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ABSTRACT 

Of the geographical parameters in a winegrowing site, altitude is an important determinant of 
wine composition and quality. Grape polyphenols and volatiles comprise a large and varied 
group of compounds that contribute considerably to the sensory and health-promoting properties 
of wine. This review surveys the impacts of altitude and its related climatic characteristics on 
the phenolic and aroma compounds of grapes and wine through the examination of existing 
literature. Furthermore, this review highlights the challenge of distinguishing the effects of 
parameters, such as air temperature, variety, vine water status, soil and UV radiation, from the 
altitude effect. Overall, high-altitude growing sites can favour an increase - albeit at different 
intensities - in content of many chemical compounds found in grapes and wine, such as total 
polyphenols, total monomeric anthocyanins, catechins, quercetin derivatives and cyanidin-
derived anthocyanins, trihydroxylated flavonols, carotenoids, isoamyl acetate and ethyl 
hexanoate. However, the altitude factor seems to be cultivar-dependent; in fact, it can exert a 
positive effect on the concentrations of acylated anthocyanins and of total aroma compounds in 
some cultivars (e.g., Ekşikara and Glera) and a negative effect on the same components in other 
cultivars (e.g., Merlot and Cabernet-Sauvignon). Its influence on the polyphenol content can 
also differ between different parts of the same cultivar; for instance, an increase in skin tannins 
and a decrease in seed tannins have been found to be concomitant with an increase in altitude 
in Syrah grapes. Moreover, at higher altitude, the effect of an increase in UV-B radiation can 
lead to an enhancement in colour intensity due to an increase in the synthesis of anthocyanins, 
flavonols and tannins. Due to their cool climate, high-elevated winegrowing regions represent 
favourite cultivation sites under current and future global warming. 
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INTRODUCTION 

The term “terroir”, derived from the Latin word “terre” or 
“territoire”, is very popular in wine literature. It is related 
to the interactions between environmental factors and 
applied vitivinicultural practices that provide uniqueness to 
the produced wine (Edo-Roca  et  al.,  2013; Van Leeuwen 
and Seguin, 2006). OIV, the International Organisation of 
Vine and Wine, defined the vitivinicultural terroir in the 
Resolution OIV/VITI 333/2010 (OIV, 2010). One of the 
factors that contributes to the terroir of a region’s wine, 
influencing physicochemical behaviour, phenolic and 
volatile compound content of grape berries and consequently 
the sensory characteristics of the resulting wine, is altitude 
(Xing  et  al.,  2016). The altitude of a growing site, which 
affects temperature, humidity, UV-B radiation, sunlight 
hours, water deficits and other environmental factors, 
can strongly influence climatic conditions (Gutiérrez-
Gamboa et al., 2021). The impacts of geographical parameters, 
such as altitude, on the main chemical components of grapes 
is an important research area due to their beneficial impacts 
on product sensory attributes and human health, such as 
antioxidant activities (Cory  et  al.,  2018). The influence of 
altitude on grape berry chemical composition (in terms of, for 
example, sugars, acids, non-flavonoid compounds including 
copigments (hydroxycinnamic and hydroxybenzoic acids) 
and antioxidants (stilbenes), flavonoid compounds including 
anthocyanins, oligomers and polymers of flavan-3-ols, and 
flavonols, as well as volatile organic compounds) has been 
recognised and highlighted in only a few recent papers 
(Alessandrini et al., 2017; Barreto de Oliveira et al., 2019; 
Gutiérrez-Gamboa et al., 2021; Rienth et al., 2020); therefore, 
up to now, impacts of altitude on grape and wine chemical 
composition has been poorly investigated. It is important to 
underline here that global warming could lead to changes in 
wine geography, and an upward shift of the growing regions 
has been forecast (Pomarici and Seccia, 2016). In fact, 
growing vines at high altitudes is one of the most effective 
new viticultural strategies for mitigating the negative 
impacts of global warming on grape and wine quality, 
particularly because it delays grape ripening. (Gutiérrez-
Gamboa  et  al.,  2020). The possibility of cultivating wine 
grapes in high-altitude regions characterised by a cooler 
climate under the future predicted higher temperatures needs 
to be studied. This review aims to explore recent studies 
related to the effects of altitude on the chemical components 
- mostly polyphenols and volatile compounds - of grapes and 
wine, as well as to gain new insights for future research on 
the effect of climate change on global viticulture. 

1. Phenolic compounds in grapes and wine
Polyphenols are a group of organic molecules that are 
widespread within the plant kingdom and in our diet. They 
comprise complex structures of several thousand compounds, 
ranging from small compounds with only one single aromatic 
ring attached to one to three hydroxyls to several of such 
structural units (De Pascual-Teresa and Clifford, 2017). 
Through secondary metabolism, plants produce phenolics 

during normal growth and as a defense response to stress 
conditions like wounding, infection and UV radiation (Naczk 
and Shahidi, 2006). Either non-flavonoid or flavonoid, there 
are many classes of phenolic compounds according to 
their structure, which differs in the number and position of 
hydroxyl and methoxyl groups on the basic backbone.

Non-flavonoid compounds include phenolic acids, which 
are classified as benzoic and cinnamic acids, as well as 
other phenolic derivatives; for example, stilbenes, the most 
well-known molecule of which is resveratrol. Flavonoid 
compounds are mainly composed of anthocyanins and 
flavonols, which predominantly exist in grape skins, and 
of flavan-3-ols, which are found in grape seeds and skins 
(Xing et al., 2016). 

Anthocyanins are flavonoid pigments that are water 
soluble, favouring their transfer into the must and wine 
during vinification (Moreno and Peinado, 2012). They are 
responsible for the colour of the produced wine, which is an 
important sensory attribute (Mateus et al., 2002). 

Flavan-3-ols exist in grapes as oligomers and polymers, 
which are the common names given to condensed tannins 
or proanthocyanidins. Flavonols are pale yellow pigments 
containing a pyrone heterocycle; out of all grape flavonoids 
they are found in the lowest concentrations. They can serve 
as a natural sunscreen for grapes and are found in grape skin 
in glycosylated forms. 

2. Aroma compounds in grapes and wine
Volatile organic compounds are generally classified as: 
varietal aroma compounds when linked directly to the 
grapes, prefermentative aroma compounds when formed 
during grape processing, fermentative aroma compounds 
when formed by yeast and bacteria and postfermentative 
aroma compounds when formed during the conservation and 
ageing of the wine (Zhu et al., 2016). Aroma-active volatiles 
can be classified as terpenes, methoxypyrazines, alcohols, 
aldehydes, esters, fatty acids, ketones and volatile thiols; 
they impart different aromas to wine when higher than their 
odour perception threshold. Terpenes occur in grapes as both 
free and, more frequently, odourless glycosylated precursors 
linked to sugar moieties; a substantial number is responsible 
for fruity and floral aromas, while others have resin-like 
odours, such as alpha-terpinene, p-cymene, myrcene and 
farnesol (González-Barreiro et al., 2015). Methoxypyrazines 
are nitrogen heterocyclic compounds found in both grapes 
and wine and they result from the metabolism of amino 
acids; 3-isobutyl-2-methoxypyrazine (IBMP) is an important 
compound which contributes to the characteristic bell pepper 
odour of Sauvignon blanc cultivar (Styger et al., 2011). 

A number of higher alcohols are produced during fermentation 
either from grape amino acids or directly from sugars, and 
the increase in fermentation rate due to several factors, such 
as oxygenation and high temperature, will lead to an increase 
in their formation (Ribéreau-Gayon  et  al.,  2000). C6 and 
C9 aldehydes and alcohols are involved in the plant defense 
response to pests, diseases and wounds (Lin  et  al.,  2019). 
During the winemaking and aging processes, aldehydes and 
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alcohols can be converted into the respective acetate esters, 
which have an impact on the aroma quality of the resulting 
wine. These molecules are considered the most important of 
the volatile aroma compounds and their production during 
fermentation mainly affects the fruity flavours associated 
with wine. Volatile thiols or mercaptans, produced from 
yeasts during wine fermentation, contribute to the varietal 
character of wine (Styger et al., 2011). Although many thiols 
(mercaptans) generate off-putting odours, not all sulfur-
containing compounds, or even all thiols, are detrimental to 
wine quality (González-Barreiro et al., 2015).

3. Effect of altitude on grapes and wine
Along with its associated environmental conditions, altitude 
has an important influence on vine physiology and fruit 
chemistry in winegrowing sites. The key findings from 
studies on the impact of altitude on grapes and wine are listed 
in Table 1.

Most of the literature reported above shows the effects of 
lower air temperatures and increased UV radiation on the 
chemical composition of grapes and wine from high-altitude 
grapevines.

The production of high-quality grapes depends on the 
daily thermal amplitude resulting from the lower night-
time temperatures usually associated with high elevation 
plots (Gutiérrez-Gamboa  et  al.,  2020). Grapevines that 
are cultivated in vineyards with low night temperatures 
have a higher potential for containing colour and volatile 
compounds (Gutiérrez-Gamboa et al., 2018). In cool-climate 
viticulture, the best expression of terroir is achieved when 
the precociousness of the grapevine variety allows it to ripen 
its fruit at the end of the growing season (Van Leeuwen and 
Seguin, 2006), when the grapes contain balanced levels 
of soluble solid, acidity, phenolic, nitrogenous and aroma 
compounds. The wines produced from high-altitude sites are 
generally fresh, with high acidity, high aromatic quality and a 
lower alcohol degree (Gutiérrez-Gamboa et al., 2020). 

The altitude effect is linked to the mass of the atmospheric 
column through which sun rays reaching the earth’s surface 
must pass; at high altitudes, there are fewer air masses 
and consequently solar UV-B levels are higher (Gutiérrez-
Gamboa et al., 2021). UV levels increase by around 10 % 
for every 1000 m gain in altitude (WHO, 2016). Vineyards 
cultivated in the Andes of Argentina, where the effect of low 
cloud cover is paired with the effect of high altitude, receive 
high levels of radiation (van Leeuwen et al., 2020).

3.1. Effect altitude on physicochemical behaviour of 
grapes and wine

3.1.1. Effect of air temperature
Temperature decreases with altitude creating a more temperate 
climate due to adiabatic cooling of the air (Gutiérrez-
Gamboa et al., 2021). ʻChasselasʼ grapes cultivated on steep 
terraced slopes at altitudes of between 375 and 575 m were 
monitored by Rienth et al. (2020) in the AOC-Lavaux region 
in Switzerland. For all three of the consecutive study years, 
altitude was the main driver of precocity and was consistently 

associated with the date of budburst and flowering. The 
temperature decreases with altitude, usually in the range of 
0.65 to 1.0 °C for 100 m gain in elevation, were associated 
with plots at higher elevations showing a delay in budburst 
and flowering. Because the vineyards at higher altitude 
ripen later during the cooler periods of the year, they have 
the highest potential for producing high-quality grapes (with 
higher acidity and lower alcohol levels) under future warmer 
temperatures, leading to maximum terroir expression. 

Cabré and Nuñez (2020) used indices related to air 
temperature to evaluate the impacts of future climate on 
Argentinean winegrowing regions, including the Cool Night 
Index (CNI) and the average growing season temperature 
(GST) index. CNI is considered as the mean minimum 
night temperature in the later maturity stages of the ripening 
period; it gives a measure of ripening potential, indicating 
the suitability of a winegrowing region notably in relation to 
the secondary metabolites (polyphenols, aromas) in grapes 
and wines. GST is used to determine a cultivar’s suitability 
in a given site and its projected changes could be useful 
for identifying the best appropriate grapevine varieties for 
current and future locations. These authors showed that CNI 
and GST are projected to increase (more than 6 °C for CNI 
and between 4 and 7 °C for GST) mainly in a distant future in 
the most pessimistic emission scenario for greenhouse gases 
(RCP8.5). They also reported that more and new suitable 
areas may be available for cultivating cool climate varieties, 
while less suitable areas may be available for warm and hot 
climate varieties to maintain their current quality.

Major biochemical changes occur during grape ripening, 
in particular the accumulation of total soluble solids 
(TSS), increased pH and decreased acidity (Almanza-
Merchán  et  al.,  2012). Total titratable acidity (TTA) 
decreases in grapes with increasing temperatures. 
Meneghelli  et  al.  (2018) showed that a vineyard at 500 m 
a.s.l. and with higher mean air temperature exhibited lower 
TTA and higher pH and TSS/TTA ratios in ‘Niágara Rosada’ 
and ‘Isabel’ cultivars when compared to the same values 
obtained for a vineyard at 650 m altitude. However, in the 
same study, relatively high values of TTA were obtained at 
250 m altitude and this was attributed to the excess of leaf 
nitrogen that increases vine vigour. Vigorous vines increase 
shading in the bunch area, which decreases the temperature 
of the grapes, extends the vegetative growth period and 
delays fruit maturity.

In a study conducted on ‘Syrahʼ grapes, higher temperatures 
at the lower altitude regions (350 m a.s.l.) led to a degradation 
in malic acid and an increase in the concentrations of 
glucose and fructose compared to the vineyards at higher 
altitude (1100 m a.s.l.) (Barreto de Oliveira  et  al.,  2019). 
Regina et al. (2010) reported that ʻPinot Noir’ grapes from 
a high-site vineyard (1150 m a.s.l.) characterised by lower 
temperatures showed higher concentrations of malic acid 
compared to the same variety cultivated at 873 m a.s.l. (8.04 
g/L vs 4.45 g/L in 2008). This suggested that low temperatures 
are more favorable for producing sparkling wines of high 
organoleptic quality. 
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3.1.2. Choice of grape variety
The altitude effect should be evaluated separately for each 
grape variety. Malinovski  et  al.  (2016) showed that the 
effects of high-altitude regions in Água Doce in Brazil on 
the viticultural performance of six Italian native grapevines 
differ from one cultivar to another. ʻAncellotta’, ʻGarganega’ 
and ʻFiano’ varieties showed satisfactory levels of TSS 
(i.e., above 18 °Brix), for the production of quality wines. 
In contrast, the TSS values of ʻLambrusco’, ‘Nero d’Avola’ 
and ‘Negroamaro’ at harvest were below 18 °Brix, thus likely 
compromising the quality of the wines to be produced from 
these three cultivars.

In the same study, ‘Nero d’Avola’ and ‘Negroamaro’ cultivars 
originating from Sicily and Apulia respectively in Southern 
Italy, had difficulties in developing their berry components, 
like sugars and acidity, during ripening; this may be due to 
the annual air temperature being lower than in their region 
of origin. Meanwhile, the ‘Ancellotta’ cultivar, originating 
from Central Italy with similar thermal conditions to Água 
Doce, stood out for its good qualitative indices and high 
adaptability to the local area.

Bolivian viticulture is mostly carried out at altitudes of 
between 1660 and 2360 m a.s.l, and ʻTannatʼ grapes as well 
as Mediterranean cultivars (e.g., ʻGrenacheʼ, ʻCarignanʼ, 
ʻTempranilloʼ and ʻSangioveseʼ) have been shown to adapt 
well to the subtropical conditions of the Central Valley of 
Tarija, Bolivia. However, other cultivars (e.g., ʻCabernet-
Sauvignonʼ, ʻMerlotʼ, ʻPinot Noirʼ, ʻChardonnayʼ, ʻSyrahʼ 
and ʻMalbecʼ) are not well-adapted due to their need for 
very cold winter conditions. Therefore, understanding 
the differences in chilling needs could help grapevine 
breeders and growers adapt to the expected climate change  
(Gutiérrez-Gamboa et al., 2021).

3.2 Altitude effect on phenolic and aroma compounds in 
grapes and wine

3.2.1. Effect of air temperature
High altitude and the related lower air temperature have an 
influence on the ripening and polyphenolic composition of 
grapes (Xing et al., 2016). Coklar (2017) found that under 
the effect of low temperatures in high elevation vineyards, 
the total monomeric anthocyanin content in ̒ Ekşikaraʼ whole 
berries and skins was significantly higher than that at lower 
altitude. The author also found that tannin levels in grape 
seed and skin for the high site were significantly higher than 
those at the low site. Moreover, higher total phenolic content 
in whole berries, skins and seeds were obtained for the high 
site. 

The high-altitude regions and their associated climatic 
conditions seem to be favourable for the production of 
certain types of phenolic compounds, whereas the climatic 
conditions in low-altitude regions appear to be favourable for 
the production of other types. Higher levels of anthocyanins 
monoglucosides and trihydroxylated flavonols in skins of 
ʻCabernet-Sauvignonʼ, ʻCarmenereʼ, ʻSyrahʼ and ʻMerlotʼ 
were generated in the western regions in China (up to 

1214 m a.s.l.) characterised by large day- and night-time 
temperature differences. However, the grapes from the 
lower altitude eastern regions near the sea characterised 
by higher daily minimum temperatures and small day- 
and night-time temperature differences, had a higher 
proportion of acylated anthocyanins and dihydroxylated 
flavonols (Liang  et  al.,  2014). Furthermore, Coklar (2017) 
reported that with decreasing altitude, the relative amount 
of malvidin-3-O-glucoside in both skin and whole berry of 
ʻEkşikaraʼ grapes  increased, whereas that of petunidin-3-O-
glucoside, cyanidin-3-O-glucoside, peonidin-3-O-glucoside 
and acylated anthocyanins in whole berry decreased. This 
study, however, did not decouple the effect of temperature 
from UV radiation.

In another study performed by Barreto de Oliveira et al. (2019), 
the difference in altitude had a significant impact on ʻSyrahʼ 
grapes. The concentrations of total phenols (1,440 mg/ kg 
fresh fruit), non-flavonoids (200 mg/kg), flavonoids  
(1,240 mg/kg) and total anthocyanins (890 mg/ kg) at the site 
at 1100 m a.s.l. were significantly greater than those at the 
site at 350 m altitude (450, 130, 320 and 350 mg/ kg fresh 
fruit respectively). This result could be explained by the fact 
that the high-altitude region is characterised by large day- and 
night-time differences in temperature and by the fact that the 
maximum temperatures during the productive cycle stayed 
below 30 °C, thus favouring the accumulation and preservation 
of phenolic compounds during the grape ripening period. 
The grape skins at the high site contained higher levels of 
total condensed tannins, including monomeric, oligomeric, 
and polymeric 3-flavanol, whereas the grape seeds contained 
higher levels of the same compounds at the low site. On 
the other hand, the concentrations of trans-resveratrol in 
the first and the second year of the study were 5.71 and  
8.17 mg/Kg fresh fruit respectively at the low site and 4.11 and  
4.72 mg/Kg fresh fruit respectively at the high site. The 
synthesis of stilbenes is induced by environmental stresses; 
therefore, the maximum daily temperatures that exceeded 
30 °C during berry growth and ripening in the low-altitude 
area may have stressed the vines, resulting in higher 
resveratrol levels.

ʻCabernet-Sauvignonʼ wines made from grapes grown at 
different altitudes (774, 960, 1350 and 1160-1415 m a.s.l.) 
were studied by Falcão et al. (2007) in Santa Catarina State, 
Brazil. Altitude did not affect the concentrations of α- and 
β-ionone and β –damascenone in the produced wines. 
However, in both winter and summer, the highest levels of 
2-methoxy-3-isobutylpyrazine (MIBP) were found in wines 
of the highest site (1415 m a.s.l.), where the temperature was 
lower in comparison to the other studied sites. Consequently, 
these wines were correlated with a “bell pepper” aroma, 
whereas wines from the lowest altitude (774 m a.s.l.) were 
correlated with a “red fruits” aroma. Grape MIBP content 
is closely linked to viticulture parameters, like the growing 
temperature (Allen et al., 1994); in a previous study, lower 
temperatures during the period preceding véraison had a 
greater impact on the MIBP content than after the grapes had 
matured (Lacey et al., 1991). 
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However, in some winegrowing regions and depending on the 
geographic location of the vineyards, it is possible for a higher 
altitude cultivation site to have warmer conditions that affect 
the sensory attributes of the produced wines; for instance, 
in a study performed by Alessandrini et al. (2017), the high 
site (380 m a.s.l.) was warmer than the low one (200 m.a.s.l.) 
due to its higher heat accumulation degrees favouring the 
accumulation and preservation of the aroma compounds and 
enhanced the elegance and the floral aroma of the produced 
wine. The levels of volatiles were most likely temperature-
dependent rather than altitude-dependent. The minimum air 
temperatures at the low site were approximately 2 ˚C lower 
than those at the high site and were thus considered to be 
the main limiting factor for the biosynthesis of the aroma 
compounds at the lower altitude. 

Rotundone is described by Ferreira (2012) as being an 
important  wine aroma-impacting compound, and the 
anecdotal evidence that rotundone was more common in 
ʻShirazʼ wines from cool climate locations was corroborated 
in an Australian red wine survey (Black  et  al.,  2015). 
Geffroy  et  al.  (2016) evaluated the variability of its 
concentrations in ʻGamay Nʼ wines in four French wine-
growing areas. The results showed that Auvergne - the 
coolest vineyard over the whole wine-growing season and 
ripening period - had the highest rotundone concentrations 
and the most intense peppery notes. Peppery aroma scores 
and the concentration of rotundone in wine were shown to be 
significantly correlated. However, the effects of temperature 
and vine water status were not totally differentiated in this 
study: the vineyard with the highest rotundone content was 
also the wettest during the véraison-harvest period.

In cooler vintages and vineyards, higher levels of 
rotundone are expected to accumulate in ʻVespolinaʼ grapes 
(Caputi et al., 2011). The highest levels of rotundone were 
obtained in ʻShirazʼ berries from vines exposed to cooler 
temperatures, showing a within-vineyard variation and that 
the topography of the vineyard, particularly the aspect, was 
the most important factor in the formation of rotundone 
(Scarlett  et  al.,  2014). In another study, rotundone was 
typically present at the top and in shaded areas of bunches 
of ʻShirazʼ grapes, which correlates with lower grape surface 
temperatures, and its concentration was negatively affected 
by fruit temperatures above 25 °C (Zhang  et  al.,  2015a). 
Furthermore, a study on fifteen vintages of ʻShirazʼ wine 
produced from the same vineyard block at the same winery 
showed that wines from cooler seasons tend to contain higher 
levels of rotundone (Zhang et al., 2015b). Water abundance 
was another influential factor in this study, since a higher 
amount of rotundone was detected in wetter vintages.

3.2.2. Effect of UV radiation
The increase in UV radiation noted at higher altitudes 
promotes the synthesis of skin anthocyanins; this can explain 
why wines produced from high-altitude regions have a 
higher colour intensity (Jin et al., 2017). At higher altitudes, 
the increase in UV-B radiation can reach 8  % per decade 
leading to the enhancement of colour, flavonol and tannin 

synthesis in red grapes on the one hand (van Leeuwen and  
Darriet, 2016), and to higher concentrations of  
1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) - which can 
give the wine an intense and sometimes unpleasant smell of 
hydrocarbons - on the other.

UV-B up-regulates the biosynthesis of anthocyanin 
in grapevines, counteracting the negative effects of 
increasing atmospheric carbon dioxide and increased 
temperature on anthocyanin content in berries  
(Gutiérrez-Gamboa  et  al.,  2021). Exposure to UV-B has 
been found to slow down berry growth and increase the 
biosynthesis of anthocyanins and flavonols (Martínez-
Lüscher et al., 2016).  It also leads to an increase in levels of both 
total bound glycosidic secondary metabolites and phenolics 
(Keller and Torres-Martinez, 2004; Lafontaine et al., 2005), 
and in the synthesis of anthocyanins in grape skins 
(Berli et al., 2008; Carbonell-Bejerano et al., 2014). 

In Bolivia and Argentina, some wines produced from 
vineyards located higher than 1500  m a.s.l. were found to 
have higher total antioxidant capacity and phenolic content 
(including resveratrol) than wines produced from vineyards 
located at a lower altitude (Osorio-Macías et al., 2018). UV-B 
radiation activates the phenylpropanoid biosynthesis pathway, 
resulting in phenolic-based resistance against Botrytis cinerea 
that causes grey mould or botrytis bunch rot in grapes (Elmer 
and Reglinski, 2006; Gutiérrez-Gamboa  et  al.,  2021). Plant 
responses to heat stress at high altitudes may be regulated 
by abscisic acid and salicylic acid (Larkindale and  
Huang, 2005). Abscisic acid plays a role in the response 
of grape leaf tissues to UV-B radiation by augmenting the 
synthesis of UV-absorbing compounds, antioxidant enzymes 
and membrane sterols (Gutiérrez-Gamboa  et  al.,  2021). 
Salicylic acid might be synthesised by the grapes as a defense 
response to stress conditions, such as UV radiation that 
increases with increasing altitude; Jin et al. (2017) found that 
its amount increased dramatically with altitude in the wines 
produced from ʻMerlotʼ and ʻCabernet-Sauvignonʼ. 

The phenolic content of ʻCarignanʼ grapes grown in two 
different locations, referred to as early and late ripeness 
parcels corresponding to a higher (370 m a.s.l.) and lower 
(305 m a.s.l.) altitude respectively, was studied by Edo-
Roca  et  al.  (2013). The total leaf area (TLA) in the early 
(warm) parcel (3.4 m2/vine) was smaller than the TLA in the 
late (moderate) parcel (4.8 m2/vine). As a result, the grapes 
in the warm parcel were more exposed to solar radiation and 
synthesised larger amounts of anthocyanins. Furthermore, 
flavonol compounds can serve as natural sunscreen for 
grapes; their synthesis is induced by light and their levels 
are positively related to radiation. Karaoğlan  et  al.  (2015) 
showed that the highest amount of quercetin-3-O-glycoside 
(5.16 mg/L) was obtained for the ʻMuscat of Bornovaʼ wine 
from the site at the highest altitude and with the highest 
solar radiation (587,465 W/m2). Furthermore, the amounts 
of quercetin-3-O-glycoside found in 2.22 and 3.88 mg/L of 
lower altitude wines correlated with solar radiation values of 
542,875 and 553,782 W/m2 respectively).
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Plants accumulate large quantities of various types of 
compatible solutes and important osmoprotectants (e.g., 
proteins, proline and carbohydrates) in response to 
diverse stresses, caused by, for instance, low temperature 
and UV radiation. These osmoprotectants protect plants 
from stressing conditions  by adjusting cellular osmosis, 
protecting membrane integrity and contributing to the 
detoxification of reactive oxygen species and the stabilisation 
of proteins/enzymes activities (Hayat et al., 2012). Indeed, 
Berli et al. (2013) showed that the application of a high solar 
UV-B treatment under field conditions to ʻMalbecʼ grapevine 
leaves in a high-altitude vineyard (1450 m a.s.l.) in Argentina 
augmented the levels of photoprotective pigments and 
proline, thereby increasing the antioxidant capacity of leaves.

3.2.3. The combined effect of soil and vine water status 
In many studies, the effect of soil and vine water status 
cannot be clearly distinguished from the altitude factor. 
Vines with limited access to water in a vineyard cultivated 
with ʻCarignanʼ grapes at a higher altitude and characterised 
by a shallow stony soil produced smaller berries with higher 
anthocyanin content compared to another vineyard at a lower 
altitude with a deeper soil (Edo-Roca et al., 2013).

Soil and water availability affect the branch points of the 
biosynthetic pathway of flavonoids in grape berries, which 
are regulated by a number of enzymes (Li  et  al.,  2011): 
Flavonoid 3’-hydroxylase (F3’H) and flavonoid 3’, 
5’-hydroxylase (F3’5’H) convert dihydrokamepferol into 
dihydroquercetin and dihydromyricetin, in addition to their 
derivatives, respectively. Cyanidin-derived anthocyanins 
and delphinidin-derived anthocyanins are synthesised 
from dihydroquercetin in the F3’H branch pathway and 
dihydromyricetin in the F3’5’H branch pathway respectively 
in the downstream pathways of both branches. Li et al. (2011) 
found that the regional ʻCabernet-Sauvignonʼ wines from 
vines at an altitude of 1900-3500 m a.s.l. in China contained 
the greatest levels of both quercetin derivatives and cyanidin-
derived anthocyanins, while the regional wines from vines at 
an altitude of 214 m a.s.l. contained the second highest level 
of myricetin derivatives and the highest levels of delphinidin-
derived anthocyanins. The authors related this result to 
different factors, such as soil and water availability, which 
might have promoted the directional flow of carbon into 
the myricetin synthetic branch or to the quercetin synthetic 
branch. The region at the highest altitude is characterised by 
a brown sandstone soil and a specific water retention curve 
(the relationship between soil water content and soil water 
pressure head). This could incite the flow of more carbon to 
the F3’H branch pathway, leading to higher concentrations 
of quercetin derivatives and cyanidin-derived anthocyanins 
in the grapes and in the resulting wines. The authors did not 
exclude possible interference of other factors, like the cool-
warm climate existing in the higher altitudes and the warm 
climate existing in the lower altitudes.

A study performed on wines from ʻMuscat of Bornovaʼ 
grapes grown in Turkey found that phenolic levels were the 
highest in wines of the Halilbeyli sub-region (115 m a.s.l.), 

followed by wines of the Menderes (90 m a.s.l.) and Kemaliye  
(245 m a.s.l.) sub-regions (Karaoğlan  et  al.,  2015). In 
particular, the concentrations of trans-caftaric and trans-
coutaric acids in the produced wines from the Kemaliye sub-
region (39 and 5.8 mg/L respectively) were lower than those 
of the Menderes sub-region (55 and 23.6 mg/L respectively) 
and the Halilbeyli sub-region (80 and 25.3 mg/L respectively). 
The lowest values obtained at Kemaliye may be related to the 
soil composition of this sub-region, which is characterised by 
having the highest percentage of lime, which affects water 
retention and drainage. 

3.2.4. The effect of other parameters
Many studies have shown that other factors, such as humidity, 
vintage and grapevine variety, are closely associated with 
temperature, UV radiation and vine water status. The lower 
humidity of the high cultivation sites (at approximately 
2900 m a.s.l.) in southwest China induced an increase in the 
production of cyaniding-type anthocyanins and quercetin-
type flavonols from the F3’H branch of the flavonoid 
biosynthetic pathway in ʻCabernet-Sauvignonʼ, when 
compared with sites at lower altitudes (2300 and 2150 m a.s.l.) 
(Xing et al., 2016). Another study on the effect of altitude 
on carotenoids of ʻTouriga Francaʼ and ʻTouriga Nacionalʼ 
grape varieties was conducted by Oliveira  et  al.  (2004) in 
the Douro Valley. The altitudes ranged from 85 and 145 to 
180 m a.s.l. for ʻTouriga Francaʼ and from 90 and 155 to 
210 m a.s.l. for ʻTouriga Nacionalʼ. High-elevation terraces 
with higher humidity levels promoted the accumulation of 
carotenoids, which degrade during the grape ripening period 
to form odour-active C13-norisoprenoids. 

Mateus  et  al.  (2001) showed that at the lower cultivation 
locations (100-150 m a.s.l.), humidity levels of 95-100 % 
during the night were not favourable for the biosynthesis 
of total anthocyanidin monoglucosides in the grape skins 
of ʻTouriga Nacionalʼ and ʻTouriga Francesaʼ compared 
to the higher sites (250-350 m a.s.l.). Nevertheless, higher 
concentrations of catechin monomers and low-molecular 
procyanidin oligomers in the grape skins of both varieties, 
as well as of total extractable proanthocyanidins in the skins 
of both cultivars and the seeds of ʻTouriga Nacionalʼ, and 
of low-molecular procyanidin oligomers in the ʻTouriga 
Nacionalʼ wine, were obtained at the lower altitudes. None 
of these studies, however, separated the effect of humidity 
from temperature.

The latitude effect was more pronounced than the altitude 
effect for ʻMalbecʼ wines produced by different regions in 
Argentina. The vineyards at latitudes of 31-33° produced 
the most desired sensory attributes in wine (e.g., floral, 
sweetness, cooked fruit and raisin) in contrast to regions 
outside these latitudes which exhibited sourness, bitterness 
and a strong herbal aroma (Goldner and Zamora, 2007). The 
levels and the composition of phenolics in grapes vary as 
a result of vine vigour and water inputs. The variability in 
microclimatic conditions of the grapevines may be caused 
by vine vigour heterogeneity (Asproudi et al., 2016). When 
compared to less vigorous vines, high vigour vines usually 
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have lower fruit exposure and a greater fruit MIBP content 
(Mendez-Costabel  et  al.,  2014); as a result of increasing 
water input from rainfall and irrigation, MIBP synthesis can 
increase (Mendez-Costabel et al., 2014). 

Vintage is one of the main factors to influence the 
concentrations of proanthocyanidins in grapes, in addition to 
the effect of air temperature, which varies between altitudes. 
Of the monomeric and the small oligomeric compounds 
in ʻSyrahʼ seeds, Barreto de Oliveira  et  al.  (2019) found 
higher levels of gallocatechin, epigallocatechin and B1, B2, 
B3 and B4 dimers at a higher altitude (1100 m a.s.l.) in the 
first year of their study, and high concentrations of catechin 
and B2 dimers esterified with gallic acid at a lower altitude  
(350 m a.s.l.) in the second year. Vintage was observed to 
have a higher effect than altitude for ̒ Chardonnayʼ and ̒ Pinot 
Noirʼ cultivated in Minas Gerais, Brazil (Regina et al., 2010); 
a greater number of sunny days in the growing season 
contributed to a greater accumulation of anthocyanins and 
phenolic compounds in the grapes.

The highest content of total phenols and flavonoids in 
ʻMoscatelʼ grape stems sampled form three different regions 
in northern Portugal at 120, 670 and 730 m a.s.l. were found 
in the lowest altitude region over two consecutive vintages 
(Gouvinhas  et  al.,  2020)  ; nevertheless, they increased 
significantly in the second year of the study, which was 
characterised by an atypical summer with a 3-day heat wave 
(temperatures above 40°C) near the beginning of the harvest. 
Under these stressful conditions, which scalded the grapes, 
the plants produced secondary metabolites as a defense 
mechanism. The obtained lower levels of total phenols and 
flavonoids in the high-altitude regions may be attributed to 
the absence of significant water or thermal stresses in these 
regions. However, higher biological capacities were induced 
by high precipitations and the climate, which has an Atlantic 
influence in the low-altitude regions.

The amount of polyphenols in ‘Ancellotta’, ‘Lambrusco’, 
ʻNegroamaro’, ‘Nero d’Avola’, ʻFiano’ and ‘Garganega’ 
cultivated at 1300 m a.s.l. was greater in the year which had 
a higher number of rainy days (Malinovski  et  al.,  2016). 
This result was correlated with the fact that fungal diseases 
are common in areas with high rainfall, inducing plants to 
produce phenolic compounds as a stress response. The 
intensity of this response was found to vary depending on 
the grape varieties, showing that different cultivars respond 
differently even when subject to the same stressful climatic 
conditions. 

The antimicrobial activity in ʻMoscatelʼ grape stems 
was shown by the multivariate analysis to be lower in 
the high-altitude regions (730 m a.s.l.) than in the lower 
altitude regions (120 m a.s.l.) (Gouvinhas  et  al.,  2020). 
This antimicrobial activity seemed to be more affected by 
the genetic characteristics of the grape stem varieties than 
by the climate conditions and altitude of the growing sites. 
Jiang  et  al.  (2013) concluded that the magnitude of the 
effect of environmental factors on the volatile compounds in 
Cabernet-Sauvignon and Merlot wines produced from four 

wine-growing regions in China (at 214, 450–600, 1036 and 
1100 m a.s.l.) may be related to the cultivar.

Different studies have shown that the effects of temperature 
and sunlight cannot be isolated from the effect of vine 
water status. In high-altitude areas in China (2282, 2435 
and 2608m a.s.l.), due a decrease in temperature and an 
increase in rainfall and sunlight hours, the quercetin, trans-
resveratrol and tannin content in ʻCabernet-Sauvignonʼ 
wines increased with increasing altitude (Jin  et  al.,  2017); 
however, no significant effect of altitude on the same 
parameters was found in ʻMerlotʼ wines. Overall, altitude 
followed by sunlight hours mostly affected the phenolic 
characteristics and antioxidant activity of tested red wines. 
Vine water status is a key determinant of terroir expression, 
which depends on climatic conditions, such as rainfall and 
evapotranspiration (van Leeuwen  et  al.,  2020). In a study 
conducted on ʻGrenacheʼ berries (Edo-Roca  et  al.,  2013), 
the effects of vine water status and temperature were not 
completely differentiated: levels of anthocyanins in grapes 
declined in the last ripening control in the warmest year of 
the study, in which dryness and high temperatures occurred 
during a 3-day heat wave (temperatures reaching an unusual 
40 °C) in the period before harvest.

CONCLUSION AND FUTURE PERSPECTIVE 

Altitude affects the chemical composition of grapes and 
wine to a large extent. Some studies have shown that an 
increase in altitude results in a delay in budburst, flowering 
and grape ripening, with elevated winegrowing regions 
being more adapted to climate change. Studies have shown 
that high-altitude cultivation favours higher acidity and 
aroma compound content in grapes, and higher anthocyanin, 
flavonol, total anthocyanidin monoglucoside and condensed 
tannin content in grape skins. Altitude has also been found to 
induce the accumulation of total phenolics, flavonoids and 
anthocyanins, as well as optimal wine sensory characteristics, 
such as elegance, bell pepper and floral aromas. However, 
other studies have found the highest phenolic content in 
grapes, the highest concentration of total aroma compounds 
and the highest bitterness and astringency in wine in a region 
between the highest and the lowest regions in altitude. 
Meanwhile, in other studies, higher condensed tannin and 
procyanidin compound contents in grape seeds, of flavonols, 
trans-resveratrol and 3-O-acetylglucoside anthocyanin 
contents in grape skins, and red fruits aroma and higher 
colour intensity of the produced wine were obtained at 
lower altitudes. Other factors that influence berry and wine 
composition, such as cultivar, vintage and the presence or 
absence of significant water or thermal stresses, emerged 
from these studies. As explored in this review, vineyard 
location (i.e., altitude, latitude, slope and orientation), plant 
material (i.e., variety, clones and rootstock), training system, 
soil type and solar radiation are all factors that influence 
grape and wine quality; it is very difficult to determine how 
each individual variable affects it, which is why some articles 
contain contradictory findings in the literature. 
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More studies on different cultivars in different terroirs are 
needed in order to increase our knowledge regarding the 
impacts of altitude on grape and wine quality in relation 
to climate and the development of phenolic and aromatic 
compounds during berry ripeness. Moreover, the recent 
interest in taking altitude into account in strategies for 
delaying grape ripening and ensuring that ripening occurs 
at lower temperatures is due to the role of this important 
viticultural parameter in reducing the negative effects of 
global warming. 
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