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Abstract: This theoretical study focuses on junctions between the carbon nanotubes (CNTs) and contacting metallic
elements of a nanocircuit. Numerical simulations on the conductance and resistance of these contacts have
been performed using the multiple scattering theory and the effective media cluster approach. Two models
for CNT-metal contacts have been considered in this paper: a) first principles “liquid metal” model and b)
semi-empirical model of “effective bonds” based on Landauer notions on ballistic conductivity. Within the
latter, which is a more adequate description of chirality effects, we have simulated both single-wall (SW) and
multi-wall (MW) CNTs with different morphology. Results of calculations on resistance for different CNT-Me
contacts look quantitatively realistic (from several to hundreds kOhm, depending on chirality, diameter and
thickness of MW CNT). The inter-wall transparency coefficient for MW CNT has been also simulated, as
an indicator of possible ‘radial current’ losses.
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In order to overcome disadvantages of contemporary mi-
crotechnology, the miniaturization of electronic devices, a
high integration level and the increase of the operation
frequencies and power density are required, including the
use of adequate materials and innovative chip intercon-
nects. Due to their unique physical properties, carbon

nanotubes (CNTs) attract permanently growing techno-
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logical interest, for example, as promising candidates for
nano-interconnects in a high-speed electronics [1]. The
main aim of the current study is the implementation of
advanced simulation models for a proper description of
the electrical resistance for contacts between carbon nan-
otubes of different morphology and metallic substrates of
different nature. An adequate description of CNT chi-
rality is one of the key points for proper simulations on
electric properties of CNT-based nanoelectronic devices.
The single-wall carbon nanotube can be constructed by
wrapping up the graphene monolayer in such a way that
the two equivalent sites of the hexagonal lattice coin-
cide. The wrapping vector C, which defines the relative
location of the two sites, is specified by a pair of inte-
gers (n, m) that decompose C to the two unit vectors a;
and a; (i.e.,C = na; + may). The nanotube is called
‘armchatir’ if n equals m, whereas if m = 0 such a CNT
possesses ‘zigzag' chirality. All the other nanotubes be-
long to the ‘chiral’ type and have a finite wrapping angle
¢:0° < ¢ <300 2]

The resistance of contacts between CNTs and metallic cat-
alytic substrates can considerably exceed that observed
in the separate parts of these junctions [3]. The conduc-
tance between real metals and CNTs still occurs, how-
ever, mainly due to the scattering processes, which are
estimated to be rather weak [4]. Fig. 1 represents the
contacts between a CNT and metallic electrodes, as a pro-
totype nanodevice. This is a main subject of our current
research and modeling. The toroidal region (CNT-Me) is
the object of a microscopic approach responsible for the
main contribution to the resistance. As to the nanotube
itself and the metallic substrate, their resistances may be
considered as macroscopic parameters.

The electronic structure for the CNT-Me interconnect
can be evaluated through the electronic density of states
(DOS) for carbon-metal contact considered as a ‘disor-
dered alloy’, where clusters containing both C and Me
atoms behave as scattering centers. The computational
procedure developed by us for these calculations [5] is
based on the construction of cluster potentials and the
evaluation of both scattering (S) and transfer (T) matri-
ces.

The general model of multiple scattering with effective me-
dia approximation (EMA) for condensed matter based on
the approach of atomic cluster is presented in Fig. 2. The
cluster formalism was successfully applied for metallic Cu
[5], as well as for both elemental (Ge and Si) and binary
(AscSeq_x and Sb,Seq_,) semiconductors [6]. A special at-
tention was paid for the latter, since in solid solutions
the concept of statistical weighing was applied for the
binary components [5, 6] When using the coherent po-
tential approximation (CPA) as EMA approximation, the

Effective medium

Figure 1. Model of CNT-Me interconnect as a prototype of nanode-
vice.

resistance of the interconnect can be evaluated through
the Kubo-Greenwood formalism [7] and Ziman model [8].
Both Figs. 3 and 4 depict the idealized images of contacts
between CNTs and the Ni substrate.

The scattering problem and
electronic properties calculation algorithm: multiple scattering
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Figure 2. Multiple scattering problem for the system of clusters as
multiple scattering model of condensed matter: strategy
of calculations of fundamental properties of condensed
medium described within the effective media approxima-
tion.

The electronic structure of the CNT-Ni interconnects, in
the simplest case, can be evaluated through the DOS for
C-Ni contact, considered as a ‘disordered alloy’, where
clusters containing carbon and nickel atoms are the scat-
tering centers. However, in many cases, we have to de-
velop more complicated structural models for CNT-metal
junctions, based on their precise atomistic structures,
which take into account the CNT chirality effect. This
is also the subject of the current study. When estimating
the resistance of a junction between the nanotube and the
substrate, the main problem is caused by the influence of
the nanotube chirality on the resistance of SW and MW
CNT-Me interconnects (Me = Ni, Cu, Ag, Pd, Pt, Au), for
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Figure 3. Fragment of interconnects between the Ni substrate and
C nanotubes.

Figure 4. Model of CNT-Ni interconnect as a disordered alloy.

a pre-defined CNT geometry.

2. Multiple scattering theory and
effective medium approach for CNT
simulations

2.1. Electronic structure calculations

We consider the resistivity as a scattering problem, where
the current carriers participate in the transport, according
to various mechanisms based on the presence of scattering
centers (phonons, charge defects, structural defects, etc),
including a pure elastic way called ballistic (Matissien
rule). The scattering paradigm is presented in Fig. 5. The
computational procedure developed by us for these calcu-
lations [5, 6] is based on the construction of the cluster po-
tentials as well as the evaluation of the S- and T-matrices

for scattering and transfer, respectively. This allows us to
realize the full-scale electronic structure calculations for
condensed matter (‘black box’), where influence means a
set of electronic ‘trial’ energy-dependent wave functions
W, (r) and response W,,(r) gives sets of scattering am-
plitudes corresponding to possible scattering channels for
any ‘trial’ energy. This allows us to ‘decrypt’ the elec-
tronic spectra of ‘black box.

‘}'m" = S‘{-’in BLACK BOX

T
Wi e
T=1-S5

Figure 5. The scattering paradigm: Influence (in) and Response
(out).

We consider a domain where the stationary solutions of
the Schrodinger equation are known, and we label them
by

Yin(r) = i (r) = exp(ikr). M

The scattering of ‘trial’ waves, in the presence of a poten-
tial, yields new stationary solutions labeled by

Your(r) = Y (1) (2)

for the modified Schrédinger equation

Ayl (1) = EG(n).

An electronic structure calculation is considered here as
a scattering problem, where the centers of scattering are
identified with the atoms of clusters [5].

The first step of modeling is the construction of potentials,
both atomic and crystalline. The Gaspar’s potential (G)
of screened atomic nucleus is defined as [9, 10]:

A
g exp u

G = — ———
Vcaul(r) - r ( AI’) ’ (3)
1+ —
u
where A = 01837,y = 0.8853Z-% and A = 1.05. The
; ) A 2z
electronic part of Gaspar's potential is V,(r) = - +

VE(r). Using a statistical approach for atoms, one usu-
ally applies X, and X,z presentations for the electronic
exchange and correlation:

1

3pe(r) ) .

Vit = —ba 2
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where a depends on the charge number Z, and

Vo) =1+ G o0 v, o)

where

4 (Vpe\? [V
Gip =3 (22
a = 0.67 and B = 0.003, whereas the electron density

function
=
Pell) = =g

Thus, the atomic potential of a neutral atom can be ex-

pressed as:
Vat(r) = Veour(r) + Vex—corr(r), (6)

where V,, is the Gaspar's potential and Vey_c,, is either
Vx, or ans' Thus, both the crystalline potential and the
electronic density function can be expressed using formu-
lae:

VCGUI(r) = Vc?)ul(r) + Z VcGaul,y (‘I’ - RL/V

y.ny

). o

pe,crysr(r) = pe(r) + Zpe,v (‘I’ - Rr);y

y.ny

) ®

where summing is performed over the crystalline unit cell,
y defines a sort of atom while n, numerates positions of
atoms separated by the corresponding R) interatomic dis-
tances. Fig. 6 shows both atomic and crystalline poten-
tials for carbon as compared to the Hartree-Fock atomic
potential.
Then, we apply the so-called muffin-tin approximation
(MTA):

Virr(r) = (Verysi(r)) = Viirz, 9)

where Viysi(r) = Veout(r) + Vex—corr(r), Vex—corr are the
same potentials Vy, or Vx, as in atomic case except
for the electronic density, which is defined according to
Eq. (8), whereas Vyrz the MT-zero estimate of poten-
tial (so far, the most attention was paid to the spherical
non-symmetrical MT-potentials).

To obtain the electronic structure, the calculations on scat-
tering properties are necessary, generally, in the form
of S- and T-matrices (Fig. 2). These calculations start
with the definition of the initial atomic structure, to pro-
duce a medium for the solution of the scattering problem,
for a trial electronic wave [5]. The results of potential
modeling and phase shifts in the framework of the MT-
approximation are presented elsewhere [5, 6].

Carbo npotentials
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Figure 6. Analytical carbon potentials based on simulation proce-
dure Egs. (1-6) as compared to the results of Hartree-Fock
calculations.

The formalism used by us for electronic structure calcula-
tions is based on the CPA approximation [7], the multiple
scattering theory [11] and cluster approach [12]. As a first
step in the modeling procedure, one postulates the atomic
structure at the level of short- and medium-range orders.
As a second step we construct a "crystalline” potential and
introduce the muffin-tin (MT) approach. This is accom-
plished by using realistic analytical potential functions.
The scattering paradigm for the simplest cases of spheri-
cally symmetrical potential-scatterers (elastic scattering)
looks as:

elkr

Y(r) — e +£(0) (“liquid metal” model case) (10)

r

and

eikr

glr) — e + (6, 9)

(spherical cluster model case).

(1)
Then, the electronic wave scattering problem is solved:
i) the energy dependence of the scattering properties for
isolated MT scatterers is established, in the form of the
phase shifts 0;,(E), and ii) the T-matrix of the cluster is

r

found as a whole.

In general, the modelling of disordered materials repre-
sents them as a set of atoms or clusters immersed in an
effective medium, with the dispersion E(K) and a com-
plex energy-dependent coherent potential £(E) found self-
consistently in the framework of the CPA. The basic equa-
tions of this approach are:

T(E) = Vit +(TY (1 + Gerr (TH 7, (12)

G(E) = Geff + Gef[ <T> Ggff = <G> , (13)
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(T(E,K)) =0, (14)

L(E) = Ve, (15)

(G) = G(E) = Gerr, (16)
N(E) =~ 2 infdet |GE) ). (17

Here (..
tential and the Green’s function of the effective medium,
respectively, T(E, K) the T matrix of the cluster, and N(E)
the integral density of the electronic states. Eq. (14) can
be re-written in form:

.) denotes averaging, V. and G are the po-

(T(E.K) = SpTIEK) = [ (K|TIEK)|K)due =,
QK (18)
where

IK) =47y (0)'jilkr) Y (K) Yin (1)

L,m

is the one-electron wave function, Sp means the calcula-
tion of the matrix trace while the integration is performed
over all angles of K inside the volume Qk. The indices [
and m arise, as a result of expansions of the functions as
Bessel's functions j;, Hankel's functions h, and spherical
harmonics Yi,. Eq. (14) enables one to obtain the dis-
persion relation E(K) of the effective medium. The DOS
calculations have been performed according to the rela-
tion:

SN(E)

plE) = 25 = %/%{SpG(r, ¢ E)}dr,  (19)

where & means the imaginary part of the matrix trace and

G(r,v', E) = Z Yim (1) Yim (F)Gy(r, ¥')

Lm

is the angular expansion of Green function.

The paradigm of scattering theory and the developed
strateqy of simulation of CNTs electronic properties
uses the generalized scattering condition for the low-
dimensional atomic structures of condensed matter (Quan-
tum Scattering in d-Dimensions):

exp(xikr)
=

G o< diln +17(Q) Y

r

where superscripts ‘+’ and -’ label the asymptotic behav-
ior in terms of d-dimensional waves:

a0‘0—)b

%ot = (6 [0] 0 )| patE) 1)

Following the scattering paradigm (see Egs. (1), (2) and
Fig. 5) we should take into account the dimension (see
Eq. (20), d = 2) and symmetry of the scattering problem
for nanotube modeling. This also means that the disper-
sion law of a scattered wave, Eq. (18), must be introduced
as a sum of radial (r) and axial (z-axis) contributions,
namely: k? = k? + k2. These expansions are usually used
for objects with cylindrical symmetry such as nanotubes
[13-15]. In particular, the scattering model for a cylindri-
cal atomic cluster allows us to calculate below the CNTs
electronic structure for various diameters and chiralities.

2.2. Calculations of
resistance

conductivity and

The calculations of conductivity are usually performed us-
ing Kubo-Greenwood formula [16]:

0 (@) = 72 / [F(E) — (E + hw)] | De p(E)P(E + hw)dE,

(22)
where w is a real frequency parameter of Fourier transform
for the time-dependent functions, f(E) the Fermi-Dirac
distribution function,

DE,E’ :ILPZ’/VLPEdr:
Q

Wek) = Aexp(iKr) and K is the complex wave vector of
the effective medium. The dispersion function E(K) deter-
mines the properties of the wave function Wg) upon the
isoenergy surface in K-space. The imaginary part of K
(K) causes a damping of the electron wave, due to the
absence of the long-range structural order.

For static conductivity (w = 0 and T = 0 K) Eq. (22) gives
Drude-like formula:

UE(K) = T, (23)

where n* is the effective electron density, with a relaxation
time

TN —,

Vh

[(T) is the free path while a heat velocity is

(3/<T)%
Vp = .

m*

The effective electron mass can be defined using the dis-
persion law:
PE\T
= o= , 24
"= (5] -
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where Kg is a modulus of the real part of K vector.
Thus, there exist some ideas to estimate the conductivity
in static and frequency regimes and to take into account
temperature effects. However, in the case of CNT, we must
consider not only the diffusive mechanism of conductivity,
but also the ‘so-called’ ballistic one. This is an evident
complication in the interpretation of electrical properties
of CNTs and related systems.

3. ‘Liquid metal’ model for CNT-
metal junction: Ni-CNT case

The term “liquid metal” means the structural disorder of
the substance involved, more precisely, only the nearest
order (short range order - SRO) is taken into account, as
it usually occurs in a liquid. It also means that the inter-
atomic distance from the nearest neighbor (first coordina-
tion sphere) is fixed, whereas the angular coordinates are
random.

To implement this model, we focus the matter into a sin-
gle atom (Fig. 7) which is associated with a crystalline
potential in MT-approach, to consider the influence of
the nearest vicinity. The neighbor atom around the stud-
ied atom is spread and, in fact, we are working on the one
bond distance.

2
_.\\ ' Re
/

V =const

)

Figure 7. The “liquid metal” model.

The area 2 is a sphere of radius Rc determined from the
condition of average matter density maintenance. How-
ever, to consider the influence of medium we need to “load”
the sphere 2 with an effective complex potential, which de-
fines the fading of electromagnetic waves, thereby mod-
eling the disordered medium. The region 3 is under the
influence of coherent potential L(E). After that we must
match the wave functions on the border of regions 2 and
3, superposing the Soven condition [17], which correspond
to the statement that disordered media do not allow the
forward scattering. The spherical symmetry of this system
allows us to use partial decomposition techniques and the

scattered wave outside the MT-sphere 2, where the po-
tential is constant, defined as: Lpfz’ = ji(kr) — tgoin(kr).
The next step is to find the dispersion law of the effec-
tive medium and the electronic density of states (EDOS).
In “liquid” model, the argument K of dispersion function
E(K) is complex: Kr+iK|. The CPA approach means:

/<|<|z||<>dn.< =0

Og

(similar to Eqs. (14) and (18)).

Another condition is that the average density of matter
is maintained also locally. For CNT-Ni junction (Figs. 3,
4), a ‘liquid metal’ model is calculated using the ‘mixed’
dispersion law [5, 17]:

Ec_ni(KRr) = xEc(KRr) + (1 — x) Eni(KR). (25)

The metal alloy model is used for evaluation of mixed
effective mass m¢_y(E). Taking into account the spectral
dependence of the effective mass m*(E) and estimating the
spectral resistivity p,(E), we should estimate the average
layer resistivity py 4 as:

Efin
Of px(E)dE

Prar = (26)
where Ey;, is the estimated width of conduction band and
x(z) the stoichiometry coefficient depending on the coor-
dinate z of ring layer (Fig. 4). An evaluation of resistance
for the CNT-Ni contact gives ~ 105 kOhm for the nan-
otube with the internal and external radii R; = 1.0 nm and
R, = 2.0 nm. Evidently, the results of resistance evalu-
ation for the interconnect depend essentially on both the
layer height [y (CiNij_x space, Fig. 4) and the spectral
integration parameter Ey;,, which is responsible for the
electron transport of really activated electrons. The “lig-
uid metal” model does not take into account CNT chiral-
ity in the interconnect space. Limitations on simulation of
chirality effect (influence of chirality angle) in the CNT-
Me junction forced us to develop the semi-empirical model
which takes into account the local atomic structure of in-
terconnect. For this aim, we have construct a model of
‘effective bonds’ for interconnect with the realistic atomic
structure.

4. Simulation of CNT-Me
interconnect: ‘Effective bonds’ model

A model of the CNT-Me nanointerconnect [4] (Fig. 1) is
developed in the current study. Within the electronic
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transport formalism, it consists of two regions supporting
the two different electron transport mechanisms: ballis-
tic (elastic) and collisional (non-elastic). These electron
transport processes are simulated by the corresponding
boundary conditions in the form of the effective medium.
The CNT chirality (m,n) is simulated by the corresponding
orientation of carbon rings within the scattering medium
(Fig. 8).

chirality angle

Effective medlum

Figure 8. Modeling of chirality effects: carbon ring rotation within
CNT.

The most problematic regions for simulation are CNT-Me
junctions, where atomic structural disorder is observed and
the conductivity mechanism is changed. The chirality in-
fluence on the resistance in the region of interconnect de-
pends on the number of statistically realized bonds be-
tween the CNT and the catalytic substrate (e.g., Ni, Cu,
Au, Ag, Pd, Pt) formed during the CNT growth above the
metallic catalyst surface.

4.1. Mechanism of the ballistic conductivity
as a result of the multiple scattering

We assume that the conducting nanotubes are not very
long and electrons are not drastically scattered by any
defect (imperfection) of this nanomaterial. The effect of the
charge accumulation is neglected as well. We are dealing
with the so called ‘ballistic’ mechanism of the electronic
transport. Such a model is similar to ideal billiards with
moving elastic balls-electrons. This means that we con-
sider that the length of CNT provides the ideal ballistic
conductivity in conditions of standing waves in open res-
onator. According to the Landauer model [18],

eZ
Gmn = FSP(InnT;n)rm #n,

2
e
where g, are the conductance coefficients while " TAp

is the current flow between the two reservoirs with a dif-
ference between the chemical potentials Ay = 1y — 1
(Ty2 is the transmission coefficient found to be between 1
to 2 in the one-channel case) based on the conception of

2 2
the quantum conductance ¢ _ 0.077 kKOhm™' (or, the

resistance is about 12.92 kOhm).

Using the simulation models, presented earlier [5], we have
developed resistance models for both SW and MW CNT-
Me interconnects, based on the interface potential bar-
riers evaluation and Landauer formula, which defines the
integrated conductance:

262 N 1 N N
o= Ti= ==~ T,=00774Y T,
“"h ; : (12.92(I<Q)); 1 =00 ; v

@)
where N is the number of conducting channels and T; the
corresponding transmission coefficient.

4.2. Chirality and thickness simulations

Fig. 9 presents a simulation of catalytic growth of CNT
upon the metal substrate. This is accompanied by creation
of C-Me 'effective bonds. We consider here the (001)
substrates of some fcc-metals. We should also point out
that this is a probabilistic process when only more-or-
less equilibrium bonds (“effective bonds”) are formed at
inter-atomic distances corresponding to the minimum total
energies. The evaluation of a number of “effective bonds”
using Eq. (27) is principal for the number of “conducting
channels”, since the conductance is proportional to the
number of apparent “effective bonds” within the CNT-Me
interconnect.

Figure 9. The SW CNT-Me interconnect: model of “effective bonds”.

The calculation of conducting abilities of “effective bond”
leads us to estimate the energy-dependent transparency
coefficient of a potential barrier C-Me (Fig. 10), which
belongs to scattering problems. The scattering process
for a C-Me potential barrier is also requlated by the ef-
fect of “thin film” for conductivity electrons, which leads
to quantization in voltaic parameters (in the case of full
transparency). The transmission (transparency) coefficient
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T for the barrier scattering problem (Eq. (28) and Fig. 10)

is defined as:
2
T = @(72\/?1 ) , (28)
Es \VE +VE;

where E; and E, are the corresponding electron ener-
gies. Evaluation of resistances R; for CNT-Ni junctions
for various nanotube diameters and chiralities are present
in Table 1 (see also Figs. 9 and 10).

Figure 10. The formation of potential barrier for SW CNT-Me inter-
connect.

These resistances have been estimated taking into account
that only thermally activated electrons (i.e., a small part
of all electrons) take a part in the conduction process with
Fermti velocity ve. This ratio can be estimated as:

An 3 kT

- R iE (29)
where n is the quasi-free electron concentration, for T =
300 K, kT = 0.0258 eV.
The role of thermally activated electron is described by the
scattering mechanism changing in the space of CNT-Me
interconnect. The mean free path L in the CNT is of order
102 —10* ac, where ac is a carbon covalent radius, which
can be explained by the ballistic mechanism of electron
transport within the energy channel of the CNT. In the
vicinity of the interconnect, we observe a drastic decrease
of the electron mean free path down to 1-2 ac. From the
uncertainty condition kL =~ 1 (where L ~ ac ~ 2a.u. is a
free path), we can evaluate the Fermi electron wave num-

ber k < kf & — = 0.5a.u.”". It means that Ef ~ 0.25
ac

Table 1. Simulation of resistance for the SW CNT-Ni interconnect
(Fig. 9).

Diameter, Chirality ~ Number of Modulus of Interconnect

nm indices bonds in chirality  resistance,
(Fig. 8) contact vector, nm kOhm
zig-zag, ¢ = 0°
1.010 C(13,0) 12 2952 665.19
2.036 C(26,0) 24 6.394 33333
5.092 C(65,0) 64 15.990 124.72
10.100 C(130,0) 129 32.002 61.87
20.360 C(260,0) 259 63.940 30.82
armchair, ¢ = 30°
0.949 C(7,7) 12 2.982 665.19
2.035 C(15,15) 28 6.391 205.71
5.021 C(37.37) 72 15.765 1M1
10.041 C(74,74) 146 31.531 54.79
20.084 C(128,128) 294 63.062 27.21
C(3m,m), ¢ =14°
0.847 C(9,3) 3 2.66 2666.66
1.694 C(18,6) 5 5.32 1600.00
5.082 C(54,18) 16 15.96 500.00
10.16 C(108,36) 36 32.05 222.22
20.32 C(216,72) 80 64.10 100.00
C(2m,m), ¢ =19°
1.036 C(10,5) 5 3.254 1600.00
2.072 C(20,10) 9 6.508 888.88
4.973 C(48,24) 17 15.614 470.50
10.1528 C(98,49) 47 31.880 170.21
20.5128 C(198,99) 97 64.410 82.47

Ry, i.e., a large increase of resistance occurs in the inter-
connect space. In particular, the variation of the chirality
angle ¢ within the interconnect space leads to a fluctua-
tion of the number of C-Me atomic bonds. In the case of
0° < ¢ < 30° a certain number of non-stable and non-
equilibrium bonds can be created. Evidently, this leads
to a decrease of interconnect conductance, which is well-
observed when performing variation of nanotube diameter
(Fig. 11):

Specific results for chirality effect simulations are shown
in Fig. 12, with an evident maximum of the resistance for
¢ ~ 15°, where the large number of non-equilibrium bonds
is formed, with higher potential barriers and lower trans-
parency.

Fig. 13 shows the generalized results of simulations on
resistance of junctions obtained for various metallic sub-
strates. It is clear that Ag and Au substrates are more
effective electrically while Ni is rather a ‘worse’ substrate
for interconnect, although it yields the most effective cat-
alyst for CNT growth. On the other hand, the catalysts
which are usually used for the SW CNT growth (e.g., Fe,
Co and Ni), have a stronger bound to the ends of SW
CNTs than noble metals [19], i.e., some compromise ex-
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CNT-Ni interconnects
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Figure 11. CNT-Ni interconnect resistance via NT diameter.
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Figure 12. CNT-Ni interconnect simulation: chirality effects.

Resistance of SWCNT-Metal Interconnects
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Figure 13. Resistances of the zigzag-type SW CNT-Me intercon-
nects for the CNT diameter ~ 1 nm.

ists between electrical parameters and strengths of the
interconnect bonding.

5. Simulations on MW CNT-Me
interconnects: conductance and
resistance

Our current study focuses on the development of mod-
els describing the growth mechanism of carbon nanotubes
upon nanostructured Ni catalyst inside the pores of Al,O3
membranes. The scope of these simulations allows us
to predict that a specific morphology of CNTs could be
formed inside the specific membranes having defined pe-
riodicity and hole dimensions. These simulations are nec-
essary, in order to understand the basic mechanism of
CNT growth and to achieve the tight control on the fab-
rication process. We have constructed atomistic models
of both SW CNT bundles and MW CNTs which could fit
into a porous alumina with holes diameters ~20-21 nm. In
particular, a multi-shell model of MW CNT is presented
in Fig. 14, with a pre-defined combination of armchair (ac)
and zig-zag (zz) shells (Table 2).

Four red nanotubes - metallic (ac)
‘Seven gray nanotubes - semiconducting (zz)

Figure 14. A cross-section of the supercell model for MW CNT with
height 6.39 nm and external diameter 19.89 nm.

Using the simulation models presented earlier, we have
developed an “effective bonds” model for MWCNT-Me
junction resistance [20] based on the interface potential
barriers evaluation and Landauer formula, Eq. (27). Re-
sults of these simulations are presented in Figure 15 and
Table 3. Again, Fig. 15 shows similar ratios of electric
resistances as for SW CNTs (Fig. 13), in favor of Au, Ag
and Pd.

However, in the case of MWCNT-Me junction, the integral
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Table 2. Details of the model for MW CNT-Me interconnect.

Diameter of CNT shell, nm Chirality
12.88 (95,95) ac
13.54 (173,0) zz
14.24 (105,105) ac
14.87 (190,0) zz
15.58 (199,0) zz
16.27 (120,120) ac
16.99 (217,0) zz
17.69 (226,0) zz
18.44 (136,136) ac
19.18 (245,0) zz
19.88 (254,0) zz

Resistance of MWCNT-Metal Interconnects

Ni Cu Pd  Ag Pt Au

Figure 15. Resistances of various MWCNT-Me interconnects.

Table 3. Simulation of resistances for the MW CNT-Me intercon-

nects.
Metal 7 Interconnect resistivity, kOhm
Au 79 2313
Pt 78 2.345
Pd 47 4.050
Ag 46 2.062
Cu 29 2.509
Ni 28 3.772

mechanical bonding with a corresponding substrate may
be not so significant as in the case of SW CNTs, where
the weak bonding can be principal.

6. Evaluation of current loss
between the adjacent shells inside
the MW CNT

Using the model of inter-shell potential within the MW
CNT we also have evaluated the transparency coefficient,
which determines the possible ‘radial current’ losses.
Fig. 16 shows the inter-shell potential which is calcu-
lated using the developed realistic analytical potentials
(see comments in Section 2 and the procedure of the po-
tential construction, e.g., in [3]).

Figure 16. Inter-shell transparency and inter-shell MT-potential
model (MT-muffin tin).

In Fig. 16, A is the electron emission energy, E the elec-
tron energy, V the height of the potential barrier between
the nearest atoms in neighboring nanotube shells. Thus,
a radial transparency coefficient T for the two different
energy ratios can be defined as:

2
E>V,T= f‘EZkZ k2 =E—V, (30)
(E — k3) sin® kya + 4Ek3
2
E<V,T= 1Eiq =V-E 31

2
(E — «2) sh’koa + 4E1<§'K2

where k, the electron wave number in the case of above-
barrier motion and k> the same for under-barrier motion.
For example, between the 2" and 1! shells (zz-ac case,
Fig. 14) @ = 13.54 —12.88 = 0.66 nm = 12.47 a.u. and
T =3.469-107° per 1 bond.

The total radial conductance is proportional to both T and
the number of effective potential barriers. It is also clear
that the ‘radial current’ losses (or, simply radial current)
are similar to the Hall current due to the induced magnetic
field of the basic axial current. A pure scattering mech-
anism is also possible. However, the radial conductance
per CNT length depends on the morphology (chirality) of
the nearest nanotubes, when the number of shortest ef-
fective barriers is varied in a probabilistic way. This also
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means that current-voltage parameters of MW CNTs can
be less stable, than in the case of SW CNTs. It was found
that inter-shell interactions, such as inter-shell tunnel-
ing of electrons and Coulomb interactions [21-23] cause a
reduction of the total MW CNT conductance.

7. Conclusions

Using the ‘effective bonds’ model, we have predicted the
resistivity of interconnects between the metal substrate
(e.g., Ni) and the SW or MW CNTs. There also ex-
ists a qualitative compatibility of results obtained for the
CNT-Me junctions using both approaches considered in
this paper: (i) first principles ‘liquid metal’ model and
(if) semi-empirical ‘effective bonds’ model based on the
Landauer relationship. At the same time, the latter re-
sults are quantitatively comparable with those measured
experimentally, i.e., within the range from several up to
50 kOhm [24].

We have also developed the model of inter-shell interac-
tion for the MW CNTs, which allows us to estimate the
transparency coefficient as an indicator of possible ‘radial
current’ losses. We have underscored that a conductance
and other current-voltaic parameters depend on the mor-
phology of the nearest shells in MW CNTs, which leads
to complications for technology and production of nanode-
vices with the stable electric characteristics.
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