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Abstract

Wastewater treatment’s primary purpose is to protect surface water quality, aquatic life, beneficial and rec-
reational uses of waterways, and primarily comply with local water emission standards. Lately, additional
requirements were added for these facilities, concerning minimization of a series of sidestream environmental
impacts (i.e., odours, generated waste by-products, etc.), air emissions, including CO2, methane and nitrogen
greenhouse gases (GHGs), and mitigation of various other likely impacts resulting from energy and chemical
use in treatment processes. This paper describes a case study in Northern Europe, where critical analysis of
an industrial wastewater treatment plant’s present conditions, during an evaluation of upgrade possibilities to
improve regulatory compliance, led to a sustainable intervention proposal. According to the formulated proposal,
process improvement, energy recovery, and overall savings and GHG emissions reduction could be simul-
taneously achieved with a series of relatively simple interventions.

Key words: carbon footprint, energy recovery, GHG emissions, process efficiency, sustainability, upgrade, WWTP
INTRODUCTION

Wastewater treatment’s primary purpose is to protect surface water quality, aquatic life, beneficial and
recreational uses of waterways, and compliance with local water emission standards. Hence, in
addition to appropriate monitoring of liquid discharge streams from such facilities (Capodaglio
et al. 2016a; Capodaglio 2017a), minimization of the overall environmental impact should be
included in their planning, in view of achieving overall sustainability of this type of facility (Capoda-
glio et al. 2016b; Capodaglio et al. 2017). Odours and other air emissions (such as CO2, methane and
nitrogen greenhouse gases (GHGs)) (Capodaglio et al. 2002; Torretta et al. 2016), emerging pollutant-
containing flows (Cecconet et al. 2017a; Trojanowski et al. 2017), secondary waste streams, and other
impacts resulting from energy and chemical (mis)use in treatment processes should also be taken into
account.
In comparison to other engineering disciplines, focused mainly on products or production pro-

cesses, wastewater treatment, whose primary purpose is the protection of the water environment,
has surprisingly made probably less progress in the specific development and application of sustain-
able design concepts in its field. Recent advancements in the application of sustainable thinking have
explored the possibility of resource recovery from wastewater (Daigger 2009; Verstraete et al. 2009;
Capodaglio et al. 2013; Capodaglio et al. 2016c; Cecconet et al. 2017b), and the consideration of
broader impacts in process or infrastructure selection (including public acceptance, global warming
potential, etc.) (Keller & Hartley 2003; Capodaglio 2017b).
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Literature has tried to elucidate sustainability of a specific wastewater treatment plant (WWTP)
through the use of various criteria, including life cycle impact assessment (LCA) (Lundin et al.
2000; Pasqualino et al. 2009), or the comparison of alternative designs (Lim & Park 2009; Callegari
& Capodaglio 2017; Molognoni et al. 2018) or control strategies (Novotny et al. 1991; Novotny &
Capodaglio 1992; Raduly et al. 2007; Arnell et al. 2017; Barbu et al. 2017) with the objective of
either a minimization of effluent pollutants, or costs.
In this paper, a case study for an industrial WWTP is considered, in which an initial issue related

to excessive heat discharges into receiving waters prompted a full evaluation of the efficiency of the
facility and a final upgrade proposal to obtain simultaneously better regulatory compliance and
better biological and chemical processes performance. This was achieved by exploiting the facility’s
specific design characteristics and shortcomings, in order to plan an integrated intervention to
enhance treatment efficiency and long-term energetic sustainability, while reducing the overall
carbon footprint.
CASE FORMULATION AND ANALYSIS

The facility under consideration is a tertiary, industrial WWTP facility in Northern Europe, in which
nitrogen (N) and phosphorus (P) removal is achieved by a bio-P process, followed by a simultaneous
nitrification/dentrification activated sludge process and a (reserve) P chemical precipitation unit
(Sedlak 1991; Capodaglio et al. 2015; Capodaglio et al. 2016d). The facility serves an agro-food
industrial district (with negligible municipal discharge contribution) and treats an average flow of
10,000 m3/d, with high loads of organic matter (biological oxygen demand (BOD5,ave)¼ 1,500 mg/L,
chemical oxygen demand (CODave)¼ 2,400 mg/L) and nutrients (total nitrogen (TN)∼ 160 mg/L,
total phosphorus (TP)∼ 50 mg/L). Bio-P removal occurs in an anaerobic tank prior to the simul-
taneous nitrification/denitrification process. A subsequent flocculation finishing step is activated in
the clarifiers for additional P removal, when needed. Table 1 describes the main dimensional charac-
teristics of the facility, while Figure 1 shows its schematic flowsheet.
Table 2 reports the main average design operating parameters. The organic load removal efficiency

of the plant is usually more than satisfactory (CODeff¼ 15–21 mg/L, BOD5,eff¼ 1–2 mg/L, against dis-
charge limits of 50 and 30 mg/L, respectively). Notwithstanding the high influent nutrient loads, the
facility also appears to generally comply with TN discharge limits (TNeff¼ 1.5–2 mg/L vs. 4 mg/L
limit), with some frequent exceptions in the summer months. TP emissions, on the other hand, are
mostly compliant with the limits (TPeff¼ 0.2–0.3 mg/L vs. a limit of 0.3 mg/L). Due to the specific
nature of the industrial processes generating the wastewater, however, inflow to the plant is usually
in a high temperature range (20–28 °C – lower in the winter, higher in the summer), with registered
summer effluent peaks up to 30 °C (Figure 2). This is not only in violation of the maximum absolute
value for discharge into the receiving waters (Tlim¼ 24 °C), but is also much higher than the optimal
temperature determined for local biota in the receiving water, determined by the local environmental
agency as 14 °C. Thus, the frequent violation of temperature discharge standards is also associated
with possible negative effects on the resident biota, and induces a blatant situation of energy waste,
Table 1 | WWTP design characteristics

Unit Volume (m3) HRT (1/d)

Bio-P removal 10,000 1.33

Aerobic (nitrification) 18,000 2.4

Anoxic (denitrification) 9,000 1.2

Total biologic 37,000 5

iwaponline.com/wpt/article-pdf/13/4/909/527459/wpt0130909.pdf
ty of London user



Figure 1 | WWTP schematic flowsheet.

Table 2 | WWTP main operating parameters

Parameter Value Units

BOD5,infl 1,500 mg/L

CODinfl 2,400 mg/L

TN 160 mg/L

TP 50 mg/L

O2 conc 0.2–3 mg/L

MLSS 4.5 mg/L

Xw¼Xr 10 mg/L

Aerobic sludge age (nitrification) 9.4 Days

Anoxic sludge age (denitrif.) 4.6 Days

Overall sludge age 14 Days

Qin 7,500 m3/d

Qr 0.8–1.0 Qin

Figure 2 | Summer influent flow temperature trend.
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that translates in higher than necessary overall carbon emissions from the plant, the unnecessary dis-
charge into the environment of a potentially recoverable resource, and increasing in an unacceptable
way the carbon footprint of the system.
The apparently simple solution of recovering this excess heat prior to wastewater discharge in the

sewer system was not taken into account by the industrial district management, due to potential
interferences between the characteristics of the wastewater and the additional process units
required for this purpose (resulting in possible fouling of any installed heat exchangers), as well
as possible interferences with in-sewer and in-plant phenomena (Baetens et al. 1999; Qteishat
et al. 2011; Kretschmer et al. 2016), leading to lower biological degradation rates (and higher initial
loads). Therefore the design and implementation of a system for the recovery of excess heat wasted
in the industrial discharge had to be evaluated jointly with an analysis of the WWTP’s performance
itself.
An ‘early’ (pre-biological process) heat recovery point would necessarily lower process operating

temperatures, modifying their efficiency. In this case, nitrification would be the most affected treat-
ment step, due to its higher sensitivity to process temperature (Wanner et al. 2005). This may result
in additional emission standards violations to add to those currently observed, even though a lower
process temperature would enhance oxygen solubility in the mixed liquor, and somewhat decrease
overall oxygen supply requirements during the process. A careful evaluation of the entire biological
process train is therefore required.
ASSESSMENT OF INITIAL EFFICIENCY

As mentioned, occasional violation of nitrogen or ammonium effluent standards had been previously
and occasionally recorded by plant management. Having hypothesized that lowering influent temp-
erature prior to the biological compartment could cause an increased risk of violation occurrence,
due to lower bacterial activity, a verification of present plant efficiency was carried out, analyzing
all the recent occurrences in which discharge standards were actually violated, under current operat-
ing conditions. Table 3 summarizes some of these violations, with one or more of the parameters
(ammonia, nitrates and TN) recorded above effluent limits, together with observed operating con-
ditions during the violation. For those days, aerobic, anoxic (not shown in the table) and overall
sludge ages were calculated. It is critical, for a correct efficiency analysis, to correlate actual sludge
ages with the observed events. In particular, the observed aerobic sludge ages corresponding to efflu-
ent violation events are plotted against temperature in Figure 3.
These values are then compared with the theoretical aerobic sludge age values necessary to achieve

80–90% nitrification/denitrification efficiency, determined at different concentrations of dissolved O2

according to Sedlak (1991):

qtheor ¼ 1
mn �Knd

(1)

where Knd can be neglected, due to its small values, and

mn ¼ mn,max(T )�
NH3�N

Kn þNH3�N

� �
� DO

KO þDO

� �
(2)

Figures 4 and 5, therefore, show sludge age values in correspondence to the observed violation
events (as in Table 3), compared with the theoretical sludge retention time (SRT) limits defined by
Equations (1) and (2) above, in the hypotheses of high (3 mg/L) and low (0.2 mg/L) DO concen-
trations, respectively. In both figures, the minimum sludge age, for which nitrification capacity is
iwaponline.com/wpt/article-pdf/13/4/909/527459/wpt0130909.pdf
ty of London user



Table 3 | Plant’s effluent violations (parameters over limits in boldface)

NH4-N [mg/l] N03-N [mg/l] TN [mg/l] C/N [kgBOD/kgN] XMLSS [kgSS/m3] Temp [°C] ϑx,tot [d]

0.063 4.5 7.14 6.74 6.65 26.40 18.64

0.066 7.81 11.30 9.04 6.49 26.13 12.05

0.12 10.1 7.70 11.01 6.29 26.43 12.79

0.15 10.4 14.5 8.44 6.22 27.20 16.14

0.38 10 12.6 6.94 6.14 27.33 18.99

2.81 9.09 14.5 8.35 5.90 27.37 15.05

4.76 7.42 14.7 8.92 5.63 27.20 11.78

5.24 6.47 11.1 7.48 5.48 27.23 15.18

6.08 4.31 12.5 16.80 5.25 27.17 12.55

3.64 2.32 6.33 8.99 5.04 27.43 15.34

3.29 4.5 8.02 17.87 4.67 31.23 6.74

5.68 4.19 11.7 8.49 4.10 27.50 9.88

4.29 3.11 9.74 6.83 4.17 27.57 10.99

0.71 1.74 5.27 8.01 4.41 27.67 12.01

2.26 0.33 9.09 18.03 4.16 27.73 4.44

4.09 2.88 10.2 8.04 4.13 27.83 12.49

1.75 0.33 5.45 9.21 4.29 27.77 12.79

3.03 3.28 8.6 7.39 4.20 28.00 12.67

5.47 2.77 1.93 26.92 4.23 28.43 9.79

4.27 1.85 6.44 6.88 4.35 27.33 17.43

1.99 1.46 5.46 8.25 4.38 27.20 15.76

1.69 0.92 4.36 7.16 4.38 26.07 13.08

3.58 0.62 5.21 8.01 4.42 28.43 14.59

2.88 0.4 4.23 8.69 4.05 22.67 15.90

3.48 0.4 4.69 22.94 4.08 22.87 6.60

2.57 0.65 4.66 8.51 5.95 23.80 19.81

2.84 0.7 5.07 7.97 6.25 23.60 16.94

2.71 0.41 5.31 9.20 6.70 23.75 20.85
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very small, and the amount of nitrified ammonium is close to 0, defined by Sedlak (1991) as:

qmin ¼ 1
mmax(T )

(3)

and the design sludge age (determined as the previously calculated theoretical value, multiplied by a
safety factor of 2), are also shown.
In the considered facility, DO levels are controlled by an automatic on/off system, limiting concen-

trations in the biological reactors within the range 0.2–3 mg/L. When DO concentration is high
(3 mg/L), almost all observed aerobic sludge age values are situated above the design aerobic
sludge age curve (Figure 4). This means that the nitrification process happens in almost ‘total’
efficiency (the two points below the design SRT curve are still above the theoretical one).
Considering DO concentration at 0.2 mg/L (Figure 5), the situation for nitrification is, instead, criti-

cal: nearly all of the observed points lie below the theoretical sludge age (representing a nitrification
efficiency ,80–90%) and the lower points are very close to the minimum sludge age curve. That
means that nitrification efficiency in such instances is overall very low (between 50 and 10%), and
a huge amount of ammonium could therefore still be present in the effluent. Furthermore, due to
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Figure 3 | Calculated aerobic SRT vs. temperature.

Figure 4 | Comparison of sludge ages, dissolved O2¼ 3 mg/L.
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the simultaneous nitrification/denitrification process, instantaneous outlet ammonium concen-
trations depend on two factors, namely the concomitance of periods in which the aerobic reactor
is operating at a low oxygen concentration, and the instantaneous ammonium load in the influent.
As conditions in a dynamic, simultaneous process are constantly transient, a temporarily unbalanced
operational state could therefore generate overload situations, and violations may ensue.
To better qualitatively illustrate possible outcomes of this variability, Figure 6 summarizes the total

daily oxygen requirement (sum of organic matter and ammonia oxidation, minus denitrification), and
effluent ammonium and nitrate concentrations. It can be seen that high effluent ammonium
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Figure 5 | Comparison of sludge ages, dissolved O2¼ 0.2 mg/L.

Figure 6 | O2 requirement and effluent NO3/NH4.
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concentrations are closely correlated to high oxygen requirement values. In practice, the system,
loaded with a high amount of oxygen-consuming matter, cannot fulfill this request at the achievable
SRTs determined in oxygen deficit (low DO concentrations), resulting in poor ammonia removal
capacity. The resulting sudden oxygen demand then triggers the DO control system, reducing also
the nitrification/denitrification efficiency.
Three different possible scenarios can present themselves at any time (as shown in Table 3):

ammonium concentration above the effluent limit; nitrate concentration above the limit; and both
ammonium and nitrate concentrations above effluent limits. From an analysis of Figures 4 and 5,
all three situations lead to the same result; that is, an insufficient sludge age at a given DO level, imply-
ing, under the system’s specific layout and conditions, that the performance limitation lies in the
insufficient availability of reaction volume under critical circumstances.
iwaponline.com/wpt/article-pdf/13/4/909/527459/wpt0130909.pdf
ty of London user



Water Practice & Technology Vol 13 No 4
916 doi: 10.2166/wpt.2018.099

Downloaded from https://
by Queen Mary. Universi
on 04 April 2019
INTEGRATED UPGRADE APPROACH

From the above analysis the following considerations can be drawn: the facility is, in its present
layout, mildly under-designed, as far as reactor volume is concerned. This condition only occasionally
becomes evident however, under critical organic and/or ammonia loads, and in the presence of high
influent temperatures during the summer months. This situation alone could likely be solved with the
implementation of an appropriate type of automatic, model-based online control (Novotny & Capo-
daglio 1992; Dai et al. 2016), even though in this specific case the presence of a bio-P removal process
could add further complexity to such an approach, or by a ‘hardware’ upgrade. The latter approach
was hence hypothesized, keeping in mind the residual issues related to the excess temperature
discharge.
The previous analysis also showed that, in the present situation, energy recovery prior to the biologi-

cal process could exacerbate the effects of the under-design: process kinetics would further degrade,
increasing the chances of effluent violations due to slower processes (Wanner et al. 2005). Energy
recovery downstream of the biological section is therefore confirmed as the only effective solution.
As highlighted by the previous analysis, stressing the need for higher SRTs in order to improve the

efficiency of the biological section, an additional amount of process volume is required. Considering
the present plant layout (Table 1), unifying the bio-P and nitrification/denitrification sections, cur-
rently positioned in concentric tanks, would generate a new, larger nitrification/denitrification
dedicated volume. At the same time a separate, new anaerobic P removal tank upstream would
cause the least amount of structural disruption, at the lowest additional cost to the existing plant. A
new plant configuration was therefore suggested, as shown in Table 4 and Figure 7. The proposal
of adding an additional volume of þ27% to the nitrification/denitrification section is related primarily
to the current plant layout, and is in no way calculated in any optimized fashion. However, a verifica-
tion of the post-intervention layout with the same methods previously used proves that this approach
will ensure good performance of the process even under low DO concentrations, as shown in Figure 8,
virtually eliminating any chance of future violations.
Table 4 | New plant configuration

Unit Volume (m3) HRT (1/d)

Bio-P removal 10,000 1.33

Aerobic (nitrification) 28,000 3.73

Anoxic (denitrification) 9,000 1.2

Total biologic 47,000 6.26

Figure 7 | Proposed WWTP new schematic flowsheet after upgrade.
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Figure 8 | Process verification diagram under new plant configuration, at low DO (DO¼ 0.5 mg/L).
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Clearly, detailed dynamic modelling of operating conditions would better represent the day-to-day
situation of the facility, but even this simplified approach should be sufficient to show the soundness
of the proposed solution.
ENERGY RECOVERY

After addressing the treatment efficiency issue, energy recovery from the effluent flow can, at this
point, be safely tackled, without fear of adverse consequences on process performance, especially
on nitrification (Sedlak 1991).
Based on available records, seasonal effluent temperature statistics are summarized in Table 5.

Although the yearly average is below the absolute discharge limit (24 °C), its value is well above themaxi-
mum temperature determined for preservation offish life in the receiving stream, indicated, asmentioned,
at 14 °C. It is also awell-known fact that the possible, theoretical energy recovery byheat extraction froma
liquid stream is 7 kWh/m3 per 6 °C water temperature drop (Meggers & Leibundgut 2011).
Therefore, taking into account the receiving waters’ seasonal temperature variability, the dynamic

of the mixing regime, and possible energy recoveries, two general scenarios with different target efflu-
ent temperatures were determined: a discharge temperature of maximum 10 °C in the fall/winter
season; and maximum 15 °C in the spring/summer. These give recoverable ΔT’s in the range of 9
to 15 °C in each period. On these assumptions, recoverable heat energy from the facility flow can
be calculated assuming the use of suitably-dimensioned heat pumps (Liu et al. 2010). Calculations
were performed for two different final hypothesis of heat recovery and reuse:
Table 5 | Seasonal effluent temperatures from plant

Season Tmin °C Tmax °C Tave °Ca

Spring 20.1 28.9 24.5

Summer 24.5 29.7 27.8

Fall 19.5 25.0 23.6

Winter 16.2 21.1 19.4

Yearly average ¼ ¼ 23.7

aCalculated on all data.
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• product water at 45 °C (used for hot water in-plant, and connected industrial facilities);

• product water at 70 °C (used for heating and hot water in nearby residential/public buildings).

Results of the calculations made under different options are summarized in Tables 6 and 7. It is
immediately apparent that a considerable amount of energy can be recovered from the effluent: in
the case of district heating (Table 6) it was estimated that the energy recovered could service approxi-
mately 1,000 individual apartments, while the energy recoverable for hot water use ranges from 2,000
to 2,500 kW (Table 7), assuming the installation of three heat pumps and depending on external
environmental conditions.
Table 6 | Recoverable energy, heating water (70 °C)

Table 7 | Recoverable energy, hot water (45 °C) use
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This corresponds to the recovery of roughly 17,500 to 21,900 MWh/yr, which, in turn, corresponds
to an offset of about 12,000 to 15,000 t/yr of avoided CO2 emissions, assuming alternative production
from fossil fuels (USEPA 2014). For comparison purposes, the entire WWTP’s CO2 footprint can be
estimated as approximately 75,000 t/yr (USEPA 2010). The emission reduction is therefore equal to
about a fifth of the original plant’s CO2 footprint. This constitutes a significant contribution to the
reduction of GHG emissions from the facility and a step forward towards maximization of the use
of resources present in ‘used water’, as advocated recently by many (Verstraete et al. 2009).
CONCLUSIONS

An industrial, tertiary treatment plant providing COD and bio-P removal, nitrification and denitrifica-
tion, was the object of an in-depth analysis in order to verify the possibility of recovering excess heat
entering the facility through the upstream industrial processes effluents, and preventing it from being
discharged into the receiving waters, while improving its overall treatment efficiency during critical
events. The plant’s effluent, in fact, often exceeded the absolute permit discharge limit of 24 °C, and
occasionally also exceeded the TN effluent limit of 4 mg/L. A verification of the process treatment effi-
ciency revealed that the occasional TN limit noncompliance could be related to insufficient SRTs
(linked to insufficient available process volume) during critical events. This finding suggested that
the biological process train could be revampedwith additional process volume and that operating temp-
erature reduction, upstream of the biological section, could have induced a risk of further reduced
process performance. Additional plant volume was readily and easily achieved by incorporating the
existing bio-P volume in the nitrification/denitrification tank, due to the ease of implementing this inter-
vention, the specific layout, and ability to build a new bio-P reactor. This solution resulted in a 27%
volume addition to the critical nitrification section, not by calculation, but by ease and minimal cost
of implementation. Excess heat recovery options calculations, downstream of the biological section,
were thus conducted, under two possible final use scenarios. Results indicated that between 2,000
and 2,500 kW could be recovered, corresponding to a CO2 emission reduction (offset) of between
12,000 and 15,000 t/yr, or about a fifth of the current total estimated emission impact of the facility.
This recovery has multiple impacts on the overall ‘sustainability score’ of the examined facility: it

does not impair its performance from a process efficiency point of view, it improves (reduces) the
overall environmental impact from both local (receiving water) and global (carbon footprint) aspects,
and improves its economic viability by providing a tradeable commodity (hot water) of substantial
economic value. Additional interventions to further improve the sustainability of the WWTP under
consideration could be the object of future assessments: nutrient (N and P) recovery in the form of
struvite mineral could be in fact implemented with relative ease (since the facility already operates
a bio-P removal process and thus has P-rich sludges).
This case study demonstrates that integrating simple sustainability concepts in WWTP design and

upgrading can be done with relative ease and may produce substantial benefits at both local and
global levels. Sustainability awareness should become a primary focus for environmental protection
facilities designers and managers.
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