaces, Canad. Math. Bull., 1988, 31(2), 153-158
- [4] Bonanzinga M., On the Hausdorff number of a topological space, Houston J. Math., 2013, 39(3), 1013–1030
- [5] Bonanzinga M., Cammaroto F., Matveev M.V., On a weaker form of countable compactness, Quaest. Math., 2007, 30(4), 407–415
- [6] Bonanzinga M., Cammaroto F., Matveev M., On the Urysohn number of a topological space, Quaest. Math., 2011, 34(4), 441–446
- Bonanzinga M., Cammaroto F., Matveev M., Pansera B., On weaker forms of separability, Quaest. Math., 2008, 31(4), 387–395

- [8] Bonanzinga M., Pansera B., On the Urysohn number of a topological space II, Quaest. Math. (in press)
- [9] Carlson N., The weak Lindelöf degree and homogeneity (manuscript)
- [10] Carlson N.A., Porter J.R., Ridderbos G.J., On cardinality bounds for homogeneous spaces and G_κ-modification of a space, Topology Appl., 2012, 159(13), 2932–2941
- [11] Engelking R., General Topology, 2nd ed., Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989
- [12] Gryzlov A.A., Stavrova D.N., Topological spaces with a selected subset cardinal invariants and inequalities, C. R. Acad. Bulgare Sci., 1993, 46(7), 17–19
- [13] Hodel R.E., Cardinal functions I, In: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 1–61
- [14] Hodel R.E., Combinatorial set theory and cardinal functions inequalities, Proc. Amer. Math. Soc., 1991, 111(2), 567–575
- [15] Hodel R.E., Arhangel'skii's solution to Alexandroff's problem: A survey, Topology Appl., 2006, 153(13), 2199-2217
- [16] Ramírez-Páramo A., Tapia-Bonilla N.T., A generalization of a generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolin., 2007, 48(1), 177–187
- [17] Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343
- [18] Veličko N.V., H-closed topological spaces, Mat. Sb. (N.S.), 1966, 70(112)(1), 98–112 (in Russian)
- [19] Willard S., Dissanayeke U.N.B., The almost Lindelöf degree, Canad. Math. Bull., 1984, 27(4), 452-455