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Abstract

Particle Swarm Optimization is an evolutionary optimization algorithm, largely studied during the years: analysis of

convergence, determination of the optimal coefficients, hybridization of the original algorithm and also the determination of

the best relationship structure between the swarm elements (topology) have been investigated largely. Unfortunately, all these

studies have been produced separately, and the same coefficients, derived for the original topology of the algorithm, have

been always applied. The intent of this paper is to identify the best set of coefficients for different topological structures. A

large suite of objective functions are considered and the best compromise coefficients are identified for each topology. Results

are finally compared on the base of a practical ship design application.
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1. Introduction

Since its introduction in 1995 [1], Particle Swarm Optimization (PSO) algorithm received a lot of
attention, and a large number of studies rapidly came out, as reported in [2]. The main investigated
elements were the coefficients ruling the algorithm, the number of elements forming the swarm, their
initial position and speed, the hybridization with other optimization algorithms and also the scheme for
the relationship between the elements of the swarm [3] [4] (topology). However, the same coefficients
identified as preferable for the original configuration of the algorithm have been always adopted, also
when a strong modification were proposed: as a consequence, a systematic study on the relationship
between topologies and coefficients is substantially missing. The main purpose of this article is to focus
on this aspect, analyzing the performances of the algorithm by varying together the topology and the
coefficients of the algorithm.

To do that, a first overview of the logic of the algorithm is presented, identifying some possible topolo-
gies to be applied to the original PSO algorithm. Then, a wide investigation on the best coefficient for
each different topology is performed: algebraic functions are adopted in this phase as objective func-
tions. The best combinations are finally compared by solving a realistic industrial optimization problem.
Concluding remarks and possible future research directions are proposed at the end.

2. Swarm logic

Since PSO is inspired by the behavior of a swarm of bees, it could be interesting to compare it with
a typical mathematical model describing the dynamics involving the individuals of a swarm [5], that is

(1) m
dvi
dt

= (α− β‖vi‖2)vi −
∑
i 6=j

∇U(‖x− xi‖)
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where m is the mass, xi and vi are the position and the speed of the ith element of the swarm, α
and β are regulating the relationship between between force and speed and U is a potential function,
classically the generalized Morse potential

U(xi) =
∑
i 6=j

[Cre
−|xi−xj |/`r − Cae

−|xi−xj |/`a ]

with `a and `r representing the attractive and repulsive potential ranges, and Ca and Cr their am-
plitudes. This mathematical model, from now on Fully Informed (FI), describes the relationship between
the elements of the swarm: here a combination of repulsive and attractive forces is creating the swarm
and the relative weight between the two is determining its behavior. If compared to the FI model, the
classical PSO structure shows only few analogies. In [1], the swarm iteration is defined as

vki = wvk−1i + c1r1(x
b
i − xk−1i ) + c2r2(x

b
o − xk−1i )(2)

xki = xk−1i + vki(3)

where xki and vki are the position and the speed of the ith element of the swarm at the kth iteration,
xbi is the best position ever visited by xi, and xbo is the overall best among all the xbi ’s. r1 and r2 are
random coefficients and w is the inertia term. An initial population of N elements {x11, [...] , x1N} is defined
(randomly or by using a spatially uniform distribution [6]), the objective function is computed for every
x1i and the best value for the ith element is stored in xbi . Also xbo is fixed. The new speed of each element
is computed using equation 2, the swarm is moved accordingly and a new position for each element of
the swarm x2i is obtained, and so on. In this study, a deterministic version of PSO (DPSO), is applied.
In DPSO, the random coefficients r1 and r2 are deleted, and equation 2 now reads:

(4) vki = wvk−1i + c1(x
b
i−1 − xk−1i ) + c2(x

b
o − xk−1i )

Elsewhere, PSO optimization would be repeated a large number of times in order to produce a
statistics of the global minimum. By the way, DPSO is found to be preferable to PSO in practical
applications [7].

If we compare equation 4 with equation 1, we can observe the following differences for PSO:

1. the repulsive potential of equation 1 is not included;
2. every element xki is communicating with the overall best element xbo but not viceversa.
3. the attractive potential of equation 4 is linear, but for each element it is applied considering a couple

of points only (xbi and xbo);
4. xbi and xbo are positions visited by the swarm, not necessarily included into the current swarm. As a

consequence, 4 describes the motion of N isolated individuals interacting with two attraction points
whose position is changing in time.

While for the FI model the information flow involves every element in both the directions, in PSO
only individual interactions in a single direction are included. The topological structure is a star type
(see figure 1): the second term in equation 4 refers to the element itself, so that a connecting line on the
graph is missing, and the third term points to the overall best (the central point of the star). The central
element has no interactions with the others, and its new velocity is updated by using information coming
from the element itself.

In order to check if a different communication scheme led to better performances, various al-
ternatives have been proposed in literature. In [3], four different topologies are considered: to-
ken ring, wheel, star and random (see figure 1). Some hybrid version of the topologies have been
also investigated, mixing together wheel and ring, defining a huge number of intermediate sub-
versions. Unfortunately, only four test functions have been adopted: the results cannot be extrapo-
lated to a general case, but the sensitivity of the algorithm to the topological scheme is evidenced.
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Figure 1: Represen-
tation of three com-
mon topological s-
chemes: Star, Full,
and Token Ring.
The circle represents
the element of the
swarm, a connection
implies a flow of
information between
the two. The infor-
mation flow can be
one- or two-ways.

The FI model (Fully Informed PSO - FIPS) has been also considered in [8]),
obtaining mixed results: there is not a clear superiority of FIPS over PSO. Several
other studies demonstrate that FIPS is not the best configuration [9], and for this
reason it will not be further considered.

In [10], starting from the FI topology and using an optimization procedure, a
subset of topologies has been identified. Unfortunately, optimal topology is tar-
geted for a prescribed number of swarm element, and this is a strong limitation
for a general-purpose application. General conclusions are that the increase of the
connectivity is improving the convergent attitude of the algorithm, but this is not
a guarantee of the determination of the global minimum.

Another promising topology is the circular structure (token ring), proposed
in [10] and further analyzed, among the others, in [11], showing some improvements
with respect to classical PSO.

Summarizing, among the different topologies analyzed in the current literature,
only the ring topology shows some improvements with respect to the original star
scheme, and for this reason they are both considered for the optimization of the
coefficients. For the ring topology, four variants are here proposed:

1. The ith element moves toward the (i + 1th) personal best element, ordered on
the base of their objective function value. The overall best is attracted by the
worst element in the ring (ringaf ).

2. As ringaf , but the overall best is repelled by the worst element (ringrf ).

3. The ith element moves toward the closer element in the swarm: distance is
measured using the current position, and the overall best is attracted by the
last element in the ring (ringax).

4. As ringax, but the overall best is repelled by the last element (ringrx).

In the variant ringaf and ringrf , the elements are labeled in descending order of
the objective function value. In the variant ringax and ringrx, number N is assigned
to the best element: since then, proceeding in reverse order, number i−1 is given to
the element closer to i (basing on the Euclidean distance). Once a label is assigned,
the element is excluded from the successive search. Since we are considering a
minimization problem, xN is always the overall best element. The order of the
elements is dynamically changing as a consequence of the movement of the swarm.
In the second block of equation 4, the sign may change for the best element,
depending if we are enforcing attraction or repulsion.

3. Numerical experiments

In order to find the optimal coefficients {c1, c2, w} for the different topologies,
53 analytical functions are used in this test: they are listed in Table 5. For every
triplet of the coefficients we can apply DPSO on every analytical function f i, finding the minimum
value f ibest(c1, c2, w). The optimization of the coefficients of DPSO is performed minimizing the objective
function FO defined as

FO(c1, c2, w) =

53∑
i=1

f ibest(c1, c2, w)

53

Since f ibest is always the same for every function (zero), there is no need of a normalization. Mini-
mization of FO is performed by using a Direct Search Algorithm (DS) [12].
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Figure 2: Convergence history of the global error
associated with a specific triplet of DPSO coeffi-
cients. Each graph is obtained by varying the maxi-
mum number of iterations permitted during the sub-
optimization problem: from left to right, the DPSO is
stopped after 50×NDV , 100×NDV and 200×NDV
iterations, where NDV is the number of design vari-
ables for the considered analytical function.

Both DPSO and DS are stopped when a pre-
scribed number of iterations has been performed.
The maximum number is NMAXxNDV : it has
been selected, in order to give more opportunities
to the objective functions with a larger number
of design variables NDV . A preliminary test has
been performed by stopping the DS setting NDS

MAX

to 50. The purpose of this test is to reduce the
number of candidate topologies: in the successive
tests, the convergence of the DS will be based on
the range of the search, and not on the number
of iterations, in order to reach a complete conver-
gence. Results are reported at the left end of the
figure 2, using the global error (measured as the
average of the percentage difference between the
achieved minimum and the true global minimum
for all the analytical function): the classical topol-
ogy is largely improved by the ring topology, with
a clear preference for the versions based on the
objective function value rather than the position.
For this reason, in the following examples the two
topologies based on the distance (ringax and ringrx)
will be no more considered.

Both the new tests with NMAX equal to 100
and 200 are substantially confirming the previous
results. The only difference is related to the abso-
lute value of the average error, decreasing of about
one order of magnitude when NMAX is doubled.
Increasing NMAX to 400 does not provide further
improvement. Results are reported in Table 3. In
the following, the option with NMAX=200 will be
adopted.

Looking at the coefficients obtained with
NMAX=200, they are smaller than the classical
PSO coefficients. The difference between ci andw
is larger for the star topology, while the same be-
havior is present, but less pronounced, in the ring
topologies. No substantial differences are observed
between the optimal coefficients of ringaf and ringrf .

An example for a specific function is reported
in figure 3. Here the full convergence history for
the ”Six Humps Camel Back” function (the first in
Table 5) is shown: the objective function value is
plotted as a function of the iteration number. We
can observe that all the different versions of the
algorithm are able to minimize the function. The
faster topology is ringaf , while the star topology is
the slower one.

4. Ship design application
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Topology c1 c2 w

200×NDV
Star 0.183 0.242 0.807

Ringaf 0.456 0.369 0.673

Ringrf 0.441 0.307 0.693

100×NDV
Star 0.409 0.287 0.662

Ringaf 0.411 0.054 0.570

Ringrf 0.353 0.055 0.596

50×NDV
Star 0.082 0.079 0.184

Ringaf 0.481 0.053 0.408

Ringrf 0.421 0.051 0.415

Table 1: Numerical value of the DPSO optimal coefficients for the investigated topologies and for different
stopping criteria.

Figure 3: Comparison between the convergence history of the clas-
sical DPSO formulation with standard coefficients and DPSO with
all the different combination of topology and coefficients (reported
in Table 3) for a specific algebraic function (Six Humps Camel Back
- see table 5).

For the verification of the ob-
tained coefficients (reported in Ta-
ble 3) on a realistic optimization
problem, a ship design application
has been considered. The geometry
of a sailing yacht is here optimized
by using DPSO with all the previ-
ous best topologies in combination
with their optimal coefficients. Ob-
jective function if represented by
the total resistance of the ship in
straight course at the speed of 10
knots in calm water, and it is eval-
uated by means of a RANS solver
[13]. Parameterization of the hull
surface is performed by applying
the Free Form Deformation (FFD)
approach [14], here using five pa-
rameters. One parameter is shift-
ing the midsection fore and aft,
two parameters are changing the
shape of the transverse section of
the hull, the last two are acting
vertically, one at the bow and one
at the stern. Maximum movement of the control points of the FFD is limited to 0.5 meters. The only
constraint enforces the total weight of the ship, limited in between 35 and 36 tonnes, being 35 tonnes the
original weight of the ship.

The three best topologies have been used, and results are reported in Figure 4. In this picture, the
convergence of the optimization problem is observed by plotting the percentage reduction of the total
resistance as a function of the iteration number. Topology indicated as ringaf gives the best results. All
the other topologies are separated by a percentage difference in between 2 and 5%.

Improvement on the objective function is of the order of 40%, reducing total resistance from 921 to
478 N. This improvement is surely exaggerated, and substantially due to the coarse grid density adopted
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in order to reduce the computational time: anyway, the coarseness of the computational grid is not
influencing the validity of the optimization tests. The reduction of the predicted total resistance is also
reflected on the global characteristics of the predicted wave field, reported in Figure 5. A small increase
of the wave elevation at the bow, together with the depression at the first thought, is observed for the
optimal hull: this could be intuitively regarded as a negative point. But if we observe the wave elevation
astern, we can see a really strong reduction obtained with the optimal hull, and this is probably the
reason of the reduced value of the total resistance.

5. Conclusions

Figure 4: Percentage difference between the current value of the ob-
jective function and a reference value close to the overall best optimal
as a function of the iteration number for the standard DPSO algo-
rithm with different topologies and coefficients. Percentage difference
is reported in logarithmic scale.

Five different topologies, listed
at the end of section 2, have been
investigated for the DPSO algo-
rithm. Topology has been con-
firmed to be a crucial element
for the improvement of the overall
characteristics of the algorithm, as
already observed in literature, and
significant results have been pro-
duced in this sense, detecting opti-
mal DPSO coefficients and prefer-
able topologies. A further inves-
tigation should be performed on
more advanced implementation of
the DPSO algorithm (i.e. iPSO,
[6]), where local and global search
algorithms are coupled together: a
simple comparison could be per-
formed by using the here de-
scribed topologies and coefficients,
but also a variation of the topol-
ogy of iPSO in combination with
a variation of the main parame-
ters might represents an interest-
ing test
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N. of DV Function name N. of DV Function name

Six Humps Camel Back Levy 5
Treccani Levy 10
Quartic Levy 15
Schubert Griewank
Schubert penalized 1 Rosenbrock
Schubert penalized 2 Ackley
Cos-mix

5

Step
Exponential 6 Hartman
Levy 5 Levy 5
Levy 10 Levy 10
Levy 15 Levy 15
Griewank Griewank
Levy 3 Rosenbrock
Goldstein-Price Ackley
Freudenstein-Roth

10

Step
Branin-RCOS Levy 5
Rosenbrock Levy 10
Ackley Levy 15
Step Griewank
Bohachevsky1 Rosenbrock

2

Easom Ackley
3 Hartman

20

Step
Cos-mix Rosenbrock
Shekel m=5 Ackley
Shekel m=7 Step
Shekel m=10
Exponential

4

Colville

40

Table 2: List of the analytical test functions adopted for the optimization of the PSO coefficients. The
definitions of the functions together with the limits of the design space can be find at http://www-
optima.amp.i.kyoto-u.ac.jp/
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Figure 5: Perspective and plane view of the original and optimized hull shape: in the top figure, on right
the original hull shape, on left the optimal one. An increase of the bow wave is observed for the optimal
hull together with a strong reduction of the stern wave system: the overall effect is a reduction of objective
function of about 40%.
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