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This paper introduces an extension of the Global Gradient Algorithm (GGA) to directly solve

unsteady flow problems arising from the presence of variable head water storage devices, such

as tanks, in Extended Period Simulations (EPS) of looped water distribution networks (WDN). Such

a modification of the original algorithm was motivated by the need to overcome oscillations and

instabilities reported by several users of EPANET, a worldwide available package, which uses the

GGA to solve the looped WDN equations. The set of partial differential equations describing the

time and space behaviour of a water distribution system is here presented. It is shown how

an unsteady flow GGA can be derived by simple modifications of the original steady-state GGA.

The performances of the new algorithm, referred to as EPS-GGA, are compared with the results

provided by EPANET on an extremely simplified example, the solution of which is qualitatively

known. As opposed to EPANET which shows significant instabilities, the EPS-GGA is stable under

a wide variety of increasing integration time intervals.

Key words | extended period simulation, global gradient algorithm, integration of partial

differential equations, water distribution networks

INTRODUCTION

Introduced by Todini (1979) and Todini & Pilati (1988), the

Global Gradient Algorithm (GGA) was chosen by Rossman

(1993) as the hydraulic algorithm for the development of

EPANET, the US Environmental Protection Agency NET-

work analysis package, which, in the last decades, has become

the standard in Water Distribution Network (WDN) analysis.

EPANET has also given rise to a wide variety of commercial

packages, e.g. WaterGems (Bentley Systems 2006) and MIKE-

URBAN (DHI 2008) which make use of the hydraulic

EPANET engine for the solution of looped WDNs. In the

past decade, GGA was also extended to include direct

computation of the speed coefficient of variable speed pumps

(Todini et al. 2007; Wu et al. 2009) as well as pressure-driven

demand (Todini 2003; Giustolisi et al. 2008a,b).

The GGA, together with all the other available

algorithms e.g. the Nodal Gradient developed by Martin

& Peters (1963) and extended to solve for pumps and valves

by Shamir & Howard (1968); the Simultaneous Loops

developed by Epp & Fowler (1970); and the Linear Theory

method developed by Wood & Charles (1972) were basically

developed for the solution of the so-called ‘network analysis

problem’. This type of solution is needed in the classical

design problem, which performs a steady-state analysis of

the network based on assigned design conditions such as

the network topology, the pipes lengths and diameters, the

maximum demand, etc. to verify whether the considered

pipe diameters are large enough to guarantee water delivery

at each demand node with sufficient head under several

operating conditions.

For control purposes, users have become more inter-

ested in the simulation of the time evolution of flows

and pressures in WDNs. Extended Period Simulation (EPS)
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capabilities have therefore been introduced (Rao & Bree

1977; Rao et al. 1977; Bhave 1988). These allow for the

simulation of the slow variation in flow conditions with

time, e.g. due to the diurnal changes of demand, by alter-

nating in time a succession of steady-state analyses at fixed

times to a succession of mass balance computations in each

of the variable head water storages (generally referred to as

tanks). This approach is known in the literature as the Euler

method (Wood 1980; Rossman 1993; Ulanicka et al. 1998).

In practice, an updated water level is estimated in each

tank at the end of the time interval by adding or subtracting

to the previous time step water volume stored in the tank,

the integral in time of the excess flow, which is generally

computed as the product of the time interval times the

previous time step excess flow at the node. The estimated

water level is then considered as a ‘known’ water level and a

new steady-state network analysis is performed for the new

time step.

Improved Euler methods have also been proposed using

predictor-corrector schemes (Rao & Bree 1977; Rao et al.

1977; Bhave 1988; Brdys & Ulanicki 1994; Water Research

Centre 1994). More recently, an ‘explicit integration

method’ was also proposed by Van Zyl et al. (2006). All

these authors decouple the integration in time of the tank

mass balance equations from the steady-state network

solutions at fixed time (also called ‘snapshots’).

If the variable storage devices are not present in the

network, or if they are relatively far away, all these appro-

aches seem to correctly perform. However, several users of

EPANET (as well as of the commercial packages that use

EPANET as the hydraulic engine) have reported anomalous

oscillations of the water level of two (or more) tanks,

particularly when the distance and the friction losses of the

pipes connecting them are relatively small.

The purpose of this paper is therefore to provide a

solution to this problem by showing how an unsteady

formulation of the GGA can lead to unconditionally stable

WDN simulations.

THE UNSTEADY FLOW FORMULATION

In Extended Period Simulation of Water Distribution Net-

works, slow time-varying conditions in the network (such as

changes in the demand, changes in water storage accumu-

lation, etc.) have to be taken into account. These changes

generally induce relatively slow unsteady flow conditions

with negligible inertial and dynamical effects, as opposed to

what happens in the presence of waterhammer phenomena.

Therefore, in the absence of important inertial and

dynamical effects, the unsteady flow problem in WDNs can

be reduced to the following mass and momentum balance

equations:

›Vi

›t
¼
Xni

k

Qik þ qi

›h

›x
¼ 2KjQjn21Q

8>>>><
>>>>:

ð1Þ

where Vi is the volume of water stored in node i; Qik is the

flow in the pipe connecting nodes i and k; qi is the external

inflow to node i (which implies that user’s demand wil be

negative); ni is the number of nodes connected to node i;

h is the water head; K is the resistance coefficient which

depends on the chosen expression describing the head

losses; n is the exponent of the chosen head losses formula;

t is the time coordinate and x is the space coordinate taken

along the generic pipe.

The first set of equations describes the mass balance at

each of the unknown head nodes (including tanks which

are considered here as unknown head nodes) and the

second set describes the losses along each pipe. Please note

that Equation (1) has been written as a set of partial

differential equations since it is derived from a simplifica-

tion of the more general equations by disregarding the local

and the convective acceleration terms. This is why Equation

(1) cannot be used to study fast transients such as water-

hammer oscillations (where the reproduction of the inertial

effects becomes essential) but is deemed sufficient to

reproduce the relatively slow variation in flow conditions

with time due to change in the boundary conditions due to

demand and the slow opening and closing of valves.

The problem with EPANET and with most of the

presently available approaches is the fact that, given the

absence of cross terms such as the space derivative of head

in the mass balance equations and time derivative of volume

in the momentum equation, they integrate the mass balance

equations in time separately from the integration in space of
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the momentum equations. In practice, without explicitly

stating it, they solve the following two ordinary differential

equation problems. The first is the integration in space at

fixed time (the so-called snapshot):

Xni

k

Qik þ qi ¼ 0

dh

dx
¼ 2KjQjn21Q

8>>>><
>>>>:

ð2Þ

while the second is the integration in time of the mass

balance equation. This is carried out at specific locations

(the tanks) independently of any spatial interaction by using

classical schemes such as the Euler, the Runge-Kutta or the

Milne predictor-corrector:

dVi

dt
¼
Xni

k

Qik þ qi ð3Þ

As can be noted from Equations (2) and (3), the partial

derivatives have been substituted by the substantial

derivatives and the two sets of equations are integrated

independently of one another.

When the classical steady-state formulation applies, e.g.

when the time variation of storage is null (which is true for

all the nodes apart from the tanks), Equation (2) is sufficient

to describe the WDN behaviour. However, the de-coupled

use of Equation (3) is incorrect when dealing with the more

general problem in which variable storage devices are

included. In numerical analysis it is well known that Euler

or more sophisticated schemes, such as Runge-Kutta or

Milne, can only be used to solve systems of ordinary

differential equations and cannot be applied to partial

differential equations. Decoupling the original equations to

integrate them as two different systems of ordinary

differential equations inevitably leads to the loss of the

cross space-time interactions represented by Equation (1).

It is evident that space and time integration must be

carried out at the same time to avoid losing the coherence in

the spatial and temporal behaviour. Any variation in time at

a node will inevitably influence the surrounding nodes at a

celerity, which characterizes the phenomenon. When two

or more tank storage nodes are not far apart, this

interaction becomes substantial and, if not accounted for,

instabilities in the form of oscillations will be generated as a

means to compensate the integration errors.

Unfortunately this problem has received scant attention

in the past decade. Only Filion & Karney (2000) tried to

introduce the unsteady flow effects via a separated transient

simulator (a waterhammer model), which analyses a short

time transient at the beginning and at the end of a time-step

and then uses the acquired information in a modified

improved Euler scheme. Apart from the fact that in practice

they still separate the integration in time from the

integration in space, the improvements they obtained were

inevitably paid for in terms of system information require-

ments and computational efforts.

One could argue that, although not fully correct, all

these approaches (apart from the latter) are quite simple to

implement and conveniently allow the use of packages

based on algorithms originally developed for steady-state

problems (e.g. the WDN analysis problem) to be extended

to EPS. On the contrary, this paper demonstrates that a

correct solution of the unsteady state problem in WDNs can

actually be found by extending the GGA algorithm to solve

the unsteady flow problem; that it does not require larger

computational efforts than the presently used ‘Euler

integration in time þ snapshot’ and, last but not least,

that it can be easily incorporated in the currently available

packages based on the GGA.

EXTENSION OF THE GGA TO SOLVE THE UNSTEADY

FLOW PROBLEM

The extension of the GGA to slow unsteady flow WDNs

problems typical of EPS can be derived as follows. The

change in storage of a tank can also be represented as a

function of the water surface elevation hi as:

›Vi

›t
¼ Vi;hi

›hi

›t
; hi $ h0;i ð4Þ

where Vi;hi
is the area of the tank in node i, which is a

function of the water elevation hi, while h0,i is the elevation

of the tank bottom. If hi , h0,i the storage derivative of

Equation (4) is obviously zero given that Vi;hi
¼ 0 when

hi , h0,i. Equation (4) can be substituted into the first set of

Equation (1) to give:

Vi
›hi

›t
¼
Xni

k

Qik þ qi ð5Þ
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Equation (5) can be discretized in time using an implicit

scheme based on the appropriate choice of a time-averaging

weight q(0 # q # 1):

�Vi;hi;t ;hi;t2Dt

hi;t 2 hi;t2Dt

Dt
¼ q

Xni

k

Qik;t þ qi;t

 !

þ ð1 2 qÞ
Xni

k

Qik;t2Dt þ qi;t2Dt

 ! ð6Þ

where �Vi;hi;t ;hi;t2Dt
is the average tank cross section in the Dt

interval, defined as:

�Vi;hi;t ;hi;t2Dt
¼

1

hi;t 2 hi;t2Dt

ðhi;t

hi;t2Dt

Vi;hi
dhi ð7Þ

in the more general case.

If the water level in the tank drops below the tank

bottom, V can be set to zero and the tank will correctly

behave as a junction without storage accumulation. If the

water level overtops the tank, a correction of the water level

and the corresponding mass balance has to be made. This

will be discussed in the section relevant to the GGA-EPS

algorithm derivation.

Please note that in Equation (6) and the following

equations, time has been introduced in the form of an index.

Equation (6) can be rewritten as:

Xni

k

Qik;t 2
�Vi;hi;t ;hi;t2Dt

qDt
hi;t

¼ 2qi;t 2
ð1 2 qÞ

q

Xni

k

Qik;t2Dt þ qi;t2Dt

 !
2

�Vi;hi;t ;hi;t2Dt

qDt
hi;t2Dt

ð8Þ

to be appropriately introduced in the GGA formulation.

Equation (8) is specific to the ‘tank’ nodes, since all demand

nodes (junctions) are characterized by �Vi;hi;t ;hi;t2Dt
¼ 0 and the

reservoir nodes (fixed head nodes) by dV/dt ¼ 0. Therefore,

for all the demand nodes the equations to be solved are the

same as for the steady-state problem because if

Xni

k

Qik;t2Dt þ qi;t2Dt ¼ 0

holds at time t 2 Dt it can be immediately verified thatPni

k Qik;t þ qi;t ¼ 0 will also hold at time t.

When solving unsteady flow problems, it is common

practice to start from a steady state. The initial condition for

solving Equation (1) can therefore be found at time t ¼ 0

using the presently available snapshot approaches. These

solve the system of Equation (2) with tanks considered,

similarly to reservoirs, as fixed head nodes.

Note that at any time t . 0, the new formulation

considers the level of the tank (and not the inflow to the

tank) as the unknown in the solution of the GGA. This

implies that if at time t ¼ 0 the number of unknowns equals

the number of junctions, at time t . 0 the number of

unknowns must equal the number of junctions þ the

number of tanks. This differs considerably from the approach

taken by the currently available packages, where the tank

level is computed prior to the GGA new step and then the

tank is considered as a fixed head node in the solution. As a

consequence, in this new development the nodal demands

qt2Dt and qt will also be allowed to differ from zero. As a

matter of fact, non-null flows may occur in the case of direct

refilling from external sources (inflow to the tank through a

tap or using an external pump not connected to the network)

or direct spilling from the tank (as in the case of overflows).

Five main differences will be introduced with respect to

the currently available hydraulic simulation packages.

1. A system of partial differential equations will be solved in

time and space instead of two systems of ordinary

differential equations, one in time and one in space.

2. As opposed to the explicit solution on which most of the

packages are based, an implicit solution of the equations

will be used by the extension of the GGA to unsteady

flow problems. Note that the proposed implicit scheme,

which uses a slightly modified GGA to include storage

time variation at the tank nodes, is equivalent to and

requires the same computational effort as the Euler

integration in time þ snapshot approach. The latter uses

the GGA for the solution of the non-linear steady-state

problem at the end of each integration time step.

3. While in current practice the integration is only

performed locally using the single tank mass balance

equation, in the extended GGA the integration of

the time derivatives will also take into account their

spatial effects.

4. For the tank nodes, the unknown is the water head and

not the nodal flow and mass unbalance as in the

currently available packages.
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5. For the tank nodes, one can additionally specify external

spills or direct refilling from external sources.

In order to simplify the derivation of the EPS-GGA,

the dependence of �Vi;hi;t ;hi;t2Dt
on hi,t will be taken into

account in the estimation of �Vi;hi;t ;hi;t2Dt
. However, it will be

disregarded for the time being without loss of generality in

the differentiation of the equations when applying the

Newton–Raphson algorithm. This dependence, if needed

for improving the convergence, may be introduced in

further developments.

Following the formulation of the GGA given in Todini

& Pilati (1988), the unsteady flow problem in looped WDNs

can be formulated as follows:

At
11

..

.
A12

… · · · · · ·

A21
..
.

At
22

2
666664

3
777775

Q t

· · ·

H t

2
6664

3
7775 ¼

2A10H 0;t

· · ·

2q*
t

2
6664

3
7775 ð9Þ

The difference from the original GGA lies in the

introduction of the time coordinate, the presence of a non-

null diagonal matrix At
22 and a differently defined vector q

*

t .

The quantities appearing in Equation (9) are defined as:

QT
t ¼ ½Q1;t;Q2;t; · · ·;Qnp ;t�

: the ½1;np�unknown pipe discharges;

H T
t ¼ ½h1;t;h2;t; · · ·;hnn ;t� the ½1;nn�unknown nodal heads;

H T
0;t ¼ ½hnnþ1;t;hnnþ2;t; · · ·;hnt ;t�

: the ½1;ntot 2 nn�known nodal heads; and

q*T
t ¼ ½q1;t; q2;t; · · ·;qnn ;t� : the ½1;nn�known nodal demands;

appropriately modified as described in the following for the

tank nodes;

where np is the number of pipes; nn is the number of

unknown head nodes; ntot is the total number of nodes in

the network; and ntot 2 nn is the number of nodes with

known head.

In Equation (9), At
11 is a diagonal matrix. Its elements,

including minor losses, are defined for k [ 1, np; i [ 1,

ntot; j [ 1, ntot where k is the index of the pipe connecting

nodes i,j. Note that in the following, index k will be

used to identify the position of the element in the

matrices, while the symbol ij will be used to identify the

relevant pipe:

At
11ðk;kÞ ¼ rjQij;tj

n21
þmjQij;tj ð10Þ

for pipes and:

At
11ðk;kÞ ¼ 2

v2ðh0 2 rðQij;t=vÞ
nÞ

Qij;t
or

At
11ðk;kÞ ¼ 2

a0v
2

Qij;t þ b0vþ c0Qij;t

 ! ð11Þ

(or other similar equations) for pumps.

In Equations (10) and (11), r is the losses coefficient, m

is the minor losses coefficient, n is an exponent, v is the

variable speed pumps coefficient, and a0, b0 and c0 are three

coefficients of the quadratic function representing the pump

characteristic curve. Note that in reality all the coefficients

r, m, n, v, a0, b0, c0 are relevant to specific pipes or pumps;

the ij indexes have been omitted to more closely follow the

representation given in EPANET.

Matrix At
22 is a [nn, nn] diagonal matrix whose generic

element is defined as:

At
22ði; iÞ ¼ 0 ð12Þ

for the junction nodes and

At
22ði; iÞ ¼ 2

�Vi;hi;t ;hi;t2Dt

qDt
ð13Þ

for all the variable head water storage nodes (tanks).

The quantity q*
t on the right-hand side can be defined as:

q*
t ðiÞ ¼ qi;t ð14Þ

for the junction nodes and

q*
t ðiÞ ¼ qi;t þ

ð1 2 qÞ

q

Xni

k

Qik;t2Dt þ qi;t2Dt

 !

þ
�Vi;hi;t ;hi;t2Dt

qDt
hi;t2Dt ð15Þ

for all the variable head water storage nodes (tanks).

These equations can also be written in matrix form as:

q*
t ¼ qt ð14aÞ
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for the junction nodes and

q*
t ¼ qt þ

1 2 q

q
ðA21Q t2Dt þ qt2DtÞ2 At2Dt

22 H t2Dt ð15aÞ

for all the variable head water storage nodes (tanks).

The actual network topology is then described by means

of a topological incidence matrix �A12 defined as follows,

with the convention that inflows to a node are assumed

positive and outflows negative:

�A12ði; jÞ ¼

21 if the flow of pipe j leaves node i

0 if pipe j is not connected to node i

þ1 if the flow of pipe j enters node i

8>><
>>: ð16Þ

The uniqueness of the solution of Equation (9) requires

at least one node with known head. The overall incidence

matrix, which is an [np, ntot] matrix, can thus be partitioned

into the two matrices:

A�12 ¼ ½A12
..
.
A10� ð17Þ

relating the pipes to the nodes with unknown head (A12)

and to the nodes with known head (A10). For the sake of

clarity, the notation A10 ¼ AT
01 and A12 ¼ AT

21 is used.

Following the original derivation by Todini & Pilati

(1988), the Newton–Raphson technique is applied for the

solution of the system of the linear and non-linear Equation

(9), which can be re-written as:

At
11

..

.
A12

… · · · · · ·

A21
..
.

At
22

2
666664

3
777775

Q t

· · ·

H t

2
6664

3
7775þ

A10H 0;t

· · ·

q
*

t

2
6664

3
7775 ¼

0

· · ·

0

2
664

3
775 ð18Þ

If only an approximate solution Q0
t , H 0

t is known, the

right-hand side of Equation (18) will not be null. Equation

(18) can therefore be written as:

At
11

..

.
A12

… · · · · · ·

A21
..
.

At
22

2
666664

3
777775

Q0
t

· · ·

H 0
t

2
6664

3
7775þ

A10H 0;t

· · ·

q*
t

2
6664

3
7775 ¼

E1

· · ·

E2

2
664

3
775 ð19Þ

Recalling that At
11 is also a function of the approximate

solution, by differentiating Equation (19) with respect to the

unknowns, we obtain:

Dt
11

..

.
A12

… · · · · · ·

A21
..
.

At
22

2
666664

3
777775

dQ t

· · ·

dH t

2
6664

3
7775 ¼

dE1

· · ·

dE2

2
664

3
775 ð20Þ

where Dt
11 is a [np, np] diagonal matrix, ntot, with elements

defined for k [ 1, np; i [ 1, ntot; j [ 1, nt as:

Dt
11ðk;kÞ ¼ nrjQij;tj

n21
þ 2mjQij;tj ð21Þ

for pipes and:

Dt
11ðk;kÞ ¼ nrv22njQij;tj

n21 or

Dt
11ðk;kÞ ¼ 2ðb0vþ 2c0Qij;tÞ

ð22Þ

for pumps according to the chosen model.

1 2

3

30 m
20 m

0 m

1

32

Figure 1 | Schematic representation of the first example. Two emptying

interconnected tanks starting at time zero with different water levels.

Table 1 | Pipe characteristics

Pipe

number

Head

node

Tail

node

Length

(m)

Diameter

(mm)

Hazen–Williams

roughness

coefficient

Minor loss

coefficient

1 1 2 100 200 130 0

2 1 3 100 100 130 0

3 2 3 100 100 130 0
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Matrix Dt
22 is a [nn, nn] diagonal matrix whose generic

element is defined as:

Dt
22ði; iÞ ¼ 0 ð23Þ

for all the junction nodes, and

Dt
22 ¼ 2

�Vi;hi;t ;hi;t2Dt

qDt
ð24Þ

for all the tank nodes.

Equation (20) can be discretized assuming a local

linearization between the solution at iteration t and at

iteration t þ 1, by defining:

dQ t 5 Qt
t 2 Qtþ1

t

dH t 5 H t
t 2 H tþ1

t

dE1t 5 A11Qt
t þ A12H t

t þ A10H t
0;t

dE2t 5 A21Qt
t þ A22H t

t þ q*
t

ð25Þ

Substituting Equation (25) into Equation (20) and

analytically solving the system of equations, the iterative

formulation of the EPS-GGA algorithm is:

H tþ1
t ¼ A21

t F t

Qtþ1
t ¼ Qt

t 2 Dt
11

� �21
At

11Qt
t þ A12H tþ1

t þ A10H 0;t

� �
8><
>: ð26Þ

Table 3 | Junctions operating parameters (fixed head nodes)

Junction number Head (m)

3 0.0

(a)

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

0 4321

H
ea

d 
(m

)

Time (h)

0 4321

Time (h)

T1
T2

–180
–160
–140
–120
–100
–80
–60
–40
–20

0
20
40
60

–180
–160
–140
–120
–100
–80
–60
–40
–20

20
0

40
60

0 1 2 3 4

0 1 2 3 4

Q
 (

l s
–1

)

Time (h)

P1
P2
P3

(b)

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

H
ea

d 
(m

)

T1
T2

Q
 (

l s
–1

)

Time (h)

P1
P2
P3

Figure 2 | (a) Results obtained using the EPS-GGA approach with integration time step Dt ¼ 1 min. Note the absence of instability in the flow of Pipe 1 and in the tanks water level.

(b) Results obtained using the EPANET 2 with integration time step Dt ¼ 1 min. Note the marked oscillations in the flow of pipe 1 even at this short integration time step.

Table 2 | Junctions operating parameters (tanks)

Junction number Initial head (m) Diameter (m)

1 20.00 3.56

2 30.00 3.56
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where

At ¼ A21ðD
t
11Þ

21A12 2 Dt
22 ð27Þ

and

F t ¼ A21Qt
t þ A22H t

t 2 A21ðD
t
11Þ

21At
11Qt

t 2

A21ðD
t
11Þ

21A10H 0;t þ q*
t ð28Þ

As can be noted, the problem is reduced to the iterated

solution of a symmetrical and sparse matrix of size [nn, nn]

similarly to the original GGA. The only difference from

the original GGA, apart from the time index, lies in the

presence of the new diagonal matrix Dt
22 and in the different

definition of vector q*
t .

A scalar formulation of this algorithm can also be

provided by defining the following quantities in accordance

with the notation used by Rossman (1993) in the

development of EPANET, namely

pij;t ¼
1

nrjQt
ij;tj

n21
þ 2mjQt

ij;tj
and

yij;t ¼ pij;t r Qt
ij;t

��� ���n21
þm Qt

ij;t

��� ���� � ð29Þ

for pipes and:

pij;t ¼
1

nrv22n Qt
ij;t

��� ���n21
and yij;t ¼

2pij;tv
2 h0 2 r Qt

ij;t

.
v

� �n
� �

Qt
ij;t

ð30Þ

or

pij;t ¼ 2
1

b0vþ 2c0Qt
ij;t

and

yij;t ¼ 2pij a0v
2=Qt

ij;t þ b0vþ c0Qt
ij;t

� � ð31Þ

for pumps, according to the chosen model given by

Equation (11).
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Figure 3 | As for Figure 2 with Dt ¼ 5 min. Note the marked oscillations in the flow of pipe 1 together with the appearance of water level oscillations in both tanks.
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Note that in order to avoid problems with the sign

a slightly different definition of yij,t is used in this

paper, namely:

yij;t ¼
ŷij;t

Qt
ij;t

ð32Þ

where ŷij;t is the expression defined in EPANET manual.

In order to introduce the time variant problem in

EPANET, it is convenient to define a new variable hi,t as:

hi;t ¼ Dt
22ði; iÞ ð33Þ

With the given notation, it is therefore possible to define

the matrix At and vector Ft as follows:

Atði; iÞ ¼
j

X
pij;t 2 hi;t ; i > j – B; i [ 1; nn; j [ 1; ntot ð34Þ

Atði; jÞ ¼2pij;t ; i > j – B; i; j [ 1; nn ð35Þ

F tðiÞ ¼
j

X
ð1 2 yij;tÞQ

t
ij;t þ

f

X
pif;th

t
f;t þ q*

i;t ;

i [ 1; nn

i > j – B; j [ 1; ntot

i > f – B; f [ nn þ 1; ntot

8>>><
>>>:

(36)

The solution of Equation (9) is thus obtainable by

repeated iterations of Equation (26) until a sufficient degree

of accuracy is reached.

In case the estimated water level is lower than the bottom

or if it overtops the upper edge of the tank, the following

simple procedure can be used. After updating the head at the

junctions and the tank nodes using the first of Equation (26),

the resulting water elevation is compared to the bottom level

h0 as well as to the top edge hmax of the tank. If the resulting

level is lower than h0, it is only necessary to set the tank

section V to zero and the node will behave as a regular

junction node. If the resulting water level is higher than hmax,
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Figure 4 | As for Figure 2 with Dt ¼ 10 min. Note the marked oscillations in the flow of pipe 1 together with large water level oscillations in both tanks.
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the tank node is turned into a fixed head node with h ¼ hmax

which will allow the spill from the tank to be computed.

EXAMPLE OF APPLICATION

The following extremely simplified example will be used to

illustrate the performance of the new EPS-GGA. The two

interconnected tanks with constant cross-section (shown in

Figure 1) are emptying. All demands are equal to zero, and

the unknowns of the problem are the water level in the two

tanks and the flow exiting node 3 (a fixed head node)

together with the flow in the three pipes. Pipe character-

istics are summarised in Table 1, while Tables 2 and 3

provide the characteristic parameters of the tanks and fixed

head nodes used in the example.

Qualitatively, the solution to the problem is known. It is

expected that initially a flow from Tank 2 (with water level

initially set at 30 m) to Tank 1 (with water level initially set

at 20 m) will occur in Pipe 1 until the two tanks reach the

same water level. At this point, the flow in Pipe 1 will stop

and both the tanks will empty at the same rate.

The Hazen–Williams equation has been used to

represent the head losses, which are expressed as:

r ¼
10:67L

C1:852D4:871
ð37Þ

In the case of the example, at time t ¼ 0 the steady state

is uniquely determined by the initial level in the tanks also

taken as fixed head nodes, which gives:

Dh1;2 ¼ h1 2 h2 ¼ 210 Q1;2 ¼ 2151:51

Dh1;3 ¼ h1 2 h3 ¼ 20 Q1;3 ¼ 35:58

Dh2;3 ¼ h2 2 h3 ¼ 30 Q2;3 ¼ 44:29
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Figure 5 | As for Figure 2 with Dt ¼ 15 min. Note (a) only a minor instability in the flow of Pipe 1 while the tanks water level is still very stable and (b) the extremely large oscillations

in the flow of pipe 1 together with extremely large water level oscillations in both tanks.
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At any successive time (t . 0) following the newly

developed EPS-GGA algorithm, while node 3 is still kept to

its fixed head (h3 ¼ 0), the head in the two tanks is

considered unknown and the problem can be solved by

estimating the quantities:

At ¼
p1;t þ p2;t 2 h1;t 2p1;t

2p1;t p1;t þ p3;t 2 h2;t

2
4

3
5 ð38Þ

F t¼

2ð12y1;tÞQ
t
1;t 2 ð12y2;tÞQ

t
2;tþp2;th

t
3;tþ

V1;h1;t2Dt

qDt h1;t2Dt

þ12q
q
ð2Q1;t2Dt 2Q2;t2DtÞ

ð12y1;tÞQ
t
1;t 2 ð12y3;tÞQ

t
3;tþp3;th

t
3;t

þ
V2;h2;t2Dt

qDt h2;t2Dtþ
12q
q
ðQ1;t2Dt 2Q3;t2DtÞ

2
66666664

3
77777775
ð39Þ

which are used in the recursive equations:

H tþ1
t ¼A21

t F t ð40Þ

Qtþ1
t ¼

ð1 2 y1;tÞQ
t
1;t þ p1;tðh

tþ1
1;t 2 htþ1

2;t Þ

ð1 2 y2;tÞQ
t
2;t þ p2;tðh

tþ1
1;t 2 htþ1

3;t Þ

ð1 2 y3;tÞQ
t
3;t þ p3;tðh

tþ1
2;t 2 htþ1

3;t Þ

2
66664

3
77775 ð41Þ

RESULTS AND DISCUSSION

Six different time discretization intervals have been used for

the integration in time, namely 1 min, 5 min, 10 min, 15 min,

30 min and 1 hour. The results of the EPS-GGA have been

compared with the EPANET 2 (Rossman 2002) Version 2,

Build 2.00.12 results, which were obtained for the same

time discretization intervals.

EPS-GGA was run with a time averaging weight in

the implicit scheme q ¼ 0.822, which was found to be

the most appropriate value. Moreover, in order to run the

problemusingEPANET2whichrequiresat leastone junction

(without fixed head), a slightly modified problem was set-up
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Figure 6 | As for Figure 2 with Dt ¼ 30 min. (a) the disappearance of the surge in tank 1 is due to the coarse time discretization. (b) Note the large errors in the flow of pipe 1 and in

the water level oscillations of both tanks.
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by adding a null demand junction and a closed pipe

connected with Tank n.1, as described in the appendix.

The results obtained with the EPS-GGA are shown in

Figures 2(a) (1 min), 3(a) (5 min), 4(a) (10 min), 5(a) (15 min),

6(a) (30 min) and 7(a) (1 h) while the corresponding

EPANET 2 results are shown in Figures 2(b) (1 min), 3(b)

(5 min), 4(b) (10 min), 5(b) (15 min), 6(b) (30 min) and 7(b)

(1 h). In the figures, series T1 and T2 represent the water levels

(m) in Tank n.1 and Tank n. 2, while series P1, P2, P3

represent the flow (l s21) in pipes n. 1, 2 and 3 respectively.

While the EPS-GGA is practically stable at all time

discretization intervals (even when the time step is too

coarse to represent the phenomenon), the EPANET 2 is

unstable even when the discretization in time is based on

1 min time steps. By increasing the time steps this instability,

which initially produces an oscillation in the flow of Pipe 1

connecting the two tanks, is spread to the water levels in the

tanks and becomes overwhelming at time steps of 15 min.

CONCLUSIONS

A new extension of the GGA has been presented in this

paper, which allows correct representation of unsteady flow

in Water Distribution Networks typical of Extended Period

Simulations in the presence of a number of variable head

storages such as tanks.

It has been clearly demonstrated that the proposed

extension of GGA to the EPS-GGA only requires few

modifications of the original algorithm and can therefore be

easily implemented in the existing computer packages that

make use of the GGA as the hydraulic engine (e.g. EPANET

and several other commercial packages available in the

market). In addition, it requires the same computational

effort of the presently used technique known as the ‘Euler

integration in time þ snapshot’.

The EPS-GGA formulation, which integrates the full

system of partial differential equations of mass and
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Figure 7 | As for Figure 2 with Dt ¼ 1 h. (a) Note that the instability in the flow of pipe 1 is caused by the coarse time discretization to compensate the fact that the two

tanks reach the same water level after 1 h instead of after approximately 15 min. (b) Note the large errors in the flow of pipe 1 and in the water level oscillations

of both tanks.
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momentum balance using an implicit scheme, was tested for

the EPANET approach on a simple example with two

adjacent tanks. The obtained result not only shows the

noticeable improvement of performances of the EPS-GGA

with respect to EPANET, but also highlights the extreme

stability of the solutions within a wide range of integration

time discretization intervals.

It is hoped that the new algorithm will be soon

implemented into the EPANET 2 package, since it

will require minor changes in the code. It is expected that the

relevance of this modification will emerge not only in terms of

stability of the hydraulic solutions, but also in terms of its

impact on the water-quality problems where the advection-

diffusion coefficients can be substantially modified by the

oscillatory behaviour of the presently unstable solutions.
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APPENDIX: MODIFICATIONS REQUIRED TO RUN

THE EXAMPLE WITH EPANET 2

The schematic network used in the example is composed of

two tank nodes (1 and 2) and a reservoir node (3), and

cannot be run using EPANET 2 which requires at least one

junction node in the network. Therefore, as shown in

Figure A1, an additional junction node 4 with null demand

was added to the original scheme and connected to Tank n.

1 through a closed pipe n. 4. This inclusion does not modify

the hydraulic behaviour of the system and can be run using

EPANET 2.

For a better understanding of the schematization, the

essential part of the EPANET 2 input file relevant to the

description of the system is also given in Table A1.

Table A1 | A subset of the EPANET 2 input file with the description of the problem

[JUNCTIONS]

;ID Elev Demand Pattern

4 0 0 ;

[RESERVOIRS]

;ID Head Pattern

3 0 ;

[TANKS]

;ID Elevation InitLevel MinLevel MaxLevel Diameter MinVol VolCurve

1 0 20 0 50 3.56 0 ;

2 0 30 0 50 3.56 0 ;

[PIPES]

;ID Node1 Node2 Length Diameter Roughness MinorLoss Status

1 1 2 100 200 130 0 Open ;

2 1 3 100 100 130 0 Open ;

3 2 3 100 100 130 0 Open ;

4 4 1 100 100 130 0 Closed ;

1 2

3

30 m
20 m

0 m

1

3

4
4

2

Figure A1 | Schematic representation of the example to be run using EPANET 2. A null

demand junction node 4 and a closed pipe 4 were added to the original

scheme without modifying the expected system behaviour.
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