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ABSTRACT This paper describes the development and accuracy analysis of a single-stage respirometer 
which can be used both in the laboratory for wastewater characterization and in the plant as a process 
instrument. It is based on an accurate model of parasitic aeration, making the two-stage assumption 
unnecessary. Its operation is supervised by a real-time software, written in LabView, managing the various 
measurement procedures and estimating the wastewater characteristics. Its accuracy is assessed through 
sensitivity and error propagation analysis, proving superior to the conventional model. A laboratory 
implementation of the instrument was tested with readily degradable substrate, yielding consistent and 
accurate respirograms. 
Keywords Respirometry, On-Line Process Control, Sensors, Parameter estimation, Sensitivity analysis. 

INTRODUCTION 

Respirometry is now a major tool for assessing the viability of a microbial community (Spanjers and 
Vanrolleghem, 1995; Brouwer et al., 1998). and provide wastewater treatment plants with accurate on-line 
monitoring and control systems (Spanjers et al., 1998). One of the main factors affecting the accuracy of 
conventional two-stage respirometers is the stray air intrusion in the respiration chamber (Marsili-Libelli and 
Tabani, 2002). This paper presents the development of an open-vessel single-stage respirometer where the 
parasitic aeration is accounted for and estimated along with the other conventional parameters, producing a 
robust instrument which can be used for field and control studies. The identifiability of the instrument model 
is assessed using the approach outlined in Marsili-Libelli and Tabani (2002); Marsili-Libelli et al. (2003); 
Checchi and Marsili-Libelli (2005). 

STRUCTURE OF THE RESPIROMETER 

In the present version, the instrument is composed of a respiration vessel with aerator and stirrer. The DO 
probe is inclined to minimize the effect of the ascending air bubbles. The DO meter (OXI 90, WTW, 
Weilheim, Germany) outputs an analogue signal which is 16-bit digitized by an ADAM 4018 (Advantech, 
Cincinnati, OH, USA) analogue-digital converter which communicates with the local PC via a RS-485 serial 
line through a protocol converter RS_485/RS-232. The instrument is operated by a real-time control 
software developed in the LabView 6.1™ platform (National Instruments, Austin, TX, USA), which 
provides system monitoring, air switching and on-line parameter estimation. 

WTW
OXI-91

Stirrer16-bit
Data acquisition

ADAM 4018

DO meter
Protocol converter

RS-485/RS-232
ADAM 4520

DO analogue output

Solid state
switch

Aerator

RS-232

RS-485

DO probe

 
Figure 1 - Structure of the open-vessel, single-stage respirometer described in this paper. The instrument is 

supervised by a real-time control software developed in LabView™ 6.1. 



The instrument can be operated either in the switching mode, turning the aeration on and off, or in the 
RODTOX mode (Vanrolleghem et al., 1990) with a single sweep, obtaining in either case the responses of 
Figure 2. 
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Figure 2 - The two possible operating modes of the instrument: multi-pass switching mode with intermittent 

aeration or single- pass RODTOX mode. 

RESPIROMETER MODEL 

As mentioned in the introduction, the uncontrolled air diffusion from the head space of the respiration vessel 
into the solution is a major source of error (Marsili-Libelli and Tabani, 2002). The result is the loss of 
linearity in the dissolved oxygen (DO) decay. To account for this additional effect, the respiration model is 
rewritten as 
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where C is the dissolved oxygen concentration (mg/L), r is the oxygen uptake rate (mg/L.s), KLa (1/s) is the 
oxygen transfer through the aerator and KLap (1/s) represent the parasitic oxygen transfer coefficient due to 
the uncontrolled aeration. During the OFF phase, oxygen transfer is not entirely discontinued due to the stray 
aeration. Equation (1) can be solved analytically from the initial condition Co to obtain 
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From Eq. (2) it appears that during the respiration cycle the Do behaves as an exponential and the departure 
from linearity is directly proportional to the stray oxygen transfer rate KLap, as shown in Figure 3. 
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Figure 3 - Loss of linearity in the descending part of the respiration curve due to unwanted air diffusion in 

the respirometer vessel. The dashed line represents the theoretical DO decay due to respiration without stray 
aeration. 



If the respiration rate r is constant, the DO concentration tends to the constant value 
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which holds strictly for aeration periods, because if K →0 then −∞→regC .  

Structural identifiability of the respirometric model 

Applying the Pohjanpalo test (Vanrolleghem et al., 1995) to the complete model (2) 

( )

( )

( )
( )

( )1osat

1
2

1
0sat

1

3

1

2

3sat0
3

3

3

2sat0
2

2

2

1sat0

vrKCC
vr

v
vCC

v
v

v
vK

v
K
rCCK0

dt
Cd

v
K
rCCK0

dt
Cd

v
K
rCCK0

dt
dC

+−=⇒

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+⋅−=

=−=
⇒

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=⎟
⎠
⎞

⎜
⎝
⎛ +−⋅−=

=⎟
⎠
⎞

⎜
⎝
⎛ +−⋅=

=⎟
⎠
⎞

⎜
⎝
⎛ +−⋅−=

 (4) 

Results in a linear relationship among parameters, hence the model (2) is not structurally identifiable. On the 
other hand, if the estimation is split in two, identifying Creg and K = KLa + KLaP during the ON phase and 
only the respiration rate r and the parasitic aeration rate KLaP during the OFF phase, then each of these two 
models is structurally identifiable. In fact, reparametrization of the ON model yields the following 
Pojhanpalo equations 
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which are linearly independent. A similar test proves the identifiability of the OFF model. 

Practical identifiability 

Practical identifiability of the respirometric model (3.10) can be assessed via the sensitivity functions and the 
Fisher Information Matrix (FIM) (Dochain e Vanrolleghem, 2001) in relation to the estimation error 
functional J(P) 
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where C and Cexp are time-indexed model and experimental DO values. The FIM  
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is a combination of the output sensitivity functions 
P
Ci

∂
∂  and the measurement noise variance can be 

estimated from the data as ( )P̂J
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=σ . Considering the basic parametrization P = [Csat, r, K]T, with 

K = KLa + KLap, the FIM was computed using a set of about 500 experimental data (a typical respirogram 
length) the measurement uncertainty was estimated as σ2 = 6.93×10-4. Analysis of the eigenvalues revaled a 



considerable ill-conditioning, denoting poor identifiability. Further, Reich e Zinke (1974) proposed another 
method to assess the lack of identifiability, based on the redundancy matrix R defined as 

11 −− ⋅⋅= DFDR  (8) 

where ( )3,32,21,1 F,F,Fdiag=D  is the similarity matrix between the FIM and R. The criterion requires 
the computation of det (R-1) and considers the model scarcely identifiable if this quantity is greater than 103 
÷ 104. This analysis confirmed the lack of identifiability of the original model. Conversely, the reduced 
parametrization of the ON model PON = [Creg, K]T  yields a better conditioned FIM. In particular, the ratio 
λmax/λmin is eleven orders of magnitude smaller that the previous one. It should be reminded that the extreme 
eigenvalue rato is equal to the mod (E), one of the most used optimal experiment design criteria used in 
Checchi and Marsili-Libelli (2005). The redundancy matrix test yields a result well below the threshold set 
by Reich e Zinke (1974). The comparison of the identifiability parameters for the two parametrizations are 
summarized in Table 1. It can be concluded that the reparametrization had a beneficial effect on 
identifiability. 

Table 1 - Summary of the identifiability results for the two models. 
Identifiability indicator Basic model Reparametrized model 
det (F) 5.82×105 6.99×109 
tr (F) 2.41×107 1.17×107 
λmax/λmin (mod E) 1.79×1015 1.98×104 
det (R-1) 2.33×1011 1.84 

Further, visual inspection of the sensitivity trajectory of the reparametrized model, in Figure 4, show that a 
long ON period is beneficial for estimating Creg but not for K, which has a sensitivity peak shortly after the 
start of the aeration. Likewise, in the OFF phase the estimation accuracy of r and KLap increases almost 
linearly with the phase length. 
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Figure 4 - Sensitivity trajectories of the reparametrized model obtained with optimal perturbation factors. 

The left figures refer to the air ON model, whereas the two right ones to the air OFF model. 

Computation of parameter uncertainty 

The FIM can be used to compute the parameter covariance matrix C as F-1 (see e.g. Dochain and 
Vanrolleghem, 2001). For the two models, with the original and reduced parametrization C is computed as 
follows 
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showing that the reduced model is more accurate. Further, the uncertainty for Creg in the reduced model is 
ten orders of magnitude lower than in the original one and lower than the observed DO variance σ2 = 
6.93×10-4. Hence estimating Creg with the model is more accurate than measuring it directly through DO 



measurements. Also, measuring Creg implies keeping the DO level high, which can be detrimental both for 
the probe and the biomass in the respirometer. As a last step, the correlation matrix of the two 
parametrizations are computed 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⋅⋅−
⋅
⋅−

=
−−

−

−

11008.41079.1
1008.4199.0
1079.199.01

67

6

7

Γ    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

167.0
67.01

1Γ  (10) 

showing much less correlation in the reduced model. In fact, while in the traditional model, Csat and r are 
highly correlated, whereas K is almost uncorrelated, in the reduced one the residual (Creg , K) correlation is 
due to the fact that the steady-state oxygen concentration depends on K. 

This analysis demonstrated the advantage of using the partitioned model with the reduced parametrization 
during the aerated phase. The next step is to evaluate the accuracy with which the original parameters [Csat, r, 
KLa, KLap] can be computed back. 

Error propagation and estimation accuracy of the original model parameters 

In the previous section it was concluded that the reparametrized model in which Creg and K are estimated 
during the air ON phase, whereas r and KLaP in the air OFF phase is better identifiable than the conventional 
model in which all the parameters are jointly estimated. 

Now the next step is evaluate the estimation error of the original (secondary) parameters from that of the 
(primary) parameters in the two sub-models, provided that these can be obtained from the primary ones with 
a negligible error. 

A set of 700 simulated respirograms was generated perturbing the model parameters around their mean value 
with a gaussian noise of variance comparable to that of experimental estimations. This set of noisy data was 
used to calibrate the primary parameters PON  =[Creg K] and POFF = [r KLap]. 

Assuming that the primary parameters can be expressed as a mean value and a random estimation error, i.e. 
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The propagation of these errors to the secondary parameters  
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From the random simulations the following values were obtained  
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where the most important aspect is that the estimation of KLa is affected by the error on KLaP, whereas the 
estimation error of K has a negligible influence, being two orders of magnitude smaller. 

In the same way, the estimation error of Csat can be evaluated considering KeK << to obtain 
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with mean and variance given by (using again the values obtained from the simulations) 
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which confirm the importance of the magnitude of the mass transfer in adversely affecting the estimation 
accuracy of Csat. 

Table 2 compares the estimation accuracy for the basic and reparametrized models, from which it can be 
seen that the latter model can be estimated with lower relative errors. 

Table 2 - Comparison of relative estimation accuracy of the two models. 

Parameter Basic model Reparametrized model 
Csat ≈ 7.5 er ≈ 10-1 er ≈ 10-3 
r ≈ 10-3 er ≈ 10-1 er ≈ 10-2 
KLa ≈ 10-2 er ≈ 10-1 er ≈ 10-3 
KLap ≈ 10-4 er ≈ 10-2 er ≈ 10-2 

SOFTWARE IMPLEMENTATION AND PERFORMANCE EVALUATION 

The software controlling the respirometer was developed in the LabView 6.1 platform. In the first 
implementation, the basic respiration model was used and the estimation results are shown in Figure 5. It can 
be seen that the noise affecting the estimates is still considerable, as a consequence of directly using the 
basic parametrization. A second implementation was then developed, using the reparametrized model and 
splitting the estimation in two steps. Depending on the current operating phase (air ON or OFF) the data are 
routed to the pertinent section, where a nonlinear Levenberg-Marquardt least-squares estimation is 
performed. Then the original parameters are computed back and the results are written on the hard disk as an 
ASCII file. The front panel and diagram of the LabView Virtual Instrument supervising the respirometer is 
shown in Figure 6. A first application of the improved instrument was to re-estimate the endogenous 
respiration parameters, as shown in Figure 7, where a lower noise level resulted, as expected from the 
previous accuracy analysis. The discrepancy between the KLa values depend from a modified aeration 
system, since the original one proved too powerful and created problems with the biomass, stimulating an 
excessive development of filamentous bacteria. Then several respirograms were produced, both on a readily 
degradable substrates, either carbonaceous (sodium acetate) or mixed nitrogen/carbon (ammonium acetate). 
Figure 8 shows three of these respirograms, where the stability of the endogenous level can be appreciated. 
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Figure 5 - Parameter estimation with the basic model in endogenous (above) and synthesis (below) 

conditions. The noise level of the estimates is still considerable, especially that on KLap The exogenous 
respirogram was obtained with a small injection of sodium acetate. 

Levenberg-Marquardt 
nonlinear least-squares 

estimation

Data selection
for identification

Second
identification step

First step
computation

Results
saved on file

 
Figure 6 - LabView implementation of the respirometer. The graphical user interface (front panel), where the 

use can input the estimation and experimental conditions, is shown on the left, whereas the operational 
diagram performing the computation is shown on the right. 
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Figure 7 - Endogenous respiration estimation using the reparametrized model and the implementation of 
Figure 6. Notice the lower noise level affecting the estimates. The lower KLa value compared with that of 

Figure 5 is a consequence of a different air diffusion system. 



300 mg/L Sodium Acetate 

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250 300
time (min)

r (
m

g/
L.

m
in

)
300 mg/L  Ammonium Acetate

0.00

1.00

2.00

3.00

4.00

0 100 200 300 400
time (min)

r (
m

g/
L.

m
in

)

500 mg/L Sodium Acetate 

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100
time (min)

r (
m

g/
L.

m
in

)

 
Figure 8 - Respirograms obtained with the reparametrized model on differing substrate. Notice the lower 
noise in the endogenous level and the nitrification double-step following the injection of sodium acetate 

(right). 

CONCLUSIONS 

A single-stage low-cost respirometer was developed for laboratory and process control applications. It is 
composed of a single open vessel equipped with magnetic stirrer, air diffuser and oxygen probe. The core of 
the instrument is represented by a LabView-based Virtual Instrument supervising the instrument operation 
(ON/OFF air switching) and on-line parameter estimation. The main idea is to account for stray air 
infiltration and estimate this uncontrolled input along with normal operating parameters. To improve the 
estimation accuracy, a reparametrized model was proposed and its accuracy proved to be higher than the 
conventional one. Later, the implementation aspects have been discussed, showing the instrument laboratory 
use with test injections. The next step will be an outdoor implementation with remote data acquisition, for 
process control use. 
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