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ABSTRACT

This paper analyzes the spatio-temporal variability of precipitation in western Iran by means of the

Standardized Precipitation Index (SPI), calculated in annual and seasonal aggregations for wet and dry

conditions over 46 synoptic stations with monthly data from 1957 to 2008. Regions of homogeneous

SPI realizations were delimited using principal components analysis (PCA) to highlight major variation

modes distinguishable in the basin and singular spectrum analysis (SSA) was performed over the

reconstructed values of SPI to identify their oscillation modes. Extreme SPI values associated with El

Niño–Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) were also evaluated. Results

show two significant oscillations around 4 and 8 years on the SPI with an increase in precipitation

variability since 1990 and a tendency to have less rain during the cold season and more rain during the

warm season. We calculated standardized products among SPI, ENSO, and PDO to determine years in

which the indices reinforce each other, 1986, 1992, 1999, and 2008 being particularly significant in the

associations. These results are important for water managers in western Iran because they indicate

significant changes in precipitation regimes associated with ENSO and PDO signals that will help to

assess the occurrence of droughts and floods in the area.
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INTRODUCTION

Iran, which belongs to the arid/semi-arid zone of Asia and

receives less than a third of the world’s average precipi-

tation, has gradually shifted towards drier conditions

(Ashouri et al. ). This shift implies the need to study

the variability of precipitation in the country, especially in

terms of severe drought conditions. The variation of rainfall

is very high between years, thus the country sometimes

experiences drought. Rainfall varies both temporally and

spatially. In general, most of the relatively scarce annual pre-

cipitation falls from October to April (Eslamian et al. ).

A coupled atmosphere–ocean system may provide a cli-

matic insight into the mechanisms that can strongly affect

the magnitude and also the distributions of precipitation in

the region. The understanding and quantification of the

relationship between regional climate anomalies and large-

scale circulation drivers have been a hot topic of research

worldwide. The El Niño-Southern Oscillation (ENSO)

phenomenon over the tropical Pacific and also the Pacific

Decadal Oscillation (PDO) are quite important because of

their huge impacts on hydro-meteorological disasters like

floods and droughts. The influence of ENSO on climate in

the Asia/Pacific region and the influence of theNorth Atlan-

tic Oscillation (NAO) on climate in Europe, in particular,

have drawn much attention in recent years (Zhang et al.

; Gelati et al. ; Wrzesiński & Paluszkiewicz ;

Chen & Hong ; Parry et al. ; Skaugen et al. ).

While some efforts have been made to study the precipi-

tation variability in Iran (Domroes et al. ; Dinpashoh
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et al. ; Soltani & Modarres ; Soltani & Gholipoor

; Raziei & Azizi ; Ashouri et al. ), no compre-

hensive study on extreme rainfall conditions (i.e., deviation

of actual precipitation from a historically established

norm), supported by a standardized drought index and by

spectral analysis (focused on atmosphere–ocean phenom-

ena), has been performed for western Iran.

In this study we perform point frequency analysis and prin-

cipal component analysis (PCA) to examine patterns of

precipitation variability in western Iran at seasonal and

annual aggregations and analyze how these extreme patterns

may be influenced by ENSO and PDO. PCA is useful to

reduce the dimensionality of spatially distributed time series

of precipitation and to interpret spatial patterns, from a statisti-

cal viewpoint, through the distribution of significant

eigenvectors that explain an important fraction of the series

variability (Huth ; Wheater et al. ; Novembre & Ste-

phens ). Moreover, PCA can be used to detect trends and

changes of variability in hydrologic time series (Muchoney &

Haack ; Smith et al. ; Tomassini & Jacob ).

We evaluated precipitation from 46 rain gauges in terms

of the Standardized Precipitation Index (SPI) aggregated

seasonally and annually. To determine temporal changes

in precipitation variability we performed singular spectrum

analysis (SSA), a non-parametric statistical tool that allows

the separation of different components in the time series,

such as trends and periodicities or oscillations, according

to the variance that each component is able to explain in

the series (Elsner & Tsonis ; Golyandina et al. ;

Moskvina & Zhigljavsky ). SSA is used commonly in

the analysis of climatic and meteorological time series

(Peters et al. ; Jawson & Niemann ).

Finally, we determine which years of the available

record (1957–2008) were relatively more affected by

ENSO and PDO using a standardized year-by-year product

among the indices that highlight only those extreme years

where the signals highly reinforce each other.

DATA SOURCES

Study area

Western Iran covers the region between 33 and 39 degrees lati-

tude north and 45 and 52 degrees longitude east, as shown in

Figure 1. The region is mostly occupied by the Zagros Moun-

tain range, which faces the direction of the prevailing

moisture bearing systems (Domroes et al. ; Dinpashoh

Figure 1 | Study area in western Iran.
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et al. ). Due to the latitudinal extent and its complex relief,

the precipitation amount varies greatly over the region.

Precipitation data

This study analyzes monthly precipitation data from 52

synoptic stations (covering the period from 1957 to 2008,

which is the last date available from Iran Meteorological

Organization database). We tested the data for randomness

purposes using the run test with binomial distribution,

which is used to decide whether or not a dataset is

random (a sorted series of increasing values is considered

random when the probability of the [iþ 1]th value being

larger than the [i]th value follows a binomial distribution).

Six stations did not have sufficient and random data, so

the other 46 stations were selected. A scatter plot showing

the location of these stations, their elevations, and the

annual precipitation (from 1957 to 2008) for each station

are shown in Figure 2.

The average of annual, maximum, and minimum precipi-

tation values are shown in Figure 3(a). The seasonal

precipitation plots, defined by the cold season (October to

April, Figure 3(b)) and the warm season (May to September,

Figure 3(c)), also include the percentage of total precipitation

per station that occurs in each respective season. Precipitation

during the cold season represents more than 50% of total

annual precipitation in all stations. During the warm season

precipitation is higher towards the north, but during the cold

season tends to be evenly distributed over the area with

some high values towards the south and west. The values in

both seasons tend to be uniform at the center of the study area.

PDO and BEST data

PDO time series

This study uses the monthly standardized values for the

PDO index (Mantua ). The PDO appears to oscillate

Figure 2 | Left: Annual precipitation at each station. Right: Location and elevation of synoptic stations used in this study.

Figure 3 | (a) Average of annual, maximum, and minimum precipitation (mm) at the stations; (b) cold season’s mean precipitation and percentage of total precipitation; (c) warm season’s

mean precipitation and percentage of total precipitation.
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between warm and cool phases every 20 to 30 years (Null

). The negative, cool phase has occurred in 1900 to

1924, 1947 to 1976, and 1998 to the present. The rest of

the period corresponds to the positive, warm phase. This

monthly time series is available at: http://jisao.washington.

edu/pdo/PDO.latest.

BEST time series

The bivariate ENSO time series (BEST) index was designed

to be simple to calculate and to provide a long-term ENSO

index for research purposes. Nino 3.4 has traditionally been

used as a measure of ENSO strength in the tropical Pacific.

The time series is based on combining an atmospheric com-

ponent of the Southern Oscillation Index (SOI) with an

oceanic component (Nino 3.4 SST which is defined as the

SST averaged over the region 5N to 5S and 170 to 120 W)

(Smith & Sardeshmukh ). This time series is available

at NOAA (http://www.esrl.noaa.gov/psd/data/correlation/

censo.data). The BEST index has been used to relate the be-

havior of different hydrologic variables with ENSO (Cañón

et al. ; Bookhagen & Strecker ).

METHODOLOGY

Our study begins with the analysis of the spatial and temporal

variability of precipitation quintiles in terms of the SPI by

means of the point frequency analysis of the coverage of

abnormally wet and dry conditions and the derivation of sig-

nificant Empirical Orthogonal Functions (EOFs) over the

study area. The study proceeds to identify the existence of

consistent common oscillatory modes of SPI via the appli-

cation of SSA. Finally, an index product is proposed to

detect extremely wet and dry conditions significantly associ-

ated with the interactions between the three signals (SPI,

PDO, and ENSO). The work is based on aggregations of

the indices in water years (from October to September) and

seasonal aggregations in two periods, the cold season (Octo-

ber to April) and the warm season (May to September).

The SPI is an index based on the probability of precipi-

tation for different time scales, representing processes that

go from those rapidly affected by atmospheric behavior

(weeks or months) to effects at scales of seasons and years

(Moreira et al. ). SPI has been used in several countries

around the world for the analysis and assessment of

droughts (Patel et al. ).

The SPI series in this study are grouped in annual and

seasonal sets. The seasonal SPI compares the precipitation

of the season in different periods over the historical record.

The seasonal SPI indicates medium-term trends in precipi-

tation that may affect stream flows and reservoir levels.

The annual (12-month) SPI is a comparison between

consecutive 12-month cumulative precipitation values

throughout the historic record. The annual SPI reflects

long-term interannual precipitation patterns. According to

Hayes et al. (), annual SPI values are probably tied to

stream flows, reservoir levels, and even groundwater levels

at longer time scales.

The SPI is computed by fitting a gamma probability den-

sity function (PDF) to a given frequency distribution of

precipitation summed over the time scale (1957–2008).

This is performed at each station separately for the cold

season, warm season, and water year (October to Septem-

ber). Each PDF is then transformed into the standardized

normal distribution (Lloyd-Hughes & Saunders ).

These series were analyzed in their spatial distribution and

temporal recurrence using PCA and SSA, respectively. A

brief description of the procedure is presented in the follow-

ing two sections.

Spatial analysis using PCA

PCA is a linear optimization method that maximizes the

explained variance of a dataset by decomposing the original

series in an orthogonal set of eigenvectors (EOFs). In this

study, the spatial variability of annual and seasonal SPI data-

sets was analyzed via the distribution of their significant

eigenvectors.

A Monte Carlo generation process of 100 correlation

matrices of independent random variables with mean zero

and unit variance (similar to the SPI parameters) was per-

formed to account for the effects of white noise. The

random matrices were decomposed in their singular values

and sorted in decreasing order of variance explained.

Only the eigenvalues that are above the white noise

threshold are considered to be significant. The SPI matrix

can then be partially reconstructed using only the significant
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eigenvectors. To reduce the effects of domain-shape depen-

dence a varimax rotation was also applied to the

significant eigenvectors. The coefficients of the rotated sig-

nificant eigenvectors for the annual and seasonal series

were plotted over the stations and their spatial distributions

were analyzed to identify possible patterns of SPI variability

in the region.

Frequency analysis

The SSA approach is a useful non-parametric technique of

time series analysis that has been widely used in hydrology

to relate low frequency changes in temperature and precipi-

tation associated with climate signals such as ENSO and

PDO (Santos et al. ). SSA allows the original series to

be decomposed into a small number of independent com-

ponents that can be interpreted in terms of slowly varying

trends, oscillatory components and a structure that is differ-

ent from red noise. Detailed mathematical descriptions of

the methods presented in these sections can be found in

Ghil et al. (), Shun & Duffy (), and Hassani

(). The code used in this study to perform SSA was writ-

ten in Matlab®.

RESULTS AND DISCUSSION

We first discuss the spatial and temporal distribution of

annual and seasonal SPI values within the area of study,

relative to the occurrence of abnormally dry and wet

events over each point of the grid, followed by the analysis

of the linear transformation of point SPI time series into a

reduced set of principal components (PC-SPI), the analysis

of the spatial distribution of the significant EOFs and the

identification of multiannual frequency oscillation modes

in the PC-SPI values. Finally, we discuss the association of

extreme events with the PDO and ENSO signals in the

area of study.

Spatial and temporal incidence of abnormally wet and

dry conditions

Following the methodology proposed by Cañón et al. (),

the annual and seasonal occurrences of abnormally dry and

wet conditions over western Iran were determined for absol-

ute SPI values higher than 1.5, which are regarded as severe

moisture conditions (classification proposed by McKee et al.

()).

The 1957–2008 cumulative frequency distributions

(CDFs) of area covered by |SPI|> 1.5 are shown in Figure 4

for the case of the entire study area and three different aggre-

gation periods: annual (October–September), cold season

(October–April), and warm season (May–September).

Values corresponding to El Niño and La Niña years are

highlighted in Figure 4.

Results show that mostly dry events would be expected

in western Iran during La Niña years, whereas wet and

dry events are equally likely to occur during El Niño

years. Although not all El Niño and La Niña years exhibit

the same coverage of abnormal moisture conditions, the

most severe and extended events are associated with

ENSO years and lower or higher than normal PDO

values. This result is indicative of the influence of both

ENSO and PDO in the occurrence of severe regional moist-

ure conditions in the area. The analysis also shows that the

warm season tends to have less extreme events than the cold

season for both wet and dry events.

PCA over spatially distributed SPI time series

The significant eigenvectors derived from PCA over the SPI

(PC-SPI) for water year and seasonal series are shown in

Figure 5. The spatial distributions of the varimax rotated

components of significant eigenvectors are shown in

Figure 6. The PCA applied to the annual SPI shows four

eigenvectors significantly different from white noise

(Figure 5). These four eigenvectors explain 89.4% of the

variance.

The window length (L) is a key parameter in the

decomposition stage of SSA. L should be large enough to

identify low periodicities but not greater than half the

length of the original series (N/2). In this study, the value

of L was chosen from the results of w-correlation calculated

for reconstructed series over different window lengths.

Table 1 shows the results obtained for w-correlation from

the simulated water year series with different L. A w-corre-

lation of zero means that the components are separable.

Results indicate that the minimum value of w-correlation
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is obtained for the maximum value of the window length

L¼N/2∼ 25 years (the time series length is equal to 51

years, from 1957 to 2008). Thus, we had 25 eigentriples in

the decomposition stage (for more information, see Hassani

et al. ()).

Regarding the SPI for water years (Figures 6(a1) to

6(a4)), the loadings of the first rotated EOF, explaining

72% of the variance, are not evenly distributed over the

study area and have their major influence towards the south-

east. The loading of the second rotated eigenvector, which

explains approximately 14% of the variance, is noticed in

the central part of the study area. The third and fourth

rotated eigenvectors, which together explain 11.4% of the

variance, show loadings oriented more towards the north

with some influence over the upper and lower and center

of the area. Although the fourth EOFs have a significant

spatial coherence that was not detected in the EOFs derived

from random processes, their distributions would still be

conditioned by the shape of the domain.

For the cold season (Figures 6(b1) to 6(b4)), the loadings

of the first rotated EOF (the more significant) explain 70.5%

of the variance and are evenly distributed over the southern

part of the study area. The second rotated eigenvector,

which explains approximately 12.5% of the variance, is

noticed in the northern part of the study area. The third rotated

eigenvector, which explains 5.5% of the variance shows

Figure 4 | CDF of area (A) covered by abnormally wet (upper row) and dry (lower row) moisture conditions.

Figure 5 | Cumulative variance explained by eigenvalues for water year time series.
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loadings oriented in the center part (near the north). The

fourth rotated eigenvector (explaining 2.9% of the variance)

shows loadings oriented in the center part of the study area.

Finally, for the warm season (Figures 6(c1) to 6(c4)), the

first rotated EOFs explain 66% of the variance and also the

third and fourth rotated eigenvectors, which together

explain 8.5% of the variance, show loadings oriented in

more or less all parts of area. The second rotated eigenvec-

tor, which explains approximately 14% of the variance, is

noticed in the northern part of the study area.

The advantage of having identified these specific modes

lies in the possibility of extracting a considerable amount of

information from the study area using only a reduced set of

principal components PC-SPI. Each PC-SPI represents a

weighted average of the SPI over the basin. The vector

sum of the first four PC-SPIs in turn provides a projected

time series representing the variance explained by the

rotated EOFs. This time series was used in the SSA to deter-

mine the presence of common oscillations.

SPI oscillation modes with SSA

The reconstructed PC-SPI time series was analyzed using

SSA for the period 1957–2008 in order to identify consistent

oscillatory modes.

Decomposition: window length and eigenvalues

The window length L is the only parameter in the decompo-

sition phase (Hassani ). In this study, for water year and

seasonal time series L¼ 25 has been used. Based on this

window length and on the eigenvalues of the trajectory

matrix (25 × 25), there are 25 eigentriples, ordered by their

contribution (share) in the decomposition.

Figure 7 represents the PCs related to the first six eigen-

triples for water year, cold and warm seasons’ time series.

Figure 6 | Varimax rotated spatial distribution of the four significant EOFs for: annual mean precipitation ((a1) to (a4)), cold season’s mean precipitation ((b1) to (b4)), and warm season’s

mean precipitation time series ((c1) to (c4)).

Table 1 | The value of weighted correlation for different values of window length (L) for

reconstructed water year time series

Window length (L) 10 15 20 25

w-correlation 0.00263 0.00103 0.00046 0.00026
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Usually, every harmonic component with different fre-

quency produces two eigentriples with close eigenvalues

(except for frequency 0.5 which provides one eigentriple

with saw-tooth singular vector). Another useful insight is

provided by checking breaks in the eigenvalue spectra. As

a rule, a pure noise series produces a slowly decreasing

sequence of singular values. Figure 8 shows the logarithms

of 25 singular values for water year, cold and warm seasons,

and PC-SPI time series for these periods.

Two evident pairs with almost equal leading singular

values are related to two (almost) harmonic components of

the annually PC-SPI series, eigentriple pairs 2–3, 4–5, and

6–7 are related to harmonics with specific periods, for

water year and cold season time series and also eigentriple

pairs 1–2, 3–4, and 5–6 for warm season time series (Golyan-

dina et al. , Chapters 1 and 2). Each PC-SPI represents a

weighted average of the SPI over the region. The vector sum

of the eigentriple pairs 2–3, 4–5, and 6–7 PC-SPIs for water

Figure 8 | Logarithms of 25 eigenvalues and PC-SPI time series for (a) water year, (b) cold season, and (c) warm season time series.

Figure 7 | EOFs related to the first six eigentriples for: (a1) to (a3) water year, (b1) to (b3) cold season, and (c1) to (c3) warm season time series.
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year and cold season time series and 1–2, 3–4, and 5–6 PC-

SPIs for warm season, respectively, provides a projected

time series representing the variance explained by the R-

EOFs. These time series were used in the SSA to determine

the presence of common multiannual oscillations in the data.

Pairwise scatter plots

The singular values of the two eigentriples of a harmonic

series are often very close to each other, and this fact

simplifies the visual identification of the harmonic com-

ponents (Hassani et al. ). Figure 9 depicts scatter plots

of the paired eigenvectors in the PC-SPI water year, cold

and warm seasons’ time series, corresponding to the harmo-

nics with periods of 3 and 8 years (Hassani et al. ).

Reconstruction

Reconstruction stage includes two separate steps: grouping

(identifying signal component and noise) and diagonal aver-

aging (using grouped eigentriples to reconstruct the new

series without noise). Usually, the leading eigentriple

describes the general tendency of the series.

The SSA technique depends on the number of eigen-

values (r) that are important for separating signal

components from a noisy reconstructed series of length N.

Table 2 represents the results of reconstructed water year

series with different r (1 to 5).

The reconstructed signal, considering w-correlation,

variance, and root mean square error (RMSE) criteria, is

calculated by using the first five eigenvalues and L¼ 25

Figure 9 | Scatter plots of the paired harmonic eigenvectors for: water year (a1) to (a3), cold season (b1) to (b3), and warm season (c1) to (c3) time series.
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years. There is insignificant difference between the fourth

and fifth eigenvalues due to their proximity in contribution.

Thus, the first four eigenvalues can be used to reconstruct

the noise-free signal from the water year series (for more

information, see Hassani et al. ).

The sum of the reconstructed components derived from

two pairs of significant eigenvectors indicate that the

method tends to reconstruct better the last part of the

series. The reconstructions are shown in the right part of

Figure 10 for water year, cold and warm seasons. These

results suggest a change in precipitation regime in western

Iran, starting approximately in the mid-1990s, more notice-

able when the seasonal series are reconstructed. This

result is very important for water management policies in

the study area. The change may be associated in part with

ENSO and PDO positive and negative in phase oscillations

with PC-SPI. This can also be observed in the standardized

products among these indices, described below in Figure 11.

The reconstructions in Figure 10 show an off-phase

behavior between the cold and warm seasons, the drier

than average periods in the cold season usually being com-

pensated by wetter than normal warm seasons and vice

versa. This result is also important for water managers,

since the analysis of the entire year may hinder the effects

of seasonal extremes in the basin.

SPI extreme event associations with PDO and BEST

Based on the synchronic oscillation of the reconstructed SPI

time series, standardized products among SPI and the indices

PDO and BEST were calculated to explore the relative influ-

ence of these climate drivers in the occurrence of abnormal

SPI moisture conditions year by year (Cañón et al. ):

Pt ¼ PCSPIt × Itffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
SPI × σ2

I

q It ¼ BEST, PDO, BEST × PDOf g (1)

where Pt is the year t cross product, It represents the index (or

set of indices) against which the PC-SPI is going to be com-

pared at each year t, and σ is the standard deviation of the

Figure 10 | Reconstructed series for water year, warm and cold seasons’ time series.

Table 2 | The value of weighted correlation, variance, RMSE of the signal reconstruction

step for water year time series with different values of r

Number of eigenvalues
(r) 1 2 3 4 5

w-correlation 0.0056 0.0033 0.0025 0.0017 0.0016

Variance 0.2703 0.2426 0.2423 0.1532 0.1505

RMSE 0.7423 0.6992 0.6731 0.5915 0.5894
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indices considered. The advantage of this year-by-year pro-

duct of indices (normalized by the standard deviations) is

that it allows us to observe the relative influence of ENSO

and PDO on SPI values not at the level of the low frequency

oscillations (like those that can be derived from SSA) but

regarding the SPI of each particular year. In this way, we

can generate time series of the products like those of Figure 11

and observe which particular years were more affected by the

climate drivers.

Large positive (meaning equal direction) and negative

(meaning opposite direction) products between the SPI and

PDO, the SPI and BEST, and the SPI and both PDO and

BEST in a particular year would indicate that the values

are strong in the series and they reinforce each other whereas

values close to zero would indicate a weak interaction of

values. Due to the standardized nature of the indices, product

values within ±1.96 are considered normal conditions within

the 95% confidence interval, whereas products out of this

range are considered reinforcements.

Most of the time the products do not show any signifi-

cant relationship between the SPI values and PDO (BEST)

for water year, cold and warm seasons’ time series, indicat-

ing either normal conditions in the basin or weak ENSO

and PDO values. However, in certain years, the standar-

dized product reveals strong reinforcing linkages between

SPI and both PDO and BEST occurring at seasonal and

water year aggregations (Figure 11). For instance, five of

these reinforcements for water year time series coincide

with years in which the SPI values were negative (1986,

1996, 1998, 1999, and 2008) and three of them coincide

with years in which the SPI values were positive (1988,

1991, and 1992). The SPI-BEST product reveals a greater

spread of extreme occurrences during the warm season

whereas the SPI-PDO product shows more extreme years

in the cold season. It can be seen that the extreme events

are more frequent after 1990, especially during the cold

season in which most of the precipitation in the basin

occurs. La Niña years of 2008 and 1999 (which coincide

with a negative phase of PDO), in particular, showed a

marked reduction in precipitation in the region, with 2008

being the most extreme on record.

CONCLUDING REMARKS

In this research we have found that precipitation variability

has been increasing over western Iran in the last two dec-

ades (since the mid-1990s). Furthermore, we found that

ENSO and PDO may have a reinforcing effect on the occur-

rence of precipitation extremes (especially low values during

negative phases of PDO and La Niña years), that occur

region-wide and may be indicative of drought conditions,

mainly during the cold season.

Figure 11 | Series of year-by-year standardized product of indices PC-SPI, ENSO, and PDO.
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The use of SSA allowed us to detect an increase in pre-

cipitation variability since 1990. The SSA reconstructions

reveal opposite phases between the cold and warm seasons,

which indicates that wet warm seasons tend to be followed

by dry cold seasons and dry warm seasons tend to be fol-

lowed by wet cold ones. The point frequency study also

shows that most of the abnormally dry and wet conditions

over the study area have been related to ENSO and PDO

extremes, where low phases of PDO during La Niña years

relate to widespread dry events in both seasons, whereas

wet events are not as significant in coverage but are related

to a high phase of PDO. During El Niño episodes, we

found that less widespread wet and dry conditions tend

equally to occur. An inspection of the annual SPI shows

that, in general, dry conditions were more persistent and

widespread than wet conditions.

The product of the indices, which indicates specific

years where SPI extremes are reinforced by the ENSO and

PDO signals, shows also the increase in the number of

reinforced years in the last two decades, mainly during the

cold season (reflected also in the annual SPI). The warm

season, by contrast, is more periodically affected by ENSO

episodes but not by PDO ones. This product also suggests

that La Niña years that occur during a negative PDO

phase may produce extremely dry conditions in the area, a

result to be taken into account in future assessments of

droughts in western Iran.

Our main interest in this research was to analyze the

variability of precipitation in western Iran associated with

ENSO and PDO. We are aware that there is still an open

debate concerning whether or not climate change influences

these global climate signals. However, we consider that some

of the results of this research (i.e., an increase in precipitation

variability and the occurrence of extremely wet and dry years

widely distributed in space) are linked with changes that have

occurred in the past two decades that are likely related with

the expected effects of climate change.
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