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Abstract: This theoretical study focuses on junctions between the carbon nanotubes (CNTs) and contacting metallic
elements of a nanocircuit. Numerical simulations on the conductance and resistance of these contacts have
been performed using the multiple scattering theory and the effective media cluster approach. Two models
for CNT-metal contacts have been considered in this paper: a) first principles “liquid metal” model and b)
semi-empirical model of “effective bonds” based on Landauer notions on ballistic conductivity. Within the
latter, which is a more adequate description of chirality effects, we have simulated both single-wall (SW) and
multi-wall (MW) CNTs with different morphology. Results of calculations on resistance for different CNT-Me
contacts look quantitatively realistic (from several to hundreds kOhm, depending on chirality, diameter and
thickness of MW CNT). The inter-wall transparency coefficient for MW CNT has been also simulated, as
an indicator of possible ‘radial current’ losses.
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1. Introduction

In order to overcome disadvantages of contemporary mi-crotechnology, the miniaturization of electronic devices, ahigh integration level and the increase of the operationfrequencies and power density are required, including theuse of adequate materials and innovative chip intercon-nects. Due to their unique physical properties, carbonnanotubes (CNTs) attract permanently growing techno-
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logical interest, for example, as promising candidates fornano-interconnects in a high-speed electronics [1]. Themain aim of the current study is the implementation ofadvanced simulation models for a proper description ofthe electrical resistance for contacts between carbon nan-otubes of different morphology and metallic substrates ofdifferent nature. An adequate description of CNT chi-rality is one of the key points for proper simulations onelectric properties of CNT-based nanoelectronic devices.The single-wall carbon nanotube can be constructed bywrapping up the graphene monolayer in such a way thatthe two equivalent sites of the hexagonal lattice coin-cide. The wrapping vector C, which defines the relativelocation of the two sites, is specified by a pair of inte-gers (n,m) that decompose C to the two unit vectors a1and a2 (i.e.,C = na1 + ma2). The nanotube is called‘armchair’ if n equals m, whereas if m = 0 such a CNTpossesses ‘zigzag’ chirality. All the other nanotubes be-long to the ‘chiral’ type and have a finite wrapping angle
φ : 0◦ < φ < 30◦ [2].The resistance of contacts between CNTs and metallic cat-alytic substrates can considerably exceed that observedin the separate parts of these junctions [3]. The conduc-tance between real metals and CNTs still occurs, how-ever, mainly due to the scattering processes, which areestimated to be rather weak [4]. Fig. 1 represents thecontacts between a CNT and metallic electrodes, as a pro-totype nanodevice. This is a main subject of our currentresearch and modeling. The toroidal region (CNT-Me) isthe object of a microscopic approach responsible for themain contribution to the resistance. As to the nanotubeitself and the metallic substrate, their resistances may beconsidered as macroscopic parameters.The electronic structure for the CNT-Me interconnectcan be evaluated through the electronic density of states(DOS) for carbon-metal contact considered as a ‘disor-dered alloy’, where clusters containing both C and Meatoms behave as scattering centers. The computationalprocedure developed by us for these calculations [5] isbased on the construction of cluster potentials and theevaluation of both scattering (S) and transfer (T ) matri-ces.The general model of multiple scattering with effective me-dia approximation (EMA) for condensed matter based onthe approach of atomic cluster is presented in Fig. 2. Thecluster formalism was successfully applied for metallic Cu[5], as well as for both elemental (Ge and Si) and binary(AsxSe1−x and SbxSe1−x) semiconductors [6]. A special at-tention was paid for the latter, since in solid solutionsthe concept of statistical weighing was applied for thebinary components [5, 6]. When using the coherent po-tential approximation (CPA) as EMA approximation, the

Figure 1. Model of CNT-Me interconnect as a prototype of nanode-
vice.

resistance of the interconnect can be evaluated throughthe Kubo-Greenwood formalism [7] and Ziman model [8].Both Figs. 3 and 4 depict the idealized images of contactsbetween CNTs and the Ni substrate.

Figure 2. Multiple scattering problem for the system of clusters as
multiple scattering model of condensed matter: strategy
of calculations of fundamental properties of condensed
medium described within the effective media approxima-
tion.

The electronic structure of the CNT-Ni interconnects, inthe simplest case, can be evaluated through the DOS forC-Ni contact, considered as a ‘disordered alloy’, whereclusters containing carbon and nickel atoms are the scat-tering centers. However, in many cases, we have to de-velop more complicated structural models for CNT-metaljunctions, based on their precise atomistic structures,which take into account the CNT chirality effect. Thisis also the subject of the current study. When estimatingthe resistance of a junction between the nanotube and thesubstrate, the main problem is caused by the influence ofthe nanotube chirality on the resistance of SW and MWCNT-Me interconnects (Me = Ni, Cu, Ag, Pd, Pt, Au), for
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Figure 3. Fragment of interconnects between the Ni substrate and
C nanotubes.

Figure 4. Model of CNT-Ni interconnect as a disordered alloy.

a pre-defined CNT geometry.
2. Multiple scattering theory and
effective medium approach for CNT
simulations

2.1. Electronic structure calculations
We consider the resistivity as a scattering problem, wherethe current carriers participate in the transport, accordingto various mechanisms based on the presence of scatteringcenters (phonons, charge defects, structural defects, etc.),including a pure elastic way called ballistic (Matissienrule). The scattering paradigm is presented in Fig. 5. Thecomputational procedure developed by us for these calcu-lations [5, 6] is based on the construction of the cluster po-tentials as well as the evaluation of the S- and T -matrices

for scattering and transfer, respectively. This allows us torealize the full-scale electronic structure calculations forcondensed matter (‘black box’), where influence means aset of electronic ‘trial’ energy-dependent wave functionsΨin(r) and response Ψout(r) gives sets of scattering am-plitudes corresponding to possible scattering channels forany ‘trial’ energy. This allows us to ‘decrypt’ the elec-tronic spectra of ‘black box’.

Figure 5. The scattering paradigm: Influence (in) and Response
(out).

We consider a domain where the stationary solutions ofthe Schrödinger equation are known, and we label themby
ψin(r) = φk(r) = exp(ikr). (1)The scattering of ‘trial’ waves, in the presence of a poten-tial, yields new stationary solutions labeled by

ψout(r) = ψ(±)
k (r) (2)

for the modified Schrödinger equation
Ĥψ(±)

k (r) = Eψ(±)
k (r).

An electronic structure calculation is considered here asa scattering problem, where the centers of scattering areidentified with the atoms of clusters [5].The first step of modeling is the construction of potentials,both atomic and crystalline. The Gaspar’s potential (G)of screened atomic nucleus is defined as [9, 10]:
V G
coul(r) = −2Z

r

exp(−λrµ
)

(1 + Ar
µ

) , (3)
where λ = 0.1837, µ = 0.8853Z− 13 and A = 1.05. Theelectronic part of Gaspar’s potential is Ve(r) = 2Z

r +
V G(r). Using a statistical approach for atoms, one usu-ally applies Xα and Xαβ presentations for the electronicexchange and correlation:

VXα (r) = −6α (3ρe(r)8π
) 13

, (4)
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where α depends on the charge number Z , and
VXαβ (r) = [1 + β

α G
(ρe(r))]VXα , (5)

where
G(ρe) = 43

(
∇ρe
ρe

)2
− 2∇2

ρe
ρe,

α = 0.67 and β = 0.003, whereas the electron densityfunction
ρe(r) = ∇rVe8π .

Thus, the atomic potential of a neutral atom can be ex-pressed as:
Vat(r) = Vcoul(r) + Vex−corr(r), (6)

where Vcoul is the Gaspar’s potential and Vex−corr is either
VXα or VXαβ . Thus, both the crystalline potential and theelectronic density function can be expressed using formu-lae:

Vcoul(r) = V G
coul(r) +∑

γ,nγ

V G
coul,γ

(∣∣∣r− Rγ
nγ

∣∣∣) , (7)
ρe,cryst(r) = ρe(r) +∑

γ,nγ

ρe,γ
(∣∣∣r− Rγ

nγ

∣∣∣), (8)
where summing is performed over the crystalline unit cell,
γ defines a sort of atom while nγ numerates positions ofatoms separated by the corresponding Rγ

n interatomic dis-tances. Fig. 6 shows both atomic and crystalline poten-tials for carbon as compared to the Hartree-Fock atomicpotential.Then, we apply the so-called muffin-tin approximation(MTA):
VMT (r) = 〈Vcryst(r)〉− VMTZ , (9)

where Vcryst(r) = Vcoul(r) + Vex−corr(r), Vex−corr are thesame potentials VXα or VXαβ as in atomic case exceptfor the electronic density, which is defined according toEq. (8), whereas VMTZ the MT -zero estimate of poten-tial (so far, the most attention was paid to the sphericalnon-symmetrical MT -potentials).To obtain the electronic structure, the calculations on scat-tering properties are necessary, generally, in the formof S- and T -matrices (Fig. 2). These calculations startwith the definition of the initial atomic structure, to pro-duce a medium for the solution of the scattering problem,for a trial electronic wave [5]. The results of potentialmodeling and phase shifts in the framework of the MT -approximation are presented elsewhere [5, 6].

Figure 6. Analytical carbon potentials based on simulation proce-
dure Eqs. (1-6) as compared to the results of Hartree-Fock
calculations.

The formalism used by us for electronic structure calcula-tions is based on the CPA approximation [7], the multiplescattering theory [11] and cluster approach [12]. As a first
step in the modeling procedure, one postulates the atomicstructure at the level of short- and medium-range orders.As a second step we construct a ”crystalline” potential andintroduce the muffin-tin (MT ) approach. This is accom-plished by using realistic analytical potential functions.The scattering paradigm for the simplest cases of spheri-cally symmetrical potential-scatterers (elastic scattering)looks as:
ψ(r)→ eikz + f(θ)eikr

r (“liquid metal” model case) (10)
and
ψ(r)→ eikz + f(θ, φ)eikr

r (spherical cluster model case).(11)Then, the electronic wave scattering problem is solved:i) the energy dependence of the scattering properties forisolated MT scatterers is established, in the form of thephase shifts δlm(E), and ii) the T -matrix of the cluster isfound as a whole.In general, the modelling of disordered materials repre-sents them as a set of atoms or clusters immersed in aneffective medium, with the dispersion E(K) and a com-plex energy-dependent coherent potential Σ(E) found self-consistently in the framework of the CPA. The basic equa-tions of this approach are:
Σ(E) = Veff + 〈T 〉 (1 + Geff 〈T 〉)−1, (12)
G(E) = Geff + Geff 〈T 〉Geff = 〈G〉 , (13)
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〈T (E,K)〉 = 0, (14)
Σ(E) = Veff , (15)

〈G〉 = G(E) = Geff , (16)
N(E) = − 2

π ln{det ‖G(E)‖}. (17)
Here 〈. . .〉 denotes averaging, Veff and Geff are the po-tential and the Green’s function of the effective medium,respectively, T (E,K) the T matrix of the cluster, and N(E)the integral density of the electronic states. Eq. (14) canbe re-written in form:
〈T (E,K)〉 = SpT (E,K) = ∫

ΩK

〈K |T (E,K)|K〉dΩK = 0,
(18)where

|K〉 = 4π∑
l,m

(i)ljl(kr)Y ∗lm(K)Ylm(r)
is the one-electron wave function, Sp means the calcula-tion of the matrix trace while the integration is performedover all angles of K inside the volume ΩK . The indices land m arise, as a result of expansions of the functions asBessel’s functions jl, Hankel’s functions hl and sphericalharmonics Ylm. Eq. (14) enables one to obtain the dis-persion relation E(K) of the effective medium. The DOScalculations have been performed according to the rela-tion:

ρ(E) = δN(E)
δE = 2

π

∫
={SpG(r, r′, E)}dr, (19)

where = means the imaginary part of the matrix trace and
G(r, r′, E) =∑

l,m

Ylm(r)Ylm(r′)Gl(r, r′)
is the angular expansion of Green function.The paradigm of scattering theory and the developedstrategy of simulation of CNTs electronic propertiesuses the generalized scattering condition for the low-dimensional atomic structures of condensed matter (Quan-tum Scattering in d-Dimensions):

ψ(±)
k (r) ∝

r→∞
φk(r) + f (±)

k (Ω)exp(±ikr)
r d−12 , (20)

where superscripts ‘+’ and ‘-’ label the asymptotic behav-ior in terms of d-dimensional waves:
∂σa→b
∂Ω = 2π

~v

∣∣∣〈φb ∣∣∣V̂ ∣∣∣ψ+
a

〉∣∣∣2 ρd(E). (21)

Following the scattering paradigm (see Eqs. (1), (2) andFig. 5) we should take into account the dimension (seeEq. (20), d = 2) and symmetry of the scattering problemfor nanotube modeling. This also means that the disper-sion law of a scattered wave, Eq. (18), must be introducedas a sum of radial (r) and axial (z-axis) contributions,namely: k2 = k2
r +k2

z . These expansions are usually usedfor objects with cylindrical symmetry such as nanotubes[13–15]. In particular, the scattering model for a cylindri-cal atomic cluster allows us to calculate below the CNTselectronic structure for various diameters and chiralities.
2.2. Calculations of conductivity and
resistance
The calculations of conductivity are usually performed us-ing Kubo-Greenwood formula [16]:
σE (ω) = πΩ4ω

∫ [f(E)− f(E + ~ω)] |DE |2 ρ(E)ρ(E + ~ω)dE,(22)where ω is a real frequency parameter of Fourier transformfor the time-dependent functions, f(E) the Fermi-Diracdistribution function,
DE,E ′ = ∫Ω Ψ∗E ′∇ΨEdr,

ΨE(K) = A exp(iKr) and K is the complex wave vector ofthe effective medium. The dispersion function E(K) deter-mines the properties of the wave function ΨE(K) upon theisoenergy surface in K-space. The imaginary part of K(KI) causes a damping of the electron wave, due to theabsence of the long-range structural order.For static conductivity (ω = 0 and T = 0 K) Eq. (22) givesDrude-like formula:
σE(K ) = e2n∗

m∗ τ, (23)
where n∗ is the effective electron density, with a relaxationtime

τ ≈ l
vh
,

l(T) is the free path while a heat velocity is
vh = (3kT

m∗

) 12
.

The effective electron mass can be defined using the dis-persion law:
m∗ = ( ∂2E

∂K 2
R

)−1
, (24)
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where KR is a modulus of the real part of K vector.Thus, there exist some ideas to estimate the conductivityin static and frequency regimes and to take into accounttemperature effects. However, in the case of CNT, we mustconsider not only the diffusive mechanism of conductivity,but also the ‘so-called’ ballistic one. This is an evidentcomplication in the interpretation of electrical propertiesof CNTs and related systems.
3. ‘Liquid metal’ model for CNT-
metal junction: Ni-CNT case
The term “liquid metal” means the structural disorder ofthe substance involved, more precisely, only the nearestorder (short range order - SRO) is taken into account, asit usually occurs in a liquid. It also means that the inter-atomic distance from the nearest neighbor (first coordina-tion sphere) is fixed, whereas the angular coordinates arerandom.To implement this model, we focus the matter into a sin-gle atom (Fig. 7) which is associated with a crystallinepotential in MT -approach, to consider the influence ofthe nearest vicinity. The neighbor atom around the stud-ied atom is spread and, in fact, we are working on the onebond distance.

Figure 7. The “liquid metal” model.

The area 2 is a sphere of radius RC determined from thecondition of average matter density maintenance. How-ever, to consider the influence of medium we need to “load”the sphere 2 with an effective complex potential, which de-fines the fading of electromagnetic waves, thereby mod-eling the disordered medium. The region 3 is under theinfluence of coherent potential Σ(E). After that we mustmatch the wave functions on the border of regions 2 and3, superposing the Soven condition [17], which correspondto the statement that disordered media do not allow theforward scattering. The spherical symmetry of this systemallows us to use partial decomposition techniques and the

scattered wave outside the MT -sphere 2, where the po-tential is constant, defined as: ψ(2)
l = jl(kr) − tgδlnl(kr).The next step is to find the dispersion law of the effec-tive medium and the electronic density of states (EDOS).In “liquid” model, the argument K of dispersion function

E(K) is complex: KR+iKI. The CPA approach means:∫
ΩK

〈K|̃t |K〉dΩK = 0
(similar to Eqs. (14) and (18)).Another condition is that the average density of matteris maintained also locally. For CNT-Ni junction (Figs. 3,4), a ‘liquid metal’ model is calculated using the ‘mixed’dispersion law [5, 17]:

EC−Ni(KR) = xEC(KR) + (1− x)ENi(KR). (25)
The metal alloy model is used for evaluation of mixedeffective mass m∗C−Ni(E). Taking into account the spectraldependence of the effective mass m∗(E) and estimating thespectral resistivity ρx (E), we should estimate the averagelayer resistivity ρx,av as:

ρx,av =
Efin∫
0 ρx (E)dE

Efin
, (26)

where Efin is the estimated width of conduction band and
x(z) the stoichiometry coefficient depending on the coor-dinate z of ring layer (Fig. 4). An evaluation of resistancefor the CNT-Ni contact gives ∼ 105 kOhm for the nan-otube with the internal and external radii R1 = 1.0 nm and
R2 = 2.0 nm. Evidently, the results of resistance evalu-ation for the interconnect depend essentially on both thelayer height l0 (CxNi1−x space, Fig. 4) and the spectralintegration parameter Efin, which is responsible for theelectron transport of really activated electrons. The “liq-uid metal” model does not take into account CNT chiral-ity in the interconnect space. Limitations on simulation ofchirality effect (influence of chirality angle) in the CNT-Me junction forced us to develop the semi-empirical modelwhich takes into account the local atomic structure of in-terconnect. For this aim, we have construct a model of‘effective bonds’ for interconnect with the realistic atomicstructure.
4. Simulation of CNT-Me
interconnect: ‘Effective bonds’ model
A model of the CNT-Me nanointerconnect [4] (Fig. 1) isdeveloped in the current study. Within the electronic
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transport formalism, it consists of two regions supportingthe two different electron transport mechanisms: ballis-tic (elastic) and collisional (non-elastic). These electrontransport processes are simulated by the correspondingboundary conditions in the form of the effective medium.The CNT chirality (m,n) is simulated by the correspondingorientation of carbon rings within the scattering medium(Fig. 8).

Figure 8. Modeling of chirality effects: carbon ring rotation within
CNT.

The most problematic regions for simulation are CNT-Mejunctions, where atomic structural disorder is observed andthe conductivity mechanism is changed. The chirality in-fluence on the resistance in the region of interconnect de-pends on the number of statistically realized bonds be-tween the CNT and the catalytic substrate (e.g., Ni, Cu,Au, Ag, Pd, Pt) formed during the CNT growth above themetallic catalyst surface.
4.1. Mechanism of the ballistic conductivity
as a result of the multiple scattering
We assume that the conducting nanotubes are not verylong and electrons are not drastically scattered by anydefect (imperfection) of this nanomaterial. The effect of thecharge accumulation is neglected as well. We are dealingwith the so called ‘ballistic’ mechanism of the electronictransport. Such a model is similar to ideal billiards withmoving elastic balls-electrons. This means that we con-sider that the length of CNT provides the ideal ballisticconductivity in conditions of standing waves in open res-onator. According to the Landauer model [18],

gmn = e2
h Sp(TmnT+

mn), m 6= n,

where gmn are the conductance coefficients while e2
h T12∆µis the current flow between the two reservoirs with a dif-ference between the chemical potentials ∆µ = µ1 − µ2(T12 is the transmission coefficient found to be between 1to 2 in the one-channel case) based on the conception of

the quantum conductance 2e2
h = 0.077 kOhm−1 (or, theresistance is about 12.92 kOhm).Using the simulation models, presented earlier [5], we havedeveloped resistance models for both SW and MW CNT-Me interconnects, based on the interface potential bar-riers evaluation and Landauer formula, which defines theintegrated conductance:

IG = 2e2
h

N∑
i=1 Ti = ( 112.92(kΩ)

) N∑
i=1 Ti = 0.0774 N∑

i=1 Ti,(27)where N is the number of conducting channels and Ti thecorresponding transmission coefficient.
4.2. Chirality and thickness simulations
Fig. 9 presents a simulation of catalytic growth of CNTupon the metal substrate. This is accompanied by creationof C-Me ‘effective bonds’. We consider here the (001)substrates of some fcc-metals. We should also point outthat this is a probabilistic process when only more-or-less equilibrium bonds (“effective bonds”) are formed atinter-atomic distances corresponding to the minimum totalenergies. The evaluation of a number of “effective bonds”using Eq. (27) is principal for the number of “conductingchannels”, since the conductance is proportional to thenumber of apparent “effective bonds” within the CNT-Meinterconnect.

Figure 9. The SW CNT-Me interconnect: model of “effective bonds”.

The calculation of conducting abilities of “effective bond”leads us to estimate the energy-dependent transparencycoefficient of a potential barrier C-Me (Fig. 10), whichbelongs to scattering problems. The scattering processfor a C-Me potential barrier is also regulated by the ef-fect of “thin film” for conductivity electrons, which leadsto quantization in voltaic parameters (in the case of fulltransparency). The transmission (transparency) coefficient
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Unauthenticated
Download Date | 7/26/18 1:24 AM



Resistance simulations for junctions of SW and MW carbon nanotubes with various metal substrates

T for the barrier scattering problem (Eq. (28) and Fig. 10)is defined as:
T =√E2

E1
( 2√E1√

E1 +√E2
)2
, (28)

where E1 and E2 are the corresponding electron ener-gies. Evaluation of resistances Ri for CNT-Ni junctionsfor various nanotube diameters and chiralities are presentin Table 1 (see also Figs. 9 and 10).

Figure 10. The formation of potential barrier for SW CNT-Me inter-
connect.

These resistances have been estimated taking into accountthat only thermally activated electrons (i.e., a small partof all electrons) take a part in the conduction process withFermi velocity vF . This ratio can be estimated as:
∆n
n ≈

34 kTEF , (29)
where n is the quasi-free electron concentration, for T =300 K, kT = 0.0258 eV.The role of thermally activated electron is described by thescattering mechanism changing in the space of CNT-Meinterconnect. The mean free path L in the CNT is of order102− 104 aC, where aC is a carbon covalent radius, whichcan be explained by the ballistic mechanism of electrontransport within the energy channel of the CNT. In thevicinity of the interconnect, we observe a drastic decreaseof the electron mean free path down to 1-2 aC. From theuncertainty condition κL ≈ 1 (where L ∼ aC ∼ 2a.u. is afree path), we can evaluate the Fermi electron wave num-ber κ ∝ κF ≈

1
aC ≈ 0.5a.u.−1. It means that EF ∼ 0.25

Table 1. Simulation of resistance for the SW CNT-Ni interconnect
(Fig. 9).

Diameter,nm Chiralityindices(Fig. 8)
Number ofbonds incontact

Modulus ofchiralityvector, nm
Interconnectresistance,kOhm

zig-zag, φ = 0◦1.010 C(13,0) 12 2.952 665.192.036 C(26,0) 24 6.394 333.335.092 C(65,0) 64 15.990 124.7210.100 C(130,0) 129 32.002 61.8720.360 C(260,0) 259 63.940 30.82
armchair, φ = 30◦0.949 C(7,7) 12 2.982 665.192.035 C(15,15) 28 6.391 205.715.021 C(37,37) 72 15.765 111.1110.041 C(74,74) 146 31.531 54.7920.084 C(128,128) 294 63.062 27.21
C(3m,m), φ = 14◦0.847 C(9,3) 3 2.66 2666.661.694 C(18,6) 5 5.32 1600.005.082 C(54,18) 16 15.96 500.0010.16 C(108,36) 36 32.05 222.2220.32 C(216,72) 80 64.10 100.00
C(2m,m), φ = 19◦1.036 C(10,5) 5 3.254 1600.002.072 C(20,10) 9 6.508 888.884.973 C(48,24) 17 15.614 470.5010.1528 C(98,49) 47 31.880 170.2120.5128 C(198,99) 97 64.410 82.47

Ry, i.e., a large increase of resistance occurs in the inter-connect space. In particular, the variation of the chiralityangle φ within the interconnect space leads to a fluctua-tion of the number of C-Me atomic bonds. In the case of0◦ < φ < 30◦, a certain number of non-stable and non-equilibrium bonds can be created. Evidently, this leadsto a decrease of interconnect conductance, which is well-observed when performing variation of nanotube diameter(Fig. 11):Specific results for chirality effect simulations are shownin Fig. 12, with an evident maximum of the resistance for
φ ≈ 15◦, where the large number of non-equilibrium bondsis formed, with higher potential barriers and lower trans-parency.Fig. 13 shows the generalized results of simulations onresistance of junctions obtained for various metallic sub-strates. It is clear that Ag and Au substrates are moreeffective electrically while Ni is rather a ‘worse’ substratefor interconnect, although it yields the most effective cat-alyst for CNT growth. On the other hand, the catalystswhich are usually used for the SW CNT growth (e.g., Fe,Co and Ni), have a stronger bound to the ends of SWCNTs than noble metals [19], i.e., some compromise ex-
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Figure 11. CNT-Ni interconnect resistance via NT diameter.

Figure 12. CNT-Ni interconnect simulation: chirality effects.

Figure 13. Resistances of the zigzag-type SW CNT-Me intercon-
nects for the CNT diameter ∼ 1 nm.

ists between electrical parameters and strengths of theinterconnect bonding.
5. Simulations on MW CNT-Me
interconnects: conductance and
resistance
Our current study focuses on the development of mod-els describing the growth mechanism of carbon nanotubesupon nanostructured Ni catalyst inside the pores of Al2O3membranes. The scope of these simulations allows usto predict that a specific morphology of CNTs could beformed inside the specific membranes having defined pe-riodicity and hole dimensions. These simulations are nec-essary, in order to understand the basic mechanism ofCNT growth and to achieve the tight control on the fab-rication process. We have constructed atomistic modelsof both SW CNT bundles and MW CNTs which could fitinto a porous alumina with holes diameters ∼20-21 nm. Inparticular, a multi-shell model of MW CNT is presentedin Fig. 14, with a pre-defined combination of armchair (ac)and zig-zag (zz) shells (Table 2).

Figure 14. A cross-section of the supercell model for MW CNT with
height 6.39 nm and external diameter 19.89 nm.

Using the simulation models presented earlier, we havedeveloped an “effective bonds” model for MWCNT-Mejunction resistance [20] based on the interface potentialbarriers evaluation and Landauer formula, Eq. (27). Re-sults of these simulations are presented in Figure 15 andTable 3. Again, Fig. 15 shows similar ratios of electricresistances as for SW CNTs (Fig. 13), in favor of Au, Agand Pd.However, in the case of MWCNT-Me junction, the integral
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Table 2. Details of the model for MW CNT-Me interconnect.

Diameter of CNT shell, nm Chirality12.88 (95,95) ac13.54 (173,0) zz14.24 (105,105) ac14.87 (190,0) zz15.58 (199,0) zz16.27 (120,120) ac16.99 (217,0) zz17.69 (226,0) zz18.44 (136,136) ac19.18 (245,0) zz19.88 (254,0) zz

Figure 15. Resistances of various MWCNT-Me interconnects.

Table 3. Simulation of resistances for the MW CNT-Me intercon-
nects.

Metal Z Interconnect resistivity, kOhmAu 79 2.313Pt 78 2.345Pd 47 4.050Ag 46 2.062Cu 29 2.509Ni 28 3.772

mechanical bonding with a corresponding substrate maybe not so significant as in the case of SW CNTs, wherethe weak bonding can be principal.

6. Evaluation of current loss
between the adjacent shells inside
the MW CNT
Using the model of inter-shell potential within the MWCNT we also have evaluated the transparency coefficient,which determines the possible ‘radial current’ losses.Fig. 16 shows the inter-shell potential which is calcu-lated using the developed realistic analytical potentials(see comments in Section 2 and the procedure of the po-tential construction, e.g., in [3]).

Figure 16. Inter-shell transparency and inter-shell MT -potential
model (MT -muffin tin).

In Fig. 16, A is the electron emission energy, E the elec-tron energy, V the height of the potential barrier betweenthe nearest atoms in neighboring nanotube shells. Thus,a radial transparency coefficient T for the two differentenergy ratios can be defined as:
E > V , T = 4Ek22(

E − k22) sin2 k2a+ 4Ek22 , k
22 = E−V , (30)

E < V , T = 4Eκ22(
E − κ22) sh2κ2a+ 4Eκ22 , κ

22 = V −E, (31)
where k2 the electron wave number in the case of above-barrier motion and κ2 the same for under-barrier motion.For example, between the 2nd and 1st shells (zz-ac case,Fig. 14) a = 13.54 − 12.88 = 0.66 nm = 12.47 a.u. and
T = 3.469 · 10−6 per 1 bond.The total radial conductance is proportional to both T andthe number of effective potential barriers. It is also clearthat the ‘radial current’ losses (or, simply radial current)are similar to the Hall current due to the induced magneticfield of the basic axial current. A pure scattering mech-anism is also possible. However, the radial conductance
per CNT length depends on the morphology (chirality) ofthe nearest nanotubes, when the number of shortest ef-fective barriers is varied in a probabilistic way. This also
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means that current-voltage parameters of MW CNTs canbe less stable, than in the case of SW CNTs. It was foundthat inter-shell interactions, such as inter-shell tunnel-ing of electrons and Coulomb interactions [21–23] cause areduction of the total MW CNT conductance.
7. Conclusions
Using the ‘effective bonds’ model, we have predicted theresistivity of interconnects between the metal substrate(e.g., Ni) and the SW or MW CNTs. There also ex-ists a qualitative compatibility of results obtained for theCNT-Me junctions using both approaches considered inthis paper: (i) first principles ‘liquid metal’ model and(ii) semi-empirical ‘effective bonds’ model based on theLandauer relationship. At the same time, the latter re-sults are quantitatively comparable with those measuredexperimentally, i.e., within the range from several up to50 kOhm [24].We have also developed the model of inter-shell interac-tion for the MW CNTs, which allows us to estimate thetransparency coefficient as an indicator of possible ‘radialcurrent’ losses. We have underscored that a conductanceand other current-voltaic parameters depend on the mor-phology of the nearest shells in MW CNTs, which leadsto complications for technology and production of nanode-vices with the stable electric characteristics.
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