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Physically-based models derive from first principles (e.g. physical laws) and rely on known

variables and parameters. Because these have physical meaning, they also explain the underlying

relationships of the system and are usually transportable from one system to another as a

structural entity. They only require model parameters to be updated. Data-driven or regressive

techniques involve data mining for modelling and one of the major drawbacks of this is that the

functional form describing relationships between variables and the numerical parameters is not

transportable to other physical systems as is the case with their classical physically-based

counterparts. Aimed at striking a balance, Evolutionary Polynomial Regression (EPR) offers a way

to model multi-utility data of asset deterioration in order to render model structures

transportable across physical systems. EPR is a recently developed hybrid regression method

providing symbolic expressions for models and works with formulae based on pseudo-polynomial

expressions, usually in a multi-objective scenario where the best Pareto optimal models

(parsimony versus accuracy) are selected from data in a single case study. This article discusses

the improvement of EPR in dealing with multi-utility data (multi-case study) where it has been

tried to achieve a general model structure for asset deterioration prediction across different

water systems.

Key words | asset deterioration, data mining, evolutionary computing, sewer, water supply

networks

INTRODUCTION

A number of different performance indicators (PIs) for the

sewer and water systems have been proposed recently

(Alegre et al. 2000; Matos et al. 2003; Tran et al. 2007).

PIs provide regulatory and policy-making bodies with a

common basis for measuring and comparing the perform-

ance of different drinking and wastewater utilities and

identifying possible corrective measures as part of proactive

system management. In the case of sewer systems, for

example, the proactive approach is aimed at locating the

critical pipe sections that need repair or replacement so that

relevant pipe inspections and maintenance/rehabilitation

works can be planned (Ariaratnam et al. 2001). Equally, in

water distribution systems, the prediction of deterioration

can be used for the development of strategies for water

mains replacement considering risk and cost-benefit assess-

ment (Babovic et al. 2002; Giustolisi et al. 2006).

The technical literature on sewer PIs reveals two main

approaches. The first exploits technical expertise gained

from the management of real networks and seeks to define a

set of indicators shared by as many utilities as possible.

Studies following this approach suggest a list of rationales

for establishing whether a certain parameter can be

considered as a Performance Indicator (Alegre et al.

2000). The second approach aims at developing PIs from

hydraulic (Cardoso et al. 1999) and asset performance

(Berardi et al. 2005; Savic et al. 2006). These models are
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based on the analysis of existing company databases

which archive data on sewer assets and preserve the

historical records of failure events. The scope of such

analyses is discovering patterns in asset data for describing

pipe failures (e.g. sewer blockages or collapses and water

distribution pipe bursts). Since it is a data-driven approach,

a preliminary overview of commonly available databases

is required to select the most effective modelling technique

to be used.

Real-life asset and failure datasets tend to differ in both

quality and quantity and are stored in separate databases

without adequate references to link them. Moreover, the

shortness of a monitoring period often results in a small

number of recorded failure events. This scarcity of historical

data only permits assessment of a finite individual failure

probability for a small fraction of pipes. In the case of water

distribution networks, an intuitive solution for this consists

of aggregating pipes into homogeneous groups (Shamir &

Howard 1979). This way, the lack of data problem is

overcome and unreliable information is averaged over

groups. Pipe grouping allows also for the assessment of an

individual pipe failure probability by assuming the same

behaviour for similar pipes.

The selection of meaningful grouping criteria is strongly

conditioned by the quality and type of data available. In

general, pipe failure data is either available at the single pipe

level or at a group pipe level (e.g. geographical area). The

former enables the definition of the pipe grouping criteria

based on various potential explanatory variables (Savic et al.

2006). The latter does not allow any further rationales to

be included in data preparation and relevant groups can

be based on topological proximity criteria only (Berardi

et al. 2006).

Once pipe groups have been defined, an effective

modelling technique is needed to highlight the most

significant explanatory variables for describing the deterio-

ration phenomenon. Berardi et al. (2005) and Savic et al.

(2006) demonstrated, for waste and clean water systems, the

effectiveness of using the Evolutionary Polynomial

Regression (EPR) technique (Giustolisi & Savic 2006) for

discovering patterns between failure numbers and potential

explanatory variables (e.g. pipe age, size, gradient, etc.).

General validity of individual system failure models

returned by EPR was checked only by means of a cross

correlation analysis; that is, by applying the failure model

developed for one system to predict failures in another

(Berardi et al. 2006). The results obtained in the case of

blockage prediction models led to the conclusion that EPR

could potentially be used for developing failure models of

general validity.

Still, despite the promise of wider applications, the EPR

methodology presents some drawbacks when developing

generalized asset failure models. These are as follows:

(1) failure models developed for different individual systems

usually differ in one or more significant explanatory

variables or, sometimes, even in model structure (entire

polynomial term(s)); (2) it is difficult to establish which of

the failure models returned for individual systems should be

used as a generalized model (i.e. a performance indicator

model). These weaknesses are expected to be intensified as

the number of systems analyzed increases.

This paper proposes a novel methodological approach

where the EPR technique is used to develop generalized

pipe failure prediction models by simultaneously consider-

ing pipe failure and attribute data from a number of

individual systems. The approach is entitled the Multi-

Case Strategy for EPR (MCS-EPR).

BRIEF INTRODUCTION TO EPR

Numerical regression is the most powerful and commonly

applied form of regression that provides a solution to the

problem of finding the best model to fit the observed data

(e.g. fitting a line through a set of points). However, the

functional form (linear, exponential, logarithmic, etc.) has

to be selected before fitting commences. On the other

hand, genetic programming uses simple, but very powerful

artificial intelligence tactics for computer learning inspired

by natural evolution to find the appropriate mathematical

model to fit a set of points. The computer produces and

evolves a whole population of functional expressions

based on how closely each of them fit the data. The

automated induction of mathematical models (descrip-

tions) of data using genetic programming (Koza 1992) is

commonly referred to as symbolic regression (Babovic &

Keijzer 2000). Evolutionary Polynomial Regression (EPR)

is a recently developed hybrid regression method by
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Giustolisi & Savic (2006) that integrates the best features

of numerical regression (Draper & Smith 1998) with

genetic programming (Koza 1992).

The general expression of the EPR formula is given as

Ŷ ¼
Xm

j¼1

F X; fðXÞ;aj

� �
þ a0 ð1Þ

where Ŷ is the estimated output of the system/process; aj is

a constant value; F is a function constructed by the process;

X is the matrix of input variables; f is a function defined by

the user; and m is the length (number of terms) of the

polynomially structured expression (bias a0 excluded, if

any) (Giustolisi & Savic 2006).

EPR works with a Genetic Algorithm (GA) (Holland

1975) that is developed ad hoc (Giustolisi et al. 2004).

Moreover, the combination of the GA for finding the

best function structures F and LS (Least Squares) for

the identification of the constant values aj offers many

advantages. On the one hand, a two-way (biunique)

relationship between the model structure and constants is

guaranteed by LS; on the other, the GA performs a global

exploration of the model space (symbolic expressions) in

a single/multi-objective function scenario. The LS strategy

for aj is usually robust with respect to the number of

parameters required by EPR and amount of measured

data available.

Finally, EPR allows pseudo-polynomial expressions

belonging to the class of Equation (1) such as

Ŷ ¼ a0 þ
Xm

j¼1

aj ðX1Þ
ESð j;1Þ… ðXkÞ

ESð j;kÞ f ððX1Þ
ESð j;kþ1ÞÞ

£…f ððXkÞ
ESð j;2kÞÞ

Ŷ ¼ a0 þ
Xm

j¼1

aj f ððX1Þ
ESðj;1Þ…ðXkÞ

ESðj;kÞÞ

Ŷ ¼ a0 þ
Xm

j¼1

aj ðX1Þ
ESð j;1Þ…ðXkÞ

ESð j;kÞf ððX1Þ
ESð j;kþ1Þ

£…ðXkÞ
ESð j;2kÞÞ

Ŷ ¼ g a0 þ
Xm

j¼1

ajðX1Þ
ESð j;1Þ…ðXkÞ

ESð j;kÞ

0
@

1
A

ð2Þ

where Ŷ is the vector of model predictions and k is

the number of candidate-independent variables or inputs.

User-specified functions f reported in Equations (1) and (2)

may be natural logarithmic, exponential, tangent hyperbolic,

etc. Note that the last structure in Equations (2) requires the

assumption of an invertible function g, because of the

subsequent stage of parameter estimation. The term ‘pseudo-

polynomial expressions’ is used here because the parameters

of any of the expressions in Equation (2) can be computed as

in a linear problem and/or as with true polynomial

expressions. As mentioned, the parameters aj are estimated

by an LS method integrated into the EPR procedure

(Giustolisi & Savic 2006). The LS guarantees a two-way

correspondence between the pseudo-polynomial structure

and its coefficients. In addition to the usual LS search, the

user can force the LS to seek structures that contain only

positive coefficients (aj . 0). This is particularly useful in

modelling systems where there is a high probability that the

negative coefficient values (aj , 0) are selected to balance

the particular realization of errors related to the finite

training dataset (Giustolisi et al. 2007).

Over-fitting in EPR

In regression-based modelling, ‘fitness’ usually refers to a

measure of how closely the regression expression fits the

data points. However, it is widely accepted that the best

modelling approach is also the simplest which fits the

purpose of the application. This principle, often called

Occam’s razor, is attributed to the medieval philosopher

William of Occam (or Ockham, 1300–1349). The so-called

principle of parsimony states that for a set of otherwise

equivalent models of a given phenomenon one should

choose the simplest one to explain a dataset. There is also a

need to include a measure of trade-off between model

complexity (i.e. the number of parameters) and fitness in

regression-based models.

For a given set of data observations, a regression-based

technique needs to search among a large, if not infinite,

number of possible models to explain those data. By varying

the exponents for the columns of matrix X, and by searching

for the best-fit parameter set u, the EPR methodology

searches among all those models. It does, however, require

an objective function that will ensure the best fit without

the introduction of unnecessary complexity. Unnecessary

complexity is here defined as the addition of new terms,
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or combinations of inputs, that fit mostly random noise in

the raw data rather than the underlying phenomenon. The

key objective here is therefore to find a systematic means to

avoid the problem of over-fitting. In the original single-

objective EPR (Giustolisi & Savic 2006) there are three

possible approaches to this problem: (1) to penalize the

complexity of the expression by minimizing the number of

terms; (2) to control the variance of aj constants (the

variance of estimates) with respect to the their values; and

(3) to control the variance of polynomial terms with respect

to the variance of residuals.

More recently in Giustolisi et al. (2007) the idea of using

a multi-objective strategy to constrain aj . 0 during par-

ameter estimation for improving model selection (i.e. also as

avoidance of over-fitting techniques) was introduced.

Single versus multi-objective GA-based EPR

Although the original EPR methodology proved effective

(Giustolisi & Savic 2006), it used only the single-objective

genetic algorithm (SOGA) (Goldberg 1989) strategy for

exploring the formulae space. In fact, this exploration was

achieved by assuming first the maximum number of terms m

in the pseudo-polynomial expressions shown in Equation

(1) and then sequentially exploring the formulae space

having 1, 2,… ,m terms. To speed up the convergence, the

initial population of each EPR search was (optionally)

seeded with the formulae obtained in the previous search

(e.g. the population for formulae having j terms was

seeded with the best formulae having j 2 1 terms). How-

ever, the SOGA-based EPR methodology has the following

drawbacks.

1. Its performance decreases exponentially with an increas-

ing number of polynomial terms m (also because by

increasing j, more GA runs are needed).

2. The results are often difficult to interpret. In fact, the set

of models identified could be ranked either according to

their fitness or according to their structural complexity.

However, ranking models according to their structural

complexity requires some subjective judgment and,

consequently, this process is often biased by the analyst’s

experience rather than being purely based on mathema-

tical/statistical criteria (Young et al. 1996).

3. When searching for the formulae with j terms, those

having a smaller number of terms belong to the space

of formulae with j terms as a degenerative case.

However, these ‘degenerative formulae’ could have a

better accuracy than those previously found (i.e. for

lower values of index j) and discarded because at run j

there could be less parsimonious formulae that fit

the data better.

To overcome these drawbacks, it is possible to use a

multi-objective genetic algorithm (Goldberg 1989) (MOGA)

strategy in EPR. In fact, assuming m pseudo-polynomial

terms (and considering that all pseudo-polynomials having

less than m terms belong to the formulae space of m terms as

a degenerative case) it is possible to explore the space of

m-term formulae using the following two (conflicting) objec-

tives: maximization of model accuracy and minimization of

the number of polynomial coefficients in the formulae.

This problem can be solved using the MOGA approach

based on the Pareto dominance criterion (Pareto 1896).

Adopting this criterion makes the EPR search faster

because the search for all models ( j ¼ 1, 2,… ,m) is

performed simultaneously. Moreover, the models obtained

in this way are already ranked according to: (1) the number

of terms obtained (i.e. parsimony) and (2) the accuracy

achieved (i.e. model fitness to training data). Following this

reasoning, a further improvement to EPR would be to use

the MOGA strategy to optimize the number of formulae

inputs (Xi are the vectors). Therefore, objectives of the EPR

search are:

1. maximization of the model accuracy;

2. minimization of the number of polynomial coefficients;

and

3. minimization of the number of inputs.

Note that EPR can determine the Pareto front consist-

ing of best formulae (maximum of m terms) considering

both parsimony (number of constants and variables) and

accuracy in a single formula space exploration. This makes

EPR results easily interpretable because the formulae are

ranked according to the parsimony and accuracy objectives.

Moreover, the overall Pareto front gives insight into the

model selection phase. Finally, the GA used for the

evolutionary stage of EPR is OPTIMOGA. Further details

on OPTIMOGA can be found in Giustolisi et al. (2004).
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Multi-case strategy for EPR

When a given set of observed data is described by different

model structures of increasing complexity at least one

model structure is returned that allows a correct descrip-

tion of the system in terms of both parsimony and fitness

(Ljung 1999). Other structures differ for the selection of

variables describing the particular realization of the noise

rather than the underlying phenomenon. Such effect goes

under the name of over-fitting to training data. Also,

polynomial models returned by the EPR usually contain a

certain combination of explanatory variables which are

common to the majority of Pareto optimal models,

whereas other variables or even entire terms are selected

in just a few models. In the case of individual pipe systems,

the balance among model accuracy, complexity and prior

insight into the phenomenon can help in selecting the

most suitable model to avoid over-fitting. However, when

the same phenomenon is modelled for distinct systems,

significant differences may exist among resulting failure

models (Berardi et al. 2005, 2006). Such observation

makes it difficult to separate the description of the

underlying physical phenomenon (common to all systems

analyzed) from other variables/terms whose relevance

emerges from local properties and the particular manifes-

tation of noise in a given measurement of the system. This

raises doubts about the correctness of individual system

models that are identified and their use as general

performance indicators.

Assume that C systems (i.e. cases) (S1,… ,SC) exist,

each with the relevant observed dataset s (s ¼ 1,… ,C)

containing data on both recorded sewer failures Ys (e.g.

collapses or blockages) and the corresponding potential k

explanatory variables (i.e. Xs,i, i ¼ 1,… ,k). In such a case, it

should be possible to simultaneously identify the best set of

k significant explanatory variables for describing the same

phenomenon (i.e. Y ) in all systems. In MCS-EPR this can

be done by first encoding each candidate model structure

(as a set of polynomial exponents corresponding to

potential explanatory variables in all polynomial terms)

and then by using the GA-based EPR search procedure (see

previous section) to find the best model structure. During

the GA search procedure, each time the potential solutions’

fitness is evaluated the following two steps are applied.

(1) Estimate the unknown polynomial coefficient values

(i.e. model parameters) by means of numerical

regression, such as by using the least squares method.

Note that when doing so all model parameters

as,j (s ¼ 1,… ,C, j ¼ 1,… ,m þ 1) for all individual

systems are evaluated simultaneously.

(2) Calculate the three objective function values (sum of

squared errors, number of polynomial terms, number

of significant explanatory variables; see previous

section) to determine each model structure’s fitness.

Note that the latter two function values do not change

from one system to another while the value of the first

objective (sum of squared errors) depends on how

closely each of the C models (with parameters

as,j, j ¼ 1,… ,m þ 1) fits its observed data.

It can be argued that there are at least two possible

approaches for taking into account different model fitness

for the samemodel structure. The first approach is consistent

with the multi-objective paradigm that the MO-EPR is built

on and consists of taking each CoD (i.e. the CoD referred to

dataset s) as a separate objective to be maximized. The

second approach aims to merge all C measures of model

accuracy into a single fitness value. The latter approach has

been adopted here for the following reasons.

1. A single fitness function value is likely to return a lower

number of models than the multi-objective approach

which is easier to handle.

2. From a computational point of view, the second

approach is faster than the first because of fewer

objective evaluations and the reduced number of

solutions to be managed.

The following measure of model accuracy is therefore

used here:

CoD ¼ 12

PC
s¼1

Ns

P
ðŷs 2 yexpÞ

2

N

P
ð yexp 2 avgð yexpÞÞ

2

¼ 12

PC
s¼1 Ns·SSEs

N

P
ð yexp 2 avgð yexpÞÞ

2
ð3Þ

where N is the total number of samples over all C datasets

(i.e. N ¼
P

Ns); avg(yexp) is the average value of obser-

vations evaluated on N samples; ŷs is the value predicted by
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the model built with the sth vector of parameters and yexp is

the corresponding observation.

APPLICATION TO SEWER FAILURE MODELLING

The MCS-EPR methodology described in the previous

section is tested here on a case study consisting of two

real UK sewer systems (referred to here as Case 1 and

Case 2). Available data consists of: two types of recorded

sewer failures (collapses and blockages) recorded during a

5 year monitoring period and pipe data (material, size, age,

etc.). Both system datasets contain information on pipes

with and without recorded failures. As expected, the

number of recorded blockages (2,299 and 2,540 for systems

1 and 2, respectively) largely exceeds the recorded collapses

(47 and 37 for systems 1 and 2, respectively).

In addition, all recorded data is only available at the

grouped pipe level; that is, 824 (system 1) and 395 (system 2)

polygon shape areas (or simply polygons). Each polygon is

described by 44 attributes (fields) in the database.

The first category of polygon data contains polygon area,

number of associated properties, length of main roads and

area of ‘hazardous’ soil (e.g. clay). The second category of

polygon data refers to asset features described by the mean

sewer age in the area, namely gradient and cover depth

which are in turn represented by three sub-classes describ-

ing the length of sewers with ‘low’, ‘normal’ and ‘high’

attribute values. For sewer gradients, the classes are ‘less

than 0.01’, ‘between 0.01 and 0.05’ and ‘greater than 0.05’.

In the case of cover depth, the relevant thresholds are 0, 1.5

and 3.0m, respectively.

Sewer nominal diameter is also reported as three sub-

classes corresponding to the ‘less than 350mm’, ‘between

350 and 650mm’ and ‘greater than 650mm’. The third

category of polygon attributes refers to asset condition and

reports the length of pipes surveyed by means of CCTV,

the length of pipes exhibiting the worst operational (ocg)

and service (scg) condition grade (e.g. ocg and scg

attributes equal to 4 or 5), the length of the so-called

‘Section 24’ sewers (typically small diameter sewers close

to houses) and the length of pipes which experienced

surcharges during the monitoring period. Additional

information about polygon data available can be found

in Berardi et al. (2006).

Data pre-processing

As expected, the quality of available data was not ideal.

A number of inconsistencies were identified. As a conse-

quence of preliminary analysis, 87 polygons in system 1 and

94 polygons in system 2 were omitted from further analyses.

Selection of potential explanatory variables

Once the cleansing of two datasets was completed, different

attributes were enlisted as potential explanatory factors for

modelling sewer blockage and collapse. Such a selection

was driven by physical insight into the mechanisms leading

to different types of failure (collapse and blockage). For

modelling blockage, sewer cover depth is neglected in

favour of gradient since this is more likely to explain the

propensity to obstruction by directly addressing hydraulic

conditions. Different mechanisms were identified for

modelling sewer collapse. They are caused mainly by the

transmission of surface loads and are therefore better

explained by cover depth than by sewer gradient. Finally,

all other available attributes were chosen as possible

explanatory factors for both collapse and blockage.

The EPR function used here is

Ŷ ¼
Xm

j¼1

as;jðX1Þ
ESð j;1Þ…ðXkÞ

ESðj;kÞ ð4Þ

The maximum number of terms is m ¼ 3, and the

condition as,j . 0 is used during parameter estimation.

The candidate exponents for EPR were {22; 21; 0; 1; 2}

in which the choice of 0 allows the procedure to eschew

unnecessary inputs.

Results and discussion

Tables 1 and 2 report Pareto optimal one- and two-term

polynomial model structures identified by the MSC-EPR for

describing the number of collapses (i.e. CL) and blockages

(i.e. BL) in systems (i.e. cases) 1 and 2. In addition to this,

the CoD value is reported for each model shown. Table 3

outlines a corresponding selection of Pareto optimal models

returned by EPR in Berardi et al. (2006), where systems 1

and 2 were analyzed individually. Figure 1 displays the

reported model structures for blockages and collapses,
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characterized by their performances and selected explana-

tory variables. The following symbols are used in Tables

1–3: s24 is the length of ‘Section 24’ sewers; ocgp is the

percentage of pipes surveyed by CCTV with the highest

(worst) operational condition grade; ocg and scg are the

lengths of pipes showing the worst operational and service

condition grade; dl and dh denote ‘low’ and ‘high’ cover

depth classes; Dl and Dm denote ‘low’ and ‘normal’

diameter classes; A is the polygon area; Haz is the area of

hazard soil in the polygon; s is the length of pipes which

experienced surcharge during the monitoring period; and

Age is the mean sewer age in the polygon area.

We can note several points from Tables 1–3.

1. Comparison between collapse models shown in Tables 1

and 3 shows a drastic reduction in the number of

significant explanatory (i.e. input) variables in the multi-

case strategy (see the diagram on the right in Figure 1).

This was expected since only a small number of polygons

have recorded failures. This fact implies that a higher

number of input variables needs to be combined in order

to realize an acceptable description of data (e.g. the case

for the individual models shown in Table 3).

2. The same first polynomial term is reported in all three

models shown in Table 1. This term contains the following

three significant variables: length of Section 24 sewers,

length of sewers with the worst operating condition grade

and total polygon area. Note that these three significant

variables also exist in collapse models for Cases 1 and 2

shown in Table 3 (individual system models). Also,

direct/inverse relations between the number of collapses

and the previously mentioned three significant explana-

tory variables are identical in the grouped and individual

cases (e.g. reduction in the length of s24 sewers is leading

to a reduction in the number of collapses, etc.).

3. Despite their similarities, model structures returned by

the MCS-EPR have lower CoD values than the corre-

sponding values obtained in Cases 1 and 2 (see Figure 1,

the circle dots against the others). This is a predictable

effect of trying to fit the single ‘compromise’ model to

two different observed datasets. As a consequence,

failure models generated by the MCS-EPR are not

expected to improve individual model fits but rather to

provide an ‘unbiased’ description of the underlying

phenomenon by identifying the most significant expla-

natory variables.

Note that observations similar to the above could also

be made in the case of blockage models where the length of

Section 24 sewers is identified as the most important

explanatory variable. However, unlike in the case of

collapse models, the addition of other input variables (e.g.

Haz or Dl) improves the model fit in Case 2 only (see

blockage models in Tables 2 and 3 and the diagram on the

left in Figure 1). This is a consequence of the lower quality

of Case 2 data which, incidentally, was recorded by two

separate companies during the monitoring period. The

presence of unreliable/biased information in the second

dataset leads to the selection of variables such as Haz or Dl

which are not strictly needed for describing the physical

Table 3 | Selected Pareto optimal models identified by the EPR technique

EPR models CoD

Case 1 CL ¼ 0:0014268· s24·ocg·dl·dh·
Dl þ 0:0005888·Age·s 0.69

BL ¼ 25:1533·Hazþ 0:11091·Age·s24 0.90

Case 2 CL ¼ 2:2355·1025· Dm·scg2·ocgp2·s24
A2·ocg

þ 0:59796·Haz 0.64

BL ¼ 15:4937·s24þ 22:9971·A 0.77

Table 2 | Selected Pareto optimal blockage prediction models identified by MCS-EPR

a1—Case 1 a2—Case 1 CoD—Case 1

Model structure a1—Case 2 a2—Case 2 CoD—Case 2

BL ¼ a1·s24 9.7435 – 0.86

17.9908 – 0.69

BL ¼ a1·s24þ a2·Haz 9.6002 22.9537 0.86

14.9179 28.7993 0.76

BL ¼ a1·s24þ a2·Dl2 9.7435 0.0000 0.86

17.4793 0.0082 0.71

Table 1 | Selected Pareto optimal collapse prediction models identified by MCS-EPR

a1—Case 1 a2—Case 1 CoD—Case 1

Model structure a1—Case 2 a2—Case 2 CoD—Case 2

CL ¼ a1·
s242·ocg2

A2 0.0450 – 0.45

0.0133 – 0.43

CL ¼ a1·
s242·ocg2

A2 þ a2·dh 0.0345 0.0080 0.57

0.0124 0.0108 0.50

CL ¼ a1·
s242·ocg2

A2 þ a2·Age·dh 0.0318 0.0001 0.62

0.0124 0.0001 0.49
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phenomenon present in Case 1. Therefore, additional

explanatory variables improve the model fit in Case 2 only.

Moreover, unlike the case of collapse models, the

number of explanatory variables selected by the MCS-EPR

(Table 2) is almost the same as in the EPR case (Table 3), as

shown in Figure 1. This is due to the strong imbalance

between recorded collapses and blockages. The larger

number of blockages, and their distribution among the

polygons, allows for a clearer identification of significant

explanatory variables. This happens when systems are

analyzed both individually (Table 3) and using a multiple

case approach (Tables 1 and 2).

Further, note that despite the above differences between

individual and multi-case model structures, the variables

Figure 1 | Performances and explanatory variables of prediction models identified by MCS-EPR and EPR.
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selected by the EPR and MCS-EPR strategies, and their

influence on failure occurrence (i.e. direct/inverse

relations), is still in agreement with prior insight into the

underlying system physics. When this is not evident, it

should be recalled that the description provided by

individual models is affected by local traits or noise in the

particular data realization. This is the case of variable ocg in

the collapse model reported in Table 3 for Case 2. It is

apparent that the length of worst operating condition grade

sewers should directly affect collapse occurrence, whereas

in that model ocg is located in the ratio denominator. The

simultaneous analyses of both cases unearthed a more

plausible formulation of the collapse model.

Finally, we note that if different quality data is available

for the different cases (i.e. systems) analyzed (which is the

case here), this will affect the performance of the corre-

sponding model structures when regressed on (i.e. when

model parameters are estimated for) each dataset. In the

case study presented here, the quality of Case 2 data was

lower than in Case 1. As a consequence, model structures in

Tables 1 and 2 return higher CoD values when they are

regressed on Case 1 as opposed to Case 2.

APPLICATION TO WATER MAINS DETERIORATION

MODELLING

Pipe degradation has commonly been studied as a steady

monotonic process that is modified by time-varying ‘noise’

(Kleiner & Rajani 2002). Time-dependent factors can be

random, cyclical (i.e. environmental conditions, traffic

loading, external stress, corrosion, etc.) or variable (i.e.

operational factors). Pipe age, diameter and material have

been identified as primary variables influencing the mono-

tonic increase in the burst rate over a number of years. The

majority of statistical methods consider pipe age as the most

crucial variable describing the increase in pipe failure rates

over time. Exponential (Shamir & Howard 1979) or power

(Kleiner & Rajani 2001) models are commonly used to

determine the optimal replacement time for pipes. Further-

more, Walski & Pelliccia (1982) found diameter to be a key

factor, with the failure rate of smaller diameter pipes being

higher than those experienced by larger ones. This is partly

due to a potentially lower quality of workmanship associ-

ated with laying the pipes (as compared with more

expensive larger diameter pipes) and thinner pipe walls.

Studies into common metallic pipe behaviour (e.g. cast iron,

ductile iron, etc.) have been conducted to establish the

influence of pipe material on failure rates (Kettler &

Goulter 1985; Kleiner & Rajani 2002).

The study performed on a real network by Pelletier et al.

(2003) also revealed a close dependence between pipe

material, diameter and age. Moreover, age, material and

diameter are usually the only, if any, information available

to many municipalities and water companies. Long burst

data records of high quality and especially at the pipe level

are rarely found in practice (Kleiner & Rajani 2002).

However, available pipe data together with additional

variables such as soil type, land use and/or spatial and

temporal clustering of pipe brakes, have been used as

grouping criteria to emphasize their influence on failure

(Walski & Pelliccia 1982; Kleiner & Rajani 1999; Pelletier

et al. 2003). Recently, Berardi et al. (2005) demonstrated the

dependence of pipe bursts on length, age and diameter

using real data from UK water companies.

Case study description

This second case study is presented here with two ends in

mind: (1) to show the application of MCS-EPR method-

ology on a larger set of systems and (2) to use MCS-EPR for

modelling failure performance indicators of water distri-

bution systems. The database used here refers to 48 water

quality zones (WQZ) within a UK water distribution system

and consists of about 101,979 items.

The data were available at the pipe level and contain

both asset information and bursts recorded during a 14-year

monitoring period. For each pipe, the database reports pipe

diameter, material, year laid, length, number of properties

supplied and the total number of bursts recorded. Unfortu-

nately, neither criteria adopted for designing these water

quality zones nor the network map was available for this

study. Moreover, the timing of each pipe burst is unknown.

These information gaps prevent the introduction of

additional variables describing spatial and/or temporal

proximity to nearby failures as well as the verification of

the potential existence of clusters in the burst data.

However, statistical distribution of the asset features (i.e.
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Table 4 | Pareto optimal burst prediction models identified by MCS-EPR

I II III

BR 5 a1·Lt
1.5 BR 5 a1·Ae1.5Lt BR 5 a1·((Ae1.5Lt)/De)

WQZ a1 CoD a1 CoD a1 CoD

1 3.29 £ 1025 0.5486 7.79 £ 1026 0.5664 1.12 £ 1023 0.7958

2 2.57 £ 1025 0.5056 5.81 £ 1026 0.5141 6.29 £ 1024 0.5981

3 2.93 £ 1025 0.6888 6.75 £ 1026 0.7273 6.99 £ 1024 0.7525

4 4.01 £ 1025 0.6031 9.15 £ 1026 0.7790 9.12 £ 1024 0.8165

5 4.01 £ 1025 0.4849 8.79 £ 1026 0.7435 8.85 £ 1024 0.8112

6 1.89 £ 1027 20.2213 5.31 £ 1026 0.3410 5.50 £ 1024 0.3331

7 3.28 £ 1025 0.7709 6.46 £ 1026 0.7268 7.78 £ 1024 0.8137

8 1.18 £ 1024 0.6195 1.46 £ 1025 0.6667 1.24 £ 1023 0.5777

9 4.96 £ 1025 0.6805 1.38 £ 1025 0.7511 1.71 £ 1023 0.8727

10 7.04 £ 1025 0.3325 1.08 £ 1025 0.5381 1.16 £ 1023 0.6069

11 2.09 £ 1025 0.7811 4.34 £ 1026 0.8034 4.41 £ 1024 0.8349

12 1.67 £ 1025 0.6622 4.47 £ 1026 0.8712 4.59 £ 1024 0.8817

13 5.53 £ 1026 20.1132 7.99 £ 1026 0.6119 8.69 £ 1024 0.7075

14 4.70 £ 1025 0.6393 1.10 £ 1025 0.8012 1.20 £ 1023 0.7702

15 3.28 £ 1025 0.9336 5.02 £ 1026 0.8287 5.08 £ 1024 0.8385

16 1.83 £ 1025 0.5956 2.78 £ 1026 0.6689 3.17 £ 1024 0.7811

17 1.37 £ 1027 20.1124 4.64 £ 1026 0.5060 5.29 £ 1024 0.4799

18 8.26 £ 1026 0.2522 2.48 £ 1026 0.3892 2.73 £ 1024 0.4480

19 5.98 £ 1026 0.2755 2.15 £ 1026 0.4340 2.46 £ 1024 0.4359

20 7.04 £ 1026 0.3367 2.54 £ 1026 0.4851 2.86 £ 1024 0.5606

21 7.43 £ 1026 0.1954 2.50 £ 1026 0.3468 2.69 £ 1024 0.3814

22 4.63 £ 1026 0.4784 1.67 £ 1026 0.5663 1.86 £ 1024 0.6518

23 7.65 £ 1026 0.8925 1.80 £ 1026 0.8708 1.91 £ 1024 0.9314

24 1.03 £ 1024 0.7981 2.17 £ 1025 0.8732 2.27 £ 1023 0.9101

25 9.35 £ 1026 0.5384 3.23 £ 1026 0.6854 3.29 £ 1024 0.7150

26 5.20 £ 1025 0.9270 1.25 £ 1025 0.9511 1.26 £ 1023 0.9833

27 5.31 £ 1026 0.7791 1.18 £ 1026 0.8132 1.27 £ 1024 0.8515

28 1.86 £ 1025 0.8547 4.37 £ 1026 0.8620 4.50 £ 1024 0.8551

29 4.69 £ 1025 0.7949 9.34 £ 1026 0.8679 1.00 £ 1023 0.9117

30 1.15 £ 1025 0.5145 2.88 £ 1026 0.6336 3.84 £ 1024 0.8030

31 1.14 £ 1025 0.3564 5.57 £ 1026 0.8089 6.08 £ 1024 0.8792

32 1.88 £ 1025 0.7543 6.62 £ 1026 0.8978 6.97 £ 1024 0.9352

33 2.87 £ 1025 0.7277 8.56 £ 1026 0.8690 9.29 £ 1024 0.9227

34 1.37 £ 1025 0.6467 2.64 £ 1026 0.6894 2.90 £ 1024 0.7234

35 3.70 £ 1025 0.7495 1.05 £ 1025 0.8852 1.11 £ 1023 0.9358

36 3.43 £ 1025 0.9609 8.47 £ 1026 0.9395 8.52 £ 1024 0.9409

37 1.79 £ 1025 0.7886 5.03 £ 1026 0.8594 4.72 £ 1024 0.8861

38 2.83 £ 1025 0.9028 7.02 £ 1026 0.8902 5.74 £ 1024 0.9414

39 1.57 £ 1025 0.8674 5.02 £ 1026 0.9101 4.03 £ 1024 0.9433

220 D. A. Savic et al. | Asset deterioration analysis Journal of Hydroinformatics | 11.3–4 | 2009



diameter, vintage, total length of pipeline and total number

of properties supplied) allows all the WQZs to be

considered as stand-alone small water distribution systems.

As in the majority of water distribution systems, the

number of failures recorded during the monitoring period

corresponds to about 10% of the total number of pipes and

several pipes failed more than once over the same time

period. A performance indicator should represent the

propensity to fail for all pipes in the network. Therefore,

both pipes with and without recorded bursts have been

considered. Furthermore, the distribution of bursts men-

tioned above implies a grouping criterion to be adopted in

order to have a finite failure rate for all pipes in the network.

Previously developed pipe failure models (Shamir &

Howard 1979; Kleiner & Rajani 1999; Giustolisi & Savic

2004) associated the same pipe failure rate to pipes with

similar attributes (e.g. material, size, age, etc.). Following on

from that work, and based on the preliminary analyses, the

pipes considered here have been classified using pipe

diameter and age.

Because the statistical approach is economically viable

for modelling failure in small pipes, only pipes with a

nominal diameter of up to 250mm have been selected for

the analysis. These pipes have been grouped into 8 diameter

classes (from 32mm to 250mm). Such a classification has

been used to fill in some existing data gaps. In fact, numerous

records contained missing entries for the year the pipes were

laid. In order to fill in these gaps, the correlation often

assumed between pipe material and burial year (Pelletier

et al. 2003) was employed. Within each diameter class, the

mean burial year of pipes made of the same material was

used to complete missing data. Once the data reconstruction

was completed, pipes were further grouped into 1-year age

classes. The choice of 1-year for age classification is because

it averages the influence of time-dependent factors over a

year and allows for detailed analysis of the problem based on

data updated annually by water utilities.

Selection of potential explanatory variables

Only four fields describing pipe features have been

considered for modelling. These are age, diameter, length

and number of properties supplied, all available at the pipe

level. For each diameter-age class, the total number of

recorded burst events (BR), the sum of pipe lengths (Lt), the

sum of properties supplied (Pr) and the total number of

pipes in the class (Np) have been computed. In summary,

the model under consideration is geared to identify the

functional relationships between five possible model inputs

(Ae, De, Lt, Np, Pr) and one model output (BR). The same

EPR model structure reported in Equation (4) was used in

this case study except for the maximum number of terms

allowed (which is m ¼ 1 here) and the set of exponents {22,

21.5, 21, 20.5, 0, 0.5, 1, 1.5, 2}.

Results and discussion

Table 4 reports optimal model structures obtained by MCS-

EPR for describing pipe burst occurrence in a water

Table 4 | (continued)

I II III

BR 5 a1·Lt
1.5 BR 5 a1·Ae1.5Lt BR 5 a1·((Ae1.5Lt)/De)

WQZ a1 CoD a1 CoD a1 CoD

40 1.34 £ 1025 0.9097 4.31 £ 1026 0.9086 4.35 £ 1024 0.9194

41 1.77 £ 1025 0.7583 3.02 £ 1026 0.6752 2.33 £ 1024 0.5867

42 2.52 £ 1025 0.9339 5.27 £ 1026 0.9311 4.49 £ 1024 0.9468

43 2.36 £ 1025 0.7970 6.02 £ 1026 0.8771 5.82 £ 1024 0.9463

44 3.74 £ 1025 0.6434 3.80 £ 1026 0.7370 3.49 £ 1024 0.7900

45 2.16 £ 1025 0.4559 1.24 £ 1025 0.4662 1.43 £ 1023 0.4799

46 1.68 £ 1025 0.7851 3.85 £ 1026 0.8129 3.78 £ 1024 0.8126

47 7.93 £ 1026 0.5053 2.65 £ 1026 0.7203 2.69 £ 1024 0.7244

48 6.42 £ 1026 0.7354 2.25 £ 1026 0.7900 2.78 £ 1024 0.8839
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distribution network. For each zone the CoD values and

coefficients (a1) are reported. A pictorial representation of

model performance is reported in Figure 2 which shows

that the addition of one or two input variables improves

performance for almost all WQZs. In particular, model

structures I, containing total class length Lt, leads to

18 cases described with CoD less than 0.60 and 3 cases

with negative CoD values. Note that negative CoD means

that the average observation (here total number of bursts in

the classes) would provide a better description than model

structure I.

The selection of the overall class length Lt has a

statistical meaning since it encompasses all other time-

related factors that are either unrecorded or unavailable for

the same class. For example, the longer the pipe class, the

more variable the traffic loads, operational stresses (i.e.

pressure/discharge variations) and bedding conditions.

Although it is impossible to formulate a mathematical

expression of such a relationship without additional

information, it is known from the literature that pipe length

directly affects the probability of breaks.

Addition of the age term Ae leads to an average increase

of CoD of about 0.116 and a significant improvement of

performance in almost all cases. Direct dependence on age

confirms this variable to be the most significant factor in

describing the deterioration process and subsequent burst

occurrence in a water distribution network. It is noteworthy

that in this case study the variable Ae also includes

information on pipe material since it has been used for

infilling missing data on age.

Model structure III is the most complex returned by

MCS-EPR and contains just one more explanatory variable

(i.e. equivalent diameter De). From models II to III there is

an average increase of CoD of about 0.42 and the system

description has improved for 41 cases. Also in this case the

inverse dependence between pipe diameter and number of

bursts occurring in the network confirms the observation

that smaller pipes are more prone to failure than larger

ones (Clark et al. 1982; Walski & Pelliccia 1982; Kettler &

Goulter 1985).

CONCLUSIONS

A novel approach for generating polynomial-type sewer

failure prediction models from observed data is developed

and presented here. The MCS-EPR approach uses the

existing EPR technique to simultaneously identify the best

model structure and parameter values from the observed

data available for multi-utility data (i.e. cases). This way, the

resulting models for predicting the number of pipe failures

should contain only the explanatory factors important

for describing the underlying physical phenomenon.

The advantages of using such an approach are: (1) the

approach results in a generalization of the EPR outcomes

and the formulation of more realistic failure models; and

Figure 2 | Performance of burst prediction models identified by MCS-EPR.
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(2) the approach itself provides the mechanism for the

selection of the most general model structures without

asking the analysts for a comparison between models

returned for different systems.

The MCS-EPR methodology presented here has been

tested and verified on both real drinking and wastewater

systems in the UK for predicting the number of pipe bursts,

collapses and blockages. The results obtained show several

advantages of this approach when compared to the existing

EPR approach applied to individual systems. The main

advantages are: (1) models returned by the MCS-EPR

provide and verify the physical insight into the underlying

physical phenomenon (pipe failure); (2) incorrect relation-

ships between the number of failures and some explanatory

variables and/or physical misinformation achieved by the

individual system level EPR analysis can be identified and

overcome; and (3) varying quality of different datasets

corresponding to different sewer systems is stressed by

different performances when a given MCS-EPR model

structure is applied to each single system.
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Babovic, V., Drécourt, J. P., Keijzer, M. & Friss Hansen, P. 2002

A data mining approach to modelling of water supply assets.

Urban Water 4 (4), 401–414.

Berardi, L., Savic, D. A. & Giustolisi, O. 2005 Investigation of burst-

prediction formulas for water distribution systems by

evolutionary computing. In Proceedings of the 8th

International Conference on Computing and Control for the

Water Industry, Exeter, UK, (Vol. 2), pp. 275–280, Centre for

Water Systems, Exeter, UK.

Berardi, L., Kapelan, Z., Savic, D. A. & Giustolisi, O. 2006

Modelling sewer performance indicators. In Proceedings of

Hydroinformatics 2006, Nice, France, (Vol. 4), 2829–2836,

Research Publishing, Chennai (India).

Cardoso, M. A., Coelho, S. T., Matos, J. S. & Matos, R. M. 1999

A new approach for diagnosis and rehabilitation of sewerage

systems through the development of performance indicators.

In Proceedings of 8th International Conference on Urban

Storm Drainage, Sydney, Australia, (Vol. 2), pp. 610–617,

IAHR Publishing, London.

Clark, R. M., Stafford, C. L. & Goorich, J. A. 1982 Water

distribution systems: a spatial and cost evaluation. J. Water

Resour. Plann. Manage. Div. 108 (3), 243–256.

Draper, N. R. & Smith, H. 1998 Applied Regression Analysis.

John Wiley and Sons, New York, USA.

Giustolisi, O. & Savic, D. A. 2004 Decision support for water

distribution system rehabilitation using evolutionary computing.

In Proceedings of the Seminar on Decision Support in the Water

Industry under Conditions of Uncertainty (ACTUI), Exeter, UK,

pp. 76–83, Exeter University Press, Exeter, UK.

Giustolisi, O. & Savic, D. A. 2006 A symbolic data-driven technique

based on evolutionary polynomial regression. J. Hydroinform.

8 (3), 207–222.

Giustolisi, O., Doglioni, A., Laucelli, D. & Savic, D. A. 2004

A proposal for an effective multiobjective non-dominated

genetic algorithm: the OPTimised Multi-Objective Genetic

Algorithm, OPTIMOGA. Report 2004/07, School of

Engineering Computer Science and Mathematics, Centre for

Water Systems, University of Exeter, UK.

Giustolisi, O., Laucelli, D. & Savic, D. A. 2006 Development of

rehabilitation plans for water mains replacement considering

risk and cost-benefit assessment. Civil Eng. Environ. Syst. J.

23 (3), 175–190.

Giustolisi, O., Doglioni, A., Savic, D. A. & Webb, B. W. 2007 A

multi-model approach to analysis of environmental

phenomena. Environ. Model. Softw. 22 (5), 674–682.

Goldberg, D. E. 1989 Genetic Algorithms in Search, Optimization

and Machine Learning. Addison Wesley. London, UK.

Holland, J. 1975 Adaptation in Natural and Artificial

Systems. The University of Michigan Press. Ann Arbor,

Michigan, USA.

Kettler, A. J. & Goulter, I. C. 1985 An analysis of pipe breakage in

urban water distribution networks. Can. J. Civil Eng. 12,

286–293.

Kleiner, Y. & Rajani, B. B. 1999 Using limited data to assess future

needs. J. Am. Water Works Assoc. 91 (7), 47–62.

Kleiner, Y. & Rajani, B. B. 2001 Comprehensive review of structural

deterioration of water mains: statistical models. Urban Water

3 (3), 121–150.

Kleiner, Y. & Rajani, B. B. 2002 Forecasting variations and

trends in water-main breaks. J. Infrastruct. Syst. 8 (4),

122–131.

223 D. A. Savic et al. | Asset deterioration analysis Journal of Hydroinformatics | 11.3–4 | 2009

http://dx.doi.org/10.1061/(ASCE)1076-0342(2001)7:4(160)
http://dx.doi.org/10.1061/(ASCE)1076-0342(2001)7:4(160)
http://dx.doi.org/10.1016/S1462-0758(02)00034-1
http://dx.doi.org/10.1080/10286600600789375
http://dx.doi.org/10.1080/10286600600789375
http://dx.doi.org/10.1080/10286600600789375
http://dx.doi.org/10.1016/j.envsoft.2005.12.026
http://dx.doi.org/10.1016/j.envsoft.2005.12.026
http://dx.doi.org/10.1016/j.envsoft.2005.12.026
http://dx.doi.org/10.1139/l85-030
http://dx.doi.org/10.1139/l85-030
http://dx.doi.org/10.1016/S1462-0758(01)00033-4
http://dx.doi.org/10.1016/S1462-0758(01)00033-4
http://dx.doi.org/10.1061/(ASCE)1076-0342(2002)8:4(122)
http://dx.doi.org/10.1061/(ASCE)1076-0342(2002)8:4(122)


Koza, J. R. 1992 Genetic Programming: On the Programming of

Computers by Means of Natural Selection. MIT Press,

Cambridge, MA, USA.

Ljung, L. 1999 System Identification: Theory for the User,

2nd edition. Prentice-Hall Inc. Englewood Cliffs,

New Jersey, USA.

Matos, R., Cardoso, A., Ashley, R. M., Molinari, A., Schulz, A. &

Duarte, P. 2003 Performance Indicators for Wastewater

Services—IWA Manual of Best Practice. IWA publishing.

London, UK.

Pareto, V. 1896 Cours D’Economie Politique, Vol. I and II. Rouge

and Cic, Lausanne, Switzerland.

Pelletier, G., Mailhot, A. & Villeneuve, J. P. 2003 Modelling water

pipe breaks—three case studies. J. Water Resour. Plann.

Manage. 129 (2), 115–123.

Savic, D. A., Giustolisi, O., Berardi, L., Shepherd, W., Djordjevic, S.

& Saul, A. 2006 Modelling sewers failure using evolutionary

computing. Proc. ICE, Water Manage. 159 (2), 111–118.

Shamir, U. & Howard, C. D. D. 1979 An analytic approach to

scheduling pipe replacement. J. Am. Water Works Assoc.

71 (5), 248–258.

Tran, D. H., Nga, A. W. M. & Perera, B. J. C. 2007 Neural

networks deterioration models for serviceability condition of

buried stormwater pipes. Eng. Appl. Artif. Intell. 20 (8),

1144–1151.

Walski, T. M. & Pelliccia, A. 1982 Economic analysis of water main

brakes. J. Am. Water Works Assoc. 74 (3), 140–147.

Young, P., Parkinson, S. & Lees, M. 1996 Simplicity out of

complexity in environmental modelling: Occam’s razor

revisited. J. Appl. Stat. 23 (2–3), 165–210.

First received 12 March 2008; accepted in revised form 9 February 2009

224 D. A. Savic et al. | Asset deterioration analysis Journal of Hydroinformatics | 11.3–4 | 2009

http://dx.doi.org/10.1061/(ASCE)0733-9496(2003)129:2(115)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2003)129:2(115)
http://dx.doi.org/10.1680/wama.2006.159.2.111
http://dx.doi.org/10.1680/wama.2006.159.2.111
http://dx.doi.org/10.1016/j.engappai.2007.02.005
http://dx.doi.org/10.1016/j.engappai.2007.02.005
http://dx.doi.org/10.1016/j.engappai.2007.02.005
http://dx.doi.org/10.1080/02664769624206
http://dx.doi.org/10.1080/02664769624206
http://dx.doi.org/10.1080/02664769624206



