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Abstract: We discuss a procedure to transfer the description of a fermion system from

a subspace of the full shell model space built in terms of collective pairs onto a space

of corresponding bosons. We apply the procedure to systems of six nucleons in the

1s0d major shell. We perform exact shell model calculations and compare them with

calculations in the collective pair and boson approximations. The e¬ects of the truncation

of the boson Hamiltonian and of the consequent violation of the Pauli principle are

examined.
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1 Introduction

The description of low-lying collective excitations in terms of the spherical shell model

is still a central problem in the nuclear structure theory. The dimension of the shell-

model space increases rapidly for the number of valence nucleons, becoming prohibitive
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for medium-heavy nuclei, and therefore making the shell-model calculations unfeasible.

For instance, in relatively simple cases of medium weight nuclei weighing 1014 ¡ 1018,

shell model con¯gurations are involved [1, 2]. Even if we could perform calculations

in such a huge space the results would only have a limited value since the simple and

regular features observed in nuclei would remain hidden in several million of expansion

coe±cients of an eigenstate. Therefore, irrespectively of whether the large-scale shell

model calculation is feasible or not, a realistic truncation of the shell model space has to

be found.

In the last two decades, many models have been developed to describe the collective

motion in medium weight nuclei. These models can generally be classi¯ed into three

categories: 1) fermion models which preserve the general philosophy of the shell model

but in a truncated space [3-8], 2) boson models where the space is spanned by a quite

small set of bosons [9-11], 3) boson-fermion models, where states are obtained from the

coupling of a fermion with a bosonic core [12-15].

Among the fermion models, the collective pair approximation (CPA) [3, 4], and its

recently extended version known as the nucleon-pair shell model (NPSM) [16, 17], are

of great importance. In the CPA and NPSM approaches, nucleon collective pairs with

various angular momenta are used as building blocks of the truncated shell model space.

Recently, we performed calculations within the CPA formalism for both even-A [18,

19] and odd-A [20] systems. In this paper, we investigate the possibility of transferring the

description of even-A systems from the CPA space, which is a fermion space described by

collective pairs, onto a space described by corresponding bosons. Besides establishing a

link between phenomenological boson models and microscopic approaches, this mapping

mechanism opens the way to a simpli¯ed (because only bosons are involved) but still

microscopic (because no free parameters exist in the boson space) description of low-

lying collective excitations. Hereafter we will de¯ne this approach based on the boson

mapping as boson approximation (BA).

As a preliminary step, we will discuss a procedure to map all fermion operators of

interest onto the boson space. As we will see more in detail below, in correspondence to

a generic fermion operator, one can always construct a n-body boson operator which, for

a system of n pairs, provides an exact image of the fermion operator in the boson space.

Such a boson operator therefore carries all information relating to the Pauli Exclusion

Principle, which are missing in the de¯nition of the boson space. Truncating this boson

operator at a lower order inevitably introduces a violation of this principle whose e®ects

are di±cult to predict. Among the motivations which have inspired this work there is

just that of investigating in detail how the truncation of the boson Hamiltonian at two-

body terms a®ects the spectrum of a three boson system. Such a simpli¯ed Hamiltonian

is suggested by practical reasons since the use of more sophisticated Hamiltonians, al-

though desirable in principle, would make calculations rather complicated so making the

advantages of the BA approach vanish. Answering this question will allow us to shed

some light on the e®ectiveness of the BA formalism in realistic systems.

We will concentrate on the analysis of A = 22 systems. These nuclei, with six active
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nucleons in the 1s0d major shell, provide an ideal testing ground since, in this case, exact

calculations are feasible without much e®ort. Our previous work on these nuclei within

the CPA formalism [18] has served as a guide in the de¯nition of the collective space.

The paper is organized as follows. The CPA approach is brie°y reviewed in section 2.

The mapping procedure, discussed in detail in reference [21], is outlined for reader’s con-

venience in section 3. In section 4, we discuss an application of this procedure within the

CPA formalism. Results are presented in section 5 and conclusions outlined in section 6.

An Appendix is reserved for some mathematical details.

2 The collective pair approximation

In this section, we illustrate the formalism describing the spectra of nuclei with 2n (n =

1; 2; :::) fermions outside closed shells within the CPA.

Let us de¯ne the operator Ẑy
¡¡

0 (¸1; ¸2) which creates a state of two nucleons occupying

orbitals ¸1 and ¸2 and coupled to total spin and isospin angular momentum quantum

numbers ¡ = (J; T ) and projection ¡
0
= (J

0
; T

0
)

Ẑ
y
¡¡0 (¸1¸2) = (1 + ±¸1¸2 )¡ 1

2 [ay(¸1) £ ay(¸2)]¡¡0 : (1)

The operator Â
y
º¡¡

0 creating a collective pair of multipolarity ¡ can be written as

Â
y
º¡¡

0 =
X

¡¡
0

cº
¡(¸1¸2)Ẑ

y
¡¡

0 (¸1¸2); (2)

where the index º distinguishes di®erent collective pairs with the same quantum numbers

¡¡
0
. The coe±cients cº

¡(¸1¸2) are obtained from the diagonalization of the shell-model

Hamiltonian in the complete space spanned by the two-nucleon states

j¸1¸2; ¡¡
0 i = Ẑy

¡¡0 (¸1¸2)j0i: (3)

The collective pairs de¯ned by Eq. 2 serve as building blocks to construct a truncated

shell-model space for a nucleus with 2n nucleons. The basis states spanning this space

can be expressed as

jii = [Â
y
ºn ¡n

£ : : : £ [Â
y
º3 ¡3

£ [Â
y
º2¡2

£ Â
y
º1¡1

]¡12 ]¡123 : : :]¤¤
0 j0i; (4)

where square brackets indicate the order of spin-isospin angular momenta couplings, and

quantum numbers ¡12; ¡123; ¡123::: indicate intermediate spin-isospin angular momenta,

while ¤¤
0

specify the total spin-isospin quantum numbers and their projections.

The states of Eq. 4 are neither normalized nor linearly independent. By constructing

the overlap matrix hijji and diagonalizing it we ¯nd a new set of orthonormal states

j©®i = (N®)¡ 1
2

NX

i=1

fi®jii; ® = 1; 2; : : : ; ¹N: (5)
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In general the number ¹N of orthonormal states j©®i, whose norm N® > 0, is less than

the number N of states jii, i.e. ¹N µ N . The states of Eq. 5 are used to diagonalize the

standard shell-model Hamiltonian.

Eigenenergies and eigenstates obtained from this procedure approximate the eigenen-

ergies and eigenstates of the shell-model Hamiltonian diagonalized in the full shell model

space. The quality of the approximation depends on the set and the structure of the col-

lective pairs, which have been introduced to expand the truncated shell model space 5.

3 The mapping procedure

In this section, assuming a formal correspondence between states spanning two vector

spaces C and E, we describe a procedure to derive the image in E of a generic operator,

acting within C (for the detailed discussion of this procedure see reference [21]).

Let C and E be the vector spaces, spanned by the N states j1i; j2i; : : : ; jN i and

j1); j2); : : : ; jN ), respectively. We only assume that states of E are orthonormal, i.e.

(ijj) = ±ij; i; j = 1; 2; : : : ; N: (6)

Having de¯ned a generic operator ÔC , acting within C, we will search for an operator

ÔE , acting within E, such that all eigenvalues of ÔC in C are also eigenvalues of ÔE in

E. We will refer to ÔE as the image operator of ÔC in E. First, the image operator in

nonhermitian form nhÔE will be derived.

Let us construct the overlap matrix hijji and diagonalize it. We ¯nd N eigenstates

j©ki =

NX

i=1

fikjii; k = 1; 2; : : : ; N: (7)

Because of the diagonalization procedure, the coe±cients fik satisfy the conditions

NX

i=1

f ¤
ijfij 0 = ±jj 0 and

NX

j=1

f ¤
ijfi0 j = ±ii0 : (8)

Among the states j©ki of Eq. 7 only ¹N µ N states have a norm N® 6= 0 and we use them

to de¯ne the orthonormal basis

j©®i = (N®)¡ 1
2

NX

i=1

fi®jii; ® = 1; 2; : : : ; ¹N: (9)

Thus, the space C is ¹N -dimensional. The identity operator within space C is

ÎC =

¹NX

®=1

j©®ih©®j =

NX

i;j=1

jiiB(i; j)hjj; (10)

where

B(i; j) =

¹NX

®=1

(N®)¡1f ¤
i®fj®: (11)
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In general ÔC jii * C , but by de¯ning the operator ÔC = ÎCÔC , we notice, that

ÔC jli =

NX

i=1

jiif
NX

j=1

B(i; j)hjjÔC jlig 2 C (12)

and

hijÔCjli = hijÔC jli: (13)

Let us now turn to the space E. Due to the orthonormality of the states ji)
(i = 1; 2; : : : ; N), the identity operator is

ÎE =

NX

i=1

ji)(ij: (14)

Let nhÔE be an operator acting within space E. Its action on a state jl) is given by

nhÔE jl) = ÎE
nhÔE jl) =

NX

i=1

ji)(ijnhÔE jl): (15)

By comparing Eqs 12 and 15, one sees, that if nhÔE is de¯ned such that

(ijnhÔE jl) =

NX

j=1

B(i; j)hjjÔCjli; (16)

its action on states of E is formally identical to that of ÔC on the corresponding states

of C. As a result of that, if the state

jª°i =

¹NX

®=1

c®°j©®i =

NX

i=1

(

¹NX

®=1

(N®)¡ 1
2 fi®c®°)jii =

NX

i=1

ai° jii; (17)

° = 1; 2; : : : ; ¹N ,

is an eigenstate of ÔC , corresponding to the eigenvalue ¸°, then, the state

jª°) =

NX

i=1

ai°ji) (18)

is also an eigenstate of nhÔE , with the same eigenvalue. Therefore, ¹N of the N eigenvalues

of nhÔE in E are the same as the eigenvalues of ÔC in C and the eigenstates of nhÔE

correspond to the eigenstates of ÔC in C. Thus, Eq. 16 de¯nes the nonhermitian image

operator of ÔC in E.

In order to derive the hermitian form hÔE of the image operator, let us introduce the
¹N orthonormal states

j©®) =

NX

i=1

fi®ji); ® = 1; 2; : : : ; ¹N; (19)
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corresponding to the ¹N states of Eq. 9, spanning the space C . With the aid of states 19,

we de¯ne the operators

B̂
1
2 =

¹NX

®=1

j©®)(N®)¡ 1
2 (©®j; (20)

B̂¡ 1
2 =

¹NX

®=1

j©®)(N®)
1
2 (©®j; (21)

which have the following properties

B(i; j) = (ijB̂
1
2 B̂

1
2 jj) =

¹NX

®=1

f ¤
i®(N®)¡1fj®; (22)

B
1
2 (i; j) ²

³
i
¯̄
¯B̂

1
2

¯̄
¯j

´
=

NX

®=1

f ¤
i®(N®)¡ 1

2 fj®; (23)

B̂
1
2 B̂¡ 1

2 =

NX

®=1

j©®)(©®j: (24)

From Eq. 24 it is evident that, if N = N , B̂
1
2 B̂¡ 1

2 = ÎE while, if N < N B̂
1
2 B̂¡ 1

2

de¯nes the identity operator in the subspace of E spanned by the states of Eq. 19 which

correspond to states of Eq. 9 spanning the space C. If jª°) of Eq. 18 is an eigenstate of
nhÔE associated with the eigenvalue ¸° then

B̂
¡ 1

2

E
nhÔEB̂

1
2

EB̂
¡ 1

2

E jª°) = ¸°B̂
¡ 1

2

E jª°): (25)

By de¯ning

hÔE ² B̂
¡ 1

2

E
nhÔEB̂

1
2

E (26)

and

jeª°) ² B̂
¡ 1

2

E jª°); (27)

we can rewrite Eq. 25 as

hÔE jeª°) ² ¸° jeª°); (28)

what means that j eª°) is an eigenstate of hÔE associated with the eigenvalue ¸° . With

the aid of Eqs 16, 19-24, 26 it can be proved that

(ijhÔjj) =

NX

kJ=1

B
1
2 (i; l)hljÔC jkiB

1
2 (k; j); (29)

from which one deduces that hÔE is indeed hermitian. This equation de¯nes the image

operator of ÔC in E in the hermitian form. Unauthenticated
Download Date | 7/23/18 10:50 PM



612 E. Kwásniewicz et al. / Central European Journal of Physics 4 (2003) 606{625

4 Boson mapping of fermion systems

Here, the mapping procedure presented in the previous section will be employed to de-

scribe nuclear systems in a space in which elementary bosons replace the collective pairs

de¯ned in Eq. 2. Let us call Cn the CPA space spanned by the states

jii = Â
y
º1 ¡1¡0

1
Â

y
º2 ¡2¡0

2
: : : Â

y
ºn ¡n ¡0

n
j0i : (30)

Similarly, let us call En the boson space spanned by the states

ji) = b
y
º1 ¡1¡0

1
b

y
º2 ¡2¡0

2
: : : b

y
ºn ¡n ¡0

n
j0) : (31)

States 31 are formally obtained from states 30 by replacing pair creation operators Â
y
º¡¡0

with boson creation operators b
y
º¡¡0 and replacing the fermion vacuum state j0i with the

boson vacuum state j0).

Let us replace the abstract vector spaces C and E with the spaces Cn and En.

Similarly, let a generic operator ÔC acting within C be replaced with the standard shell-

model Hamiltonian Ĥ acting within Cn. Then, following the mapping procedure of the

previous section, we can ¯nd the image Ĥb of Ĥ acting within En. As a general result of

the mapping procedure [21] we obtain

Ĥb = Ĥ1
b + Ĥ 2

b + : : : + Ĥn
b (32)

i.e., the image Ĥb contains up to n-body terms even if the fermion operator Ĥ is at

most two-body. In this case, by de¯nition, its eigenvalues are the same as those of the

operator Ĥ . The presence of many-body terms results from the need to simulate compli-

cated underlying nucleon exchange dynamics in the boson space. Therefore an important

question is if terms of Ĥb higher than two-body can be considered as negligible higher

order contributions when studying systems made of more than two bosons. In order to

investigate this problem we have employed the image operator containing only one- and

two- body terms, i.e.

Ĥb
¹= Ĥ 1

b + Ĥ 2
b ; (33)

where

Ĥ1
b =

X

º¡¡0

"ºby
º¡¡0 bº¡¡0 (34)

and

Ĥ2
b =

1

4

X

¡¡0º1¡1 ¡0
1º2 ¡2¡2

X

0º3¡3¡0
3º4¡4¡0

4

(1 + ±º1¡1 º2¡2 )(1 + ±º3¡3º4¡4 ) (35)

£E¡(º1¡1º2¡2; º3¡3º4¡4)(¡1¡
0
1¡2¡0

2)j¡¡0)(¡3¡0
3¡4¡0

4)j¡¡0)

£b
y
º1 ¡1¡0

1
b

y
º2¡2¡0

2
bº3¡3¡0

3
bº4¡4¡0

4
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In this work, we deal with systems of three bosons. We therefore introduce states of the

form

ji) = j[(by
º1¡1

£ b
y
º2 ¡2

)
¡12

£ b
y
º3¡3

]
¤¤0

j0) (36)

to expand three boson space. Since states 36 are neither orthogonal nor linearly inde-

pendent we have ¯rst diagonalized the overlap matrix (iji) to obtain an orthonormal set

of states

j®) = (N®)
¡ 1

2

NX

i=1

Ci®ji); ® = 1; 2; : : : ; N (37)

expanding the three-boson space. The number N of states 37 having norm N® > 0 is, in

general, less than the number N of states ji). In the next step we have found the matrix

representation of the boson Hamiltonian 33 in the boson space spanned by the states 37.

These matrix elements can be written as

(®jĤbj®) = (N®N®)
¡ 1

2

X

i i

C¤
i®

Ci®((ijĤ 1
b ji) + (ijĤ 2

b ji)) (38)

The explicit expression of the matrix elements (ijĤ1
b ji) and (ijĤ 2

b ji) are given in the

Appendix.

5 Calculations and results

In this section, we will examine a series of calculations for systems of six nucleons in

the 1s0d major shell (A=22 nuclei). We will compare exact shell model results for all

values of total isospin T (0 µ T µ 3) with results obtained within the CPA and BA

approaches. Single-particles energies and two-body matrix elements have been taken

from the work of Wildenthal [22] and have been employed to deduce, according to the

mapping procedure of section 3, the one-boson energies and two-boson matrix elements of

the boson Hamiltonian 33. Similarly to previous work [18-20], the collective pairs which

de¯ne the CPA space have been ¯xed by diagonalizing the fermion Hamiltonian in the

space of two-nucleon states. In the 1s0d major shell (1s1=2, 0d3=2 and 0d5=2 orbits) one

can form 28 two-nucleon states (14 T = 0 and 14 T = 1) with values of the total angular

momentum J ranging from 0 up to 5. Following the standard notation, T = 1 pairs with

J = 0; 1; 2; 3; 4 are denoted as S; P; D; F; G, respectively, while T = 0 pairs are denoted

as £J . Corresponding bosons are denoted as s; p; d; f; g and µJ .

Before comparing the di®erent approaches, it is appropriate to comment on the shell

model results. In Table 1 we show energies and angular momenta of the lowest 10Unauthenticated
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eigenstates for each T . T = 0 and T = 1 states are in the same range of energy while

large gaps occur between the T = 1 and T = 2 states as well as between the T = 2

and T = 3 states. T = 0 states only refer to a nucleus with an equal number of protons

and neutrons. For the six particles systems under study, this means 3 protons and 3

neutrons, namely an odd-odd nucleus. The spectrum of a system with 2 protons and

4 neutrons (or viceversa), being characterized by an isospin projection Tz = ¡ 1(+1),

includes all eigenstates with T = 1; 2; 3. Due to the energy distribution evidenced in

Table 1, however, we can state that the lowest eigenstates of these even-even systems are

all T = 1 states. Therefore, it is easy to argue that all T = 2 states of Table 1 are the

lowest eigenstates of systems with Tz = §2 (1 proton and 5 neutrons or viceversa, i.e.

odd-odd systems) while all T = 3 states of the same table are the lowest eigenstates of

systems with Tz = §3 (0 protons and 6 neutrons or viceversa, i.e. even-even systems).

We will begin our analysis by discussing the T = 1 and T = 3 cases (even-even systems)

and then proceed with the remaining cases (odd-odd systems).

T = 1 results are shown in ¯gures 1 and 2. These ¯gures refer to two di®erent choices

of the set of collective pairs (and corresponding bosons) de¯ning the CPA and BA spaces:

S; S 0; D; D0; G; £1; £3; £5 (set (a)) in ¯gure 1 and S; S 0; P; D; D0; F; G (set (b)) in ¯gure 2.

Set (a) has already been used in our previous calculations [18].

For both sets, one observes a good agreement between the shell model (SM), and both

CPA and BA results. Only at energies around 6-8 MeV, do some inversion occur in the

approximate spectra (especially for set (a)) but this is, however, hard to be avoided due

to the high density of states in this region. In any case, the di®erence between either CPA

or BA results and the SM ones is never larger than about 200 KeV. We therefore conclude

that both sets (a) and (b) provide a good description of the lowest T = 1 spectrum. From

the boson point of view, this means that the Hamiltonian, which has been constructed

with the procedure illustrated in the previous section, provides a good boson image of

the fermion one and, therefore, that the violations of the Pauli principle that have been

introduced by omitting higher order terms in this Hamiltonian have only limited e®ects

on this spectrum.

The T = 3 spectrum is discussed in ¯gure 3. In this case, only T = 1 pairs can

contribute. Set (a) therefore reduces to S; S 0; D; D0; G pairs only while set (b) remains

unchanged. Already in this case of the former set, the CPA space for J = 0; 2; 4 states

fully exhausts the SM space and so CPA and SM results are identical. For J = 3 states this

is not fully true but CPA and SM results remain nevertheless very close. The identity is

reached also in this case when we use set (b). In ¯gure 3, together with the CPA spectrum

(the results for sets (a) and (b) have been uni¯ed due to their undistinguishability in the

¯gure), we show the corresponding BA calculations (BA1 for set (a) and BA2 for set

(b)). The BA2 spectrum closely reproduces the CPA results with the only exception of

the second J = 4 state which is calculated too high by about 700 KeV. This suggests

that the inclusion of an additional g boson in the de¯nition of the boson space might be

appropriate. Such an e®ect cannot be seen in the CPA space since this already exhausts

the SM space. A similar discrepancy is observed when comparing the CPA and BA1
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J = 3 states but it disappears by turning to the set (b) (which also includes an f boson).

Also for T = 3 states, we can therefore conclude that the overall agreement between CPA

and BA results is reasonably good.

Let us now come to odd-odd systems and, in particular, to the T = 2 spectra. In

¯gures 4 and 5, we show the results corresponding to sets (a) and (b), respectively.

Concerning the latter case, we see that CPA results reproduce rather well the SM ones

while some di®erences occur between the CPA and BA results. These di®erences become

more evident in the case of set (a) (¯gure 4) where also the CPA results get worse with

respect to set (b). Therefore, for T = 2, the boson approximation works less well than

in the previous T = 1 and T = 3 cases. In other words, these numerical tests indicate

that the BA formalism under study is more suitable for the treatment of even-even rather

than odd-odd systems of the 1s0d shell. Such a deduction is con¯rmed by the analysis

of the T = 0 results (still odd-odd). In this case, we have veri¯ed indeed that BA fails

in providing a correct description of the CPA spectrum (which, in turn, also shows some

discrepancies with respect to the SM one [18]).

6 Summary

In this paper, we have discussed a procedure to transfer the description of a fermion

system from a subspace of the full shell model space built in terms of collective pairs

onto a space of corresponding bosons. We have applied the procedure to systems of six

nucleons in the 1s0d major shell. We have performed exact SM calculations and compared

them with calculations in the CPA and BA formalism. With reference to the last ones,

we have ¯rst constructed a two-body Hermitian boson Hamiltonian in correspondence to

the fermion one.

CPA calculations (and the corresponding BA ones) have been made for two di®erent

sets of pairs (and bosons). The agreement between CPA and BA results has been found

reasonably good for the lowest eigenstates with total isospin T = 1 and T = 3 (corre-

sponding to even-even systems), less good for T = 2 and bad for T = 0 (the last two

cases corresponding to odd-odd systems). Therefore, in these numerical tests, the BA

approach has turned out to be more e®ective in the description of even-even systems. For

these systems, the two-body boson Hamiltonian that we have constructed has provided

a good boson image of the fermion one.

Of course a dependence of these results (i) on the choice of the interaction (of Wilden-

thal type in the present case) and (ii) on the de¯nition of the collective pairs might be

possible. These pairs have been ¯xed by diagonalizing our fermion Hamiltonian in a two-

nucleon space and then keeping them "frozen" for all remaining calculations. It would

certainly be of interest to see how the present results would be a®ected by the use of a

di®erent interaction and/or by a di®erent (hopefully "dynamical") choice of the collective

pairs. We hope to answer these questions in the near future. Unauthenticated
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7 Appendix

Matrix elements (ijĤ 1
b ji) of the Ĥ1

b de¯ned by Eq. 34 read

(ijĤ 1
b ji) = ("º1 + "º2 + "º3 )(iji) (39)

where "ºi (i = 1; 2; 3) are the one-boson energies and the overlap

(¹iji) = (±1¹1±2¹2±3¹3±¡12¡12
+

+ ( ¡ )¡12¡¡12+¡2+¡3 ¡̂12¡̂12

8
><
>:

¡2 ¡1 ¡12

¡3 ¤ ¡12

9
>=
>;

±1¹1±2¹3±3¹2 +

+ ( ¡ )¡1+¡2 ¡¡12 ±¡12¡12
±1¹2±2¹1±3¹3 + (40)

+ ( ¡ )¡2+¡3 +¡12 ¡̂12¡̂12

8
><
>:

¡1 ¡2 ¡12

¡3 ¤ ¡12

9
>=
>;

±1¹3±2¹1±3¹2 +

+ ( ¡ )¡1+¡2 ¡¡12 ¡̂12¡̂12

8
><
>:

¡2 ¡1 ¡12

¡3 ¤ ¡12

9
>=
>;

±1¹2±2¹3±3¹1 +

+ ¡̂12¡̂12

8
><
>:

¡1 ¡2 ¡12

¡3 ¤ ¡12

9
>=
>;

±1¹3±2¹2±3¹1):

This formula has been obtained by employing the commutation relation

[b®; b
y
¯] = ±®¯ (41)

of the boson anihilation and creation operators, utilizing the orthonormality conditions

of the C-G coe±cients and relations between the 6j and C-G coe±cients. The index

i(= 1; 2; 3) and ¹i(= ¹1; ¹2; ¹3) represents the set of quantum numbers º¡ specifying state ji)
and j¹i).

Formulae for the matrix elements (ijĤ2
b ji) of the Ĥ2

b de¯ned by Eq. 35 takes the form

(ijĤ 2
b ji)=(0j[(bº1¡1

£bº2¡2
)

¡12
£ bº3¡3

]
¤
jĤ2

b j[(by
º1¡1

£ by
º2¡2

)
¡12

£ by
º3¡3

]
¤
j0) =

= ((1 + ±º2 ¡2º3 ¡3 )
1
2

³X

¡

(E¡(º2¡2º3¡3; º2¡2º3¡3)(1 + ±º2¡2º3¡3
)

1
2 £

£( ¡ )¡2+¡3+¡2 +¡3 ¡̂¡̂12

8
><
>:

¡2 ¡3 ¡

¤ ¡1 ¡12

9
>=
>;

¡̂¡̂12

8
><
>:

¡1 ¡2 ¡12

¡3 ¤ ¡

9
>=
>;

±º1 ¡1º1¡1
±º1º1 +

+ E¡(º1¡1º3¡3; º2¡2º3¡3)(1 + ±º1¡1º3¡3
)

1
2 ( ¡ )¡2+¡3 +¡2+¡3+¡12 £

£ ¡̂¡̂12

8
><
>:

¡1 ¡3 ¡

¤ ¡2 ¡12

9
>=
>;

¡̂¡̂12

8
><
>:

¡2 ¡2 ¡12

¡3 ¤ ¡

9
>=
>;

±º1¡1 º2¡2
+

Unauthenticated
Download Date | 7/23/18 10:50 PM



E. Kwásniewicz et al. / Central European Journal of Physics 4 (2003) 606{625 617

+ E¡12
(º1¡1º2¡2; º2¡2º3¡3)(1 + ±º1 ¡1º2 ¡2

)
1
2 ( ¡ )¡2+¡3¡¡12 £ (42)

£ ¡̂12¡̂12

8
><
>:

¡3 ¡2 ¡12

¡3 ¡ ¡12

9
>=
>;

±º1¡1º3¡3

¶
+

+(1+±º1¡1º3¡3 )
1
2

µX

¡

(E¡(º2¡2º3¡3; º1¡1º3¡3)(1+±º2¡2 º3¡3
)

1
2 ( ¡ )¡2+¡3+¡2 +¡3+¡12

£ ¡̂¡̂12

8
><
>:

¡2 ¡3 ¡

¤ ¡1 ¡12

9
>=
>;

¡̂¡̂12

8
><
>:

¡1 ¡3 ¡

¤ ¡1 ¡12

9
>=
>;

±º2¡2 º1¡1
+

+ E¡(º1¡1º3¡3; º1¡1º3¡3)(1 + ±º1¡1º3¡3
)

1
2 ( ¡ )¡3+¡3 +¡12 +¡12 £

£ ¡̂¡̂12

8
><
>:

¡1 ¡3 ¡

¤ ¡2 ¡12

9
>=
>;

¡̂¡̂12

8
><
>:

¡1 ¡3 ¡

¤ ¡2 ¡12

9
>=
>;

±º2¡2 º2¡2
) +

+ E¡12
(º1¡1º2¡2; º1¡1º3¡3)(1 + ±º1 ¡1º2 ¡2

)
1
2 ( ¡ )¡12 ¡¡12 +¡3+¡3 £

£ ¡̂12¡̂12

8
><
>:

¡3 ¡1 ¡12

¡3 ¤ ¡12

9
>=
>;

±º2¡2º3¡3

¶
+

+(1 + ±º1¡1º2¡2 )
1
2 (E¡12 (º1¡1º2¡2; º1¡1º2¡2)(1 + ±º1¡1 º2¡2

)
1
2 ±¡12¡12

±º3¡3º3¡3
+

+ E¡12 (º1¡1º3¡3; º1¡1º2¡2)(1 + ±º1 ¡1º3 ¡3
)

1
2 ( ¡ )¡3+¡3+¡12¡¡12 £

£ ¡̂12¡̂12

8
><
>:

¡3 ¡1 ¡12

¡2 ¤ ¡12

9
>=
>;

±º3¡3º2¡2
) +

+ E¡12 (º2¡2º3¡3; º1¡1º2¡2)(1 + ±º2 ¡2º3 ¡3
)

1
2 ( ¡ )¡2+¡3¡¡12 £

£ ¡̂12¡̂12

8
><
>:

¡3 ¡2 ¡12

¡1 ¤ ¡12

9
>=
>;

±º3¡3º1¡1
)):

This formula, similarly to formula 39 has been obtained by employing the commutation

relation 41 and some relations of reference [23], connecting the 6j and C-G coe±cients.
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J T=0(MeV) J T=1(MeV) J T=2(MeV) J T=3(MeV)

3 -60.380 0 -59.788 4 -44.908 0 -35.402

1 -60.059 2 -58.278 3 -44.686 2 -31.864

4 -59.415 4 -56.238 2 -44.191 0 -30.566

5 -58.866 2 -55.188 5 -43.455 3 -30.311

1 -58.864 2 -54.679 2 -43.203 2 -28.555

3 -58.544 1 -54.048 1 -43.188 4 -28.210

2 -57.639 4 -54.038 3 -43.187 4 -27.853

3 -57.546 3 -53.997 1 -42.656 2 -27.258

6 -56.520 2 -53.277 0 -42.603 3 -26.833

1 -56.348 0 -53.155 4 -42.225 0 -26.227

Table 1 The lowest 10 shell model eigenstates of A=22 nuclei for all values of the total isospin
T . States are also labeled with their angular momentum J .
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Fig. 1 Comparison of the T = 1 low-lying shell model spectrum (SM) of A = 22 nuclei with the
collective pair approximation spectrum (CPA) calculated in the space spanned by the T = 1,
S; S 0; D; D0; G and T = 0, £1; £3; £5 pairs and with the boson approximation spectrum (BA)
calculated in the corresponding space.
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Fig. 2 Comparison of the T = 1 low-lying shell model spectrum (SM) of A = 22 nuclei with the
collective pair approximation spectrum (CPA) calculated in the space spanned by the T = 1,
S; S 0; P; D; D0; F; G pairs and with the boson approximation spectrum (BA) calculated in the
corresponding space.
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Fig. 3 Comparison of the T = 3 low-lying shell model spectrum (SM) of A = 22 nuclei with
the collective pair approximation spectrum (CPA) calculated in the space spanned by the (1)
T = 1, S; S 0; D; D0; G pairs or by the (2) T = 1, S; S0; P; D; D0; F; G pairs (in both cases the
low-lying CPA spectrum is the same) and with the boson approximation spectra calculated in
the corresponding spaces (see also text).

Unauthenticated
Download Date | 7/23/18 10:50 PM



624 E. Kwásniewicz et al. / Central European Journal of Physics 4 (2003) 606{625

Fig. 4 The same as in  gure 1 but for the T = 2 states of A=22 nuclei.
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Fig. 5 The same as in  gure 2 but for the T = 2 states of A=22 nuclei.
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