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Abstract

The rate of thrombosis and disseminated intravascular coagulation (DIC) has been increasing in
COVID-19 patients. Key features related to such condition include minimal or no risk of bleeding,
moderate thrombocytopenia, high plasma fibrinogen as well as complement components level in the
areas of thrombotic microangiopathy. The clinical picture is not typical for classic DIC. This review
systematizes the pathogenetic mechanisms of hypercoagulation in sepsis and its extreme forms in
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patients with COVID-19. The latter consist of the thrombosis-related immune mechanisms, the
complement activation, the macrophage activation syndrome, the formation of antiphospholipid
antibodies, the hyperferritinemia, and the dysregulation of the renin-angiotensin system. Taking into
consideration the pathogenetic mechanisms, the biomarkers had been identified related to the
prognosis of the disease development. Patients with pre-existing cardiovascular disease and other
risk factors, including obesity, diabetes, hypertension, and aging pose the peak risk of dying from
COVID-19. We also summarize new data on platelet and endothelial dysfunction,
immunothrombosis, and, as a result, thrombotic storm as essential components of COVID-19 severe
features.
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Pe3rome

Yucno coobiieHuit o TpoM003ax U JUCCEMHUHUPOBAHHOM BHYTpHcocyaucToM cBepThiBanuu (/IBC)
y nanueHtoB ¢ COVID-19 pacrer. KitoueBbie 0COOEHHOCTH COCTOSIHMSI BKJIFOYAIOT OTCYTCTBHE
pUCKa KPOBOTEYCHHUS, YMEPCHHYIO TPOMOOIIMTOIICHHIO, MOBBIIICHHBIM YpOBeHb (prOpHHOreHa B
ma3Me, a TakKe KOMIIOHEHTOB KOMILIEMEHTa B OO0JIACTSAX TPOMOOTHYECKOW MHKPOAHTHOMATHH.
Knunnyeckas xapTuHa He TunuyHa ans kinaccuueckoro JIBC-cunnpoma. B nanHom o630pe
CHUCTEMATU3UPOBAHBl MATOTEHETUYECKUE MEXaHU3Mbl (OPMHUPOBAHUS THUIEPKOATYJISIUN TPU
cercuce, a Takxke mpu ero kpaHux ¢opmax y mamueHtoB ¢ COVID-19. K wum otHOCSATCS
MMMYHHBIE MEXaHHU3Mbl TPOMOO3a, aKTHBAIMS KOMIUIEMEHTAa, CHHJIPOM aKTHBAIlMM Makpogaros,
dbopmupoBanue aHTUGOCHOMUMUIHBIX AHTHUTEN, TUNEPHEPPUTUHEMHUS, AUCPETYISIIUS PEHUH-
AQHTUOTCH3UHOBOM CHUCTEMBI W Jp. YUMUTHIBas TNATOTEHETUYECKUE MEXAHHW3MBbI, BBIJICICHBI H
OMOMapKepbl, OTpa)karollue MIPOrHO3 pa3BUTHs 3aboseBaHus. [[allMeHTHI ¢ yKe CyIIECTBYIOIIUMU
CepJICYHO-COCYIUCTRIMUA 3a00€BaHUSIMH KM JPYTUMH (aKTOpaMU pPHCKa, BKJIIOYas OXXUPEHUE,
caxapHblii TuabeT, TUIEPTOHUYECKYI0 0OJe3Hb U TOXKUIIONW BO3PACT, MOJABEPraroTcs HanbOobIeit
omacHoctu cmeptu oT COVID-19. B aToM 0630pe Mbl 00600111a6M HOBBIE JJaHHBIE, YKa3bIBAIOIINE HA
TUCQYHKIMIO TPOMOOLIMTOB M SHAOTENHS, UMMYHOTPOMOO3 M KakK pe3ysibTaT — TPOMOOTHYECKUM
HITOPM, KaK Ha BakHbIe KOMIIOHEHTHI atonoruu COVID-19

KuroueBble ciioBa: TpoMmOoTnueckuid mropm, TpomOopocnanenue, COVID-19, mUTOKMHOBBIMA
HITOPM, BHEKJIETOUHBIE JTOBYLIKU Heiitpodpunos, NETS, sngorennonatus
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Highlights OcHOBHbIE MOMEHTBI
What is already known about this subject? Yro yxe u3BecTHO 00 3TOM Teme?
The number of reports on thrombotic complications | KomuuectBo  cooOmneHuit 0  TpOMOOTHUECKUX
and disseminated intravascular coagulation (DIC) in | ocnoxHeHUsIX u JUCCEMHUHUPOBAaHHOM
severe patients with COVID-19 has been increasing. | Buytpucocyaucrom cBeptbiBanuu (JIBC) y Tsbkenbix
nanueHToB ¢ COVID-19 pacrer.
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This condition is usually featured by no risk of
bleeding, moderate thrombocytopenia, increased
plasma fibrinogen and complement components
levels. The clinical picture is not typical for the
classic DIC syndrome.

K 0coOeHHOCTSIM COCTOSIHUSI CIIEyeT OTHECTH, KaK
NpaBWJIO, OTCYTCTBHE  pHCKa  KPOBOTEUCHHUS,
YMEPEHHYI)  TPOMOOITUTONICHHUIO,  TOBBIIICHHBIN
ypoBeHb (UOpPHMHOTEHa B IUIa3Me, a TaKKe
KOMITOHCHTOB KoMIIeMeHTa. KiimHuveckas kapTuHa
HE THIUYHA U1 Kiaccuaeckoro JIBC-cunapoma.

What are the new findings?

Y10 HOBOTrO aeT CTAThsA?

The review systematizes the pathogenetic links in the
development of hypercoagulability upon severe
disease in patients with COVID-19.

0O030p cUCTeMAaTU3UPYET MATOTCHETUYCCKUE 3BEHBS
Pa3BUTHS THUIEPKOATYJISIUNA TPH THKETIOM TECUCHHU
3aboseBanus y narpentos ¢ COVID-19.

The review summarizes new data indicating platelet
and endothelial dysfunction, immunothrombosis and,
as a result, thrombotic storm, as important
components of the pathology of COVID-19.

B 0030pe 000011eHbI HOBBIE NaHHbIE, YKA3bIBAIOLIHE

Ha JUC)YHKIHMIO TpPOMOOUMTOB W  SHAOTEIHS,
UMMYHOTPOMO03 u KaK pe3ynbTaT -
TpoMOOTHYECKHH  IITOPM, Kak Ha  BayKHbIC

koMnoHeHTs! narojiornu COVID-19,

How might it impact on clinical practice in the
foreseeable future?

Kak 3T0 MOXeT MOBJIUATH HA KIMHHYECKYIO
MPAKTUKY B 0003prMoM Oymymiem?

Analysis of the pathogenetic mechanisms of the
severe COVID-19 course, the identification of
specific markers and predisposing factors give a
momentum to new understanding of the disease and

I'myOokuii aHAN3 MAaTOTCHETHUYSCKUX MEXaHU3MOB
pasButus TspKesoro Teuenuss COVID-19, BeisrieHus
crenu(pUIecKuX MapKepoB U MPeapacroararolqux
(GakTOpOB JaeT TOMYOK K HOBOMY TOHHUMAaHUIO

development of effective therapeutic approaches. 3a0oneBaHus M pa3paboTke  APPEKTUBHBIX

TCPANICBTUYCCKUX ITOAXOI0B.

Introduction / Beenenue

Coronavirus infection is often accompanied by hypercoagulability, which
predetermines the risk of high mortality [1]. Various phenomena can explain
common micro-and macrovascular disorders in COVID-19, and new pathogenetic
mechanisms are currently being evaluated.

Macro- and micro thrombosis in patients with COVID-19 develop more often
in organs such as the lungs, spleen, brain, stomach, and peripheral vessels [2-5].
Moreover, thrombosis develops both in the acute phase of the disease and is delayed
several weeks after the first symptoms. Pulmonary embolism and deep vein
thrombosis are the most frequent thrombotic complications in COVID-19, observed
in severe cases with a frequency of 20-30 % [6]. In a Dutch cohort study of 184
COVID-19 patients in intensive care unit (ICU), the cumulative incidence of large
vessel thrombotic events was 49 %, the majority of which were pulmonary embolism
confirmed by computer tomography in segmental and subsegmental pulmonary
arteries [5].

Thrombosis occurs despite the standard thromboprophylaxis suggested in

these patients and performed with nadroparin at a 2800 or 5700 IU dose once or twice




a day. The risk of death from all causes in this cohort was 5 times higher among
patients with thrombotic complications. An Italian cohort of 388 patients had a lower
but still significant cumulative rate of thromboembolic events — 21 % (27.6 % in the
ICU, 6.6 % in the general ward), half of whom were diagnosed within the 24 hours
after admission to the hospital [7]. In a French cohort, a similar cumulative incidence
of thrombotic events was observed. This rate was compared with the incidence of
thrombosis in two different retrospective control groups: (a) non-COVID-19
resuscitation patients admitted to the same unit in winter 2019, and (b) influenza
patients admitted to the same ICU in 2019 [8]. Among patients with COVID-19 in
the ICU, 20.6 % showed signs of pulmonary embolism (on average 6 days after
admission to the ICU), which was more than 2 times higher than in any of the control
groups. Thus, COVID-19 is a prothrombotic infectious disease among other severe
viral respiratory pneumonias.

Common pulmonary microthrombosis contributes to the unique course of
acute COVID-19. One study compared lung autopsy samples from seven patients
who died from COVID-19 with seven patients who died from acute respiratory
distress syndrome (ARDS) after HIN1 influenza [9]. In patients with COVID-19,
microthrombi in the alveolar capillaries were nine times more common than in
patients with influenza (p < 0.001), which corresponds to the increased incidence of
thrombosis observed clinically in COVID-19 compared with other viral pneumonias.
Severe endothelial damage and the presence of intracellular viral particles have also
been noted in COVID-19 patients in areas associated with microthrombosis,
suggesting that the endothelial damage and the inflammation may directly underlie
thrombogenesis. Acute dysfunction of the right ventricle and cor pulmonale in
COVID-19 is caused by an abundance of central or segmental pulmonary emboli or
by the severity of microthrombosis in small lung vessels. This situation is aggravated
by hypoxic vasoconstriction and increased intrathoracic pressure due to mechanical
ventilation. This causes a sudden increase in the right ventricular afterload, which can
even cause the rupture of the right ventricle and pulmonary artery. In a study

involving 120 patients with COVID-19, mortality was directly related to longitudinal



right ventricular deformity and right ventricular dilatation [10]. PE and right
ventricular tension can significantly contribute to increased troponin levels, the
development of cardiogenic shock, and sudden death, which has been observed in
patients with COVID-19 [11, 12].

Many patients with COVID-19 have been diagnosed with acute ischemic
stroke, including young patients under 50 without significant previously identified
risk factors [13]. According to a number of studies, the incidence of stroke in patients
in the ICU was approximately 2.5 % [5, 7]. It has also been reported about mesenteric
thrombosis, obstruction of peripheral arteries, obliterating arteriosclerosis of large
vessels [3, 14-16], and thrombosis of the cerebral venous sinus [17]. Acroischemia
(so called COVID toes) associated with microvascular thrombosis of the extremities
[18, 19] has been also described in patients with COVID-19; as such,t his
phenomenon may develop due to inflammatory microvascular injury without
microthrombosis (Fig. 1) [20].



Figure 1. Thrombotic storm in COVID-19 [drawed by authors].

Note: NETs — extracellular neutrophil traps; APS — antiphospholipid syndrome; MAS -
macrophage activation syndrome; RAS — rennin-angiotensin system.

Pucynok 1. Tpom6oTuueckuii mropm nipu COVID-19 [pucyHok aBTOpOB].

IIpumeuanue: NETS — BHewsierounble noBymku HeWtpodunon; APS — anTHOC)OIUIHIHBIHN

cunapom; MAS — cunnpom aktuBauuu Makpodaron; RAS — peHuH-aHTHOTEH3UHOBAas CUCTEMA.

Potential pathogenetic mechanisms of thrombosis in COVID-19/
Bo3Mo:kHbIe MaTOreHeTHYECKHE MeXaHu3Mbl TpoM6o3a nmpu COVID-

19

Disseminated intravascular coagulation / IBC-cuaapom
Disseminated intravascular coagulation (DIC) activates the coagulation

cascade with the deposition of multiple platelet-fibrin thrombi in the



microcirculation, which ultimately leads to the consumption of platelets and
coagulation factors as well as bleeding concomitant with hypocoagulation [21]. The
underlying disease can aggravate hypercoagulation in DIC, including hypoxia,
dehydration, and relative hypodynamia. In severe cases, DIC leads to microvascular
damage and subsequent organ dysfunction. The markers for DIC diagnosis are
considered as the increased concentrations of fibrin degradation products.
Hypocoagulation in DIC is a consequence of secondary activation of fibrinolysis,
which is not typical for other thrombotic microangiopathies (TMA), such as
thrombotic thrombocytopenic purpura (TTP) or catastrophic antiphospholipid
syndrome (CAPS) [22]. However, hypocoagulation in severe COVID-19 is extremely
rare.

However, laboratory monitoring shows differences between COVID-19
coagulation alterations and DIC [23, 24]. Initially, DIC was proposed as a pathogenic
mechanism due to the marked increase in the concentration of D-dimer and fibrin
degradation products (FDP). In COVID-19, these biomarkers are significantly
correlated with morbidity and mortality [1]. The concentration of D-dimer continues
to increase throughout the entire period of hospitalization in surviving patients [25].
This indicates a continuing procoagulant state, which correlates with the severity of
the disease. On the other hand, the increase in prothrombin time (PT) and activated
partial thromboplastin time (APTT) is insignificant, while the concentration of
fibrinogen and factor VIII are increased [26], which is more typical for the acute
phase of the systemic inflammatory response than for DIC disorder.
Thrombocytopenia is another feature of COVID-19 that is linearly related to the risk
of death, but the degree of thrombocytopenia seen in the late stages of COVID-19 is
less pronounced than that usually observed in DIC [27, 28].

Analysis of the procoagulant state in COVID-19 indicates that
hyperactivation of hemostasis, which reaches a peak within the first week after
admission to ICU, does not transform into secondary hyperfibrinolysis. In one study,
thromboelastometric hypercoagulation on ICU admission continued to increase until

day 5 and then slightly decreased by day 10 [29]. The fibrinogen concentration was



maximal upon admission (8.96 + 1.1 g/L), decreasing to 3.33 = 0.50 g/L by day 10.
Hyperfibrinogenemia can be a link in the acute phase of the inflammatory response
[30], or per se play a more complex role in the state of hypercoagulability in COVID-
19. One of the major drawbacks in this study was that measurements at day 10 could
only include survivors (n = 33 out of 40). It is not known whether the remaining 7
patients would have survived if they developed hyperfibrinolysis. The high mortality
rate in COVID-19 in the early stages might interfere with observing later fibrinolytic
forms of DIC.

Coagulopathy in COVID-19 differs from DIC and other TMA, including
CAPS, hemolytic uremic syndrome (HUS), atypical hemolytic uremic syndrome

(@HUS), and TTP.

Table 1. Differences between coagulopathy in COVID-19 and DIC, catastrophic antiphospholipid
syndrome (CAPS), thrombotic microangiopathies — hemolytic uremic syndrome (HUS) and atypical
hemolytic uremic syndrome (aHUS) and thrombotic thrombocytopenic purpura (TTP).

Taboauma 1. Otnuuus koarynomnatuu npu COVID-19 ot JIBC-cunmpoma, kKaTacTpodHUECKOro
aatudochomunuaroro cuaapoMa (KADC), TpoOMOOTHYECKUX MHUKPOAHTHOIATHH — T€MOJUTHKO-

ypemuueckoro cuaapoma (I'YC) m atunm4Horo remoiauTuko-ypemudeckoro cunapoma (al'vVC) u

TpoMOOTHYECKOH TpoMOoIuToneHnueckou mypmypsl (TTII).

Sign COVID- DIC CAPS HUS al'yYC TTP
[Ipu3nak 19 JABC- KA®C ryc aHUS TTH
CHH/IPOM

Multiple organ failure + + + + + +
l_lOJII/lOpl‘aHHaﬂ HEAOCTAaTOYHOCTb
Microthrombosis + + + + + +
MuKpOTpOMOO3bI
Bleedings + + + + + +/—
KpoBoreuenus
Trombocytopenia + +++ + ++ ++ +++
TpOM()OLlHT()I'[eHHH
Complement activation + - + + + +
AKTHBHL[I/IS KOMIIJIEMCHTA
Schizocytosis - + +/— + + +
[In301mTHI
Increased D-dimer concentration + + + + + +
IToBrwIIEHHE KOHOCHTpAINH Z[-Jmlepa
Circulating APA and LA +/— - + - - +
[Mupkynsauus ADA u BA
Fibrinogen concentration high low normal normal normal normal
Konnent panus (])[/I()DHHOI‘SH& BbICOKasA HU3Kas HOpMa HOpMa HOpMa HOpMa

Note: APA — antiphospholipid antibodies; LA — lupus anticoagulant.

IIpumeuanune: ADPA — antudochonunuaasie anTuTeNa; BA — BOTYaHOUHBI aHTHKOATyJISHT.




Cytokine storm / LIuTOKMHOBBII IITOPM

COVID-19-associated coagulopathy results from the host inflammatory
response to viral infection and activated immune responses. The activation of
hemostasis and fibrin deposition is an adaptive mechanism in the early stages of the
infectious process. However, ongoing inflammation can lead to a hyperinflammatory
response due to the cytokine storm and macrophage activation syndrome (MAS).
Cytokine storm is a self-amplifying process determined by the release of
proinflammatory cytokines, the main factor in developing of ARDS and multiple
organ dysfunction syndromes in several conditions [31-33]. MAS is a cascade of
proinflammatory reactions leading to a high incidence of thrombosis and death in
sepsis [34, 35]. However, the precise progression from initial COVID-19 infection to
an inflammatory response and hypercoagulable state is still unknown.

In admitted patients with COVID-19, blood concentrations of nonspecific
inflammatory biomarkers such as C-reactive protein, erythrocyte sedimentation rate,
ferritin, and several procoagulant factors such as von Willebrand factor (VWF) and
factor VIII are significantly increased [26]. In addition, the concentration of
proinflammatory cytokines is increasing: particularly tumor necrosis factor-alpha
(TNF-a) and interleukins (IL) — IL-2R, IL-6, IL-8, and IL-10 [36, 37]. Both TNF-a
and IL-6 are elevated more than in cases of bacterial sepsis or influenza [38]. There
was found a correlation between increased levels of IL-6 and increased fibrinogen in
intensive care patients [39]. The possible contribution of IL-6 to the development of
hypercoagulability is currently being investigated by using its antagonists,
tocilizumab, and sarilumab, in order to reduce the risk of thrombosis. Lupus
anticoagulant (LA) was detected in patients with COVID-19 (91 % of patients tested)
compared with the control group of patients with prolonged APTT without COVID-
19 (26 %) [40]. The clinical significance of LA detection is not yet clear, but it
increases the likelihood of antiphospholipid syndrome (APS) involvement in the
pathogenesis of thrombus inflammation in patients with COVID-109.

The pathogenetic mechanisms of immune-mediated thrombosis can be studied

Iin other severe infections. In SARS-CoV in vitro models, infected mononuclear cells



expressed high procoagulant activity, including fibrinogen, serine protease inhibitors
(serpins), tissue factor, and factors Il and X [41, 42]. The cells also expressed Toll-
like receptor (TRL) 9 and thromboxane synthase genes, which promote platelet
activation and aggregation, endothelial dysfunction, and vasoconstriction. These
processes may underlie the endothelial damage seen during the autopsy of COVID-19
patients with multiple organ dysfunction. In addition, the mechanisms of platelet
activation in COVID-19 were investigated in a proteomic analysis, which showed
reduced plasma platelet factor 4 (PF4) and increased beta-thromboglobulin levels
[43]. It is possible that COVID-19 is featured by combined procoagulant state
associated with procoagulant factors and platelet dysfunction.

In viral infection and sepsis, several parallel mechanisms contribute to the
procoagulant activity of the immune system including activation of tissue factor (TF),
the complement components C3a and Cb5a, and VWF [44, 45]. Viruses can activate
the external coagulation pathway mediated by TF and factor Vlla (FVIla). Usually,
TF/FVIla complexes are formed at the site of endothelial injury. However,
monocytes and macrophages can express TF under conditions of viral infection,
mainly due to the activity of TNF-a and nuclear factor kappa B (NF-xB) [44]. Thus,
elevated TNF-a concentration in COVID-19 may indicate tissue factor-mediated
thrombotic activity, even though TNF-a is a pleiotropic pro-inflammatory cytokine
with multiple potential prothrombotic side effects. TNF-a blockade has been used as
a therapy for sepsis in several studies, and meta-analyses of the data showed
improved mortality in all studies [46].

Complement activation / AKTHBauMsi KOMILIEMEHTA

Activated immune system plays an essential role in the antiviral immune
response triggered by type | interferons. Such activation renders TMA a link in the
pathogenesis of severe forms of COVID-19 [47]. Recent studies have shown that the
nucleocapsid protein of some viruses, including SARS-CoV-2, binds to the main
protease of the lectin complement pathway [48].

Activation of the complement cascade promotes the recruitment and

activation of leukocytes, elevated local release of pro-inflammatory cytokines IL-1,



IL-6, IL-8, and interferon-y, and subsequent damage to the endothelium. Suppression
of the complement system activation can improve the situation with hemostasis and
endothelial dysfunction, which has been shown in animal models of sepsis [45]. In
the lung tissue of patients with severe COVID-19 pneumonia and skin biopsies from
patients with COVID-19 and purpura, it was evidenced a catastrophic endothelial
damage accompanied by complement activation: C5b-9, C4d, and mannose
associated lectin-associated serine protease [49]. Anti-C5 therapy with eculizumab
has been considered for the treatment of COVID-19. In one open-label study, four
COVID-19 patients treated with eculizumab experienced a decrease in C-reactive
protein, and all patients successfully recovered from COVID-19 [50]. Further

placebo-controlled studies are needed to better assess such therapy.
Thrombocytopathy / TpomoonmuTonaTus

Platelets are short-lived small anucleate cells that perform only limited
functions; in particular, they are involved in the processes of hemostasis [51].
However, it has been proven that platelets are more complex cells with fundamental
mechanisms, including autophagy [52], programmed cell death [53] and rapid de
novo protein synthesis [54], etc. Platelets interact with other cells, including
circulating blood cells, endothelial cells, and other cells in the vascular wall, either
directly or through signaling mediators. Platelets can function as mediators bridging
the immune system (through interactions with leukocytes) and thrombosis (through
platelet activation and release of hemostatic and pro-inflammatory mediators) [55].
Thrombocytopathy is a hallmark of COVID-19 and includes thrombocytopenia,
hyperactivation of platelets, leading to hypercoagulability and dysfunction of the
immune response.

The incidence of thrombocytopenia in patients with severe COVID-19
(requiring mechanical ventilation or admission to an intensive care unit) reaches up to
35 % [56]. At the same time, there is a marked platelet hyperactivation [56].
Activated platelets express surface P-selectin and CD40L, interact with neutrophils,
and can release a-granules and complement component C3, as well as various
cytokines, including CC-chemokine ligand 2 (CCL2), CCL3, CCL7, IL-1B, IL -7, IL-



8, and hepatocyte growth factor [57, 58]. In vitro and in vivo studies have shown that
in response to viral infection, platelets release IL-1B on microparticles, which
increases endothelial permeability [59].

Another important factor in COVID-19 is the recruitment of neutrophils into
the vasculature [60]. The phenomenon of the binding of activated platelets to
neutrophils and the transfer of platelet-associated neutrophils along the endothelium,
known as “secondary uptake”, plays a decisive role in triggering immunothrombosis
[61]. The binding of activated platelets to neutrophils facilitates platelet migration
into the alveolar lumen and contributes to the formation of pulmonary edema, which,
in turn, can cause further platelet activation. It has been proven that neutrophil
extracellular traps (NETSs) contribute to the progression of thrombus inflammation in
patients with COVID-19.

Hypoxia, oxidative stress, and other factors affect the work of platelet
mitochondria, leading to platelet hyperactivation and apoptosis [62]. Recent studies
have shown that many of the comorbidities in COVID-19 patients (e. g., diabetes and
obesity) associated with oxidative stress can contribute to platelet hyperactivity and
apoptosis [63]. Thrombocytopenia can develop as a result of decreased production or
increased consumption of platelets. Currently, the three main mechanisms for decline
in platelet count have been identified — aging of platelets (loss of sialic acid),
apoptosis, and destruction of platelets by macrophages. Platelet consumption in a
growing thrombus or platelet apoptosis may account for the thrombocytopenia
observed in some COVID-19 patients. Alternatively, SARS-CoV-2-induced
production of autoantibodies against platelet surface antigens may cause increased
platelet destruction [64]. Antiphospholipid antibodies (APA) have been also found in
critically ill patients with COVID-19 [65]. Hypoxia in patients with COVID-19 can
directly or indirectly contribute to developing thrombocytopathy. The study by J.
Maquet et al. showed that 58 % of COVID-19 patients with thrombocytopenia at the
time of admission required oxygen support compared with 41 % of patients whose
platelet count was within the normal range [56]. TMA mediated by activated

complement system (components C3a and Cba), can also contribute to the



development of thrombocytopathy in COVID-19 [50]. All these processes promote
dysregulation of platelet function and predispose to the progression of thrombus
inflammation.

The virus can directly affect platelets, leading to increased apoptosis. Studies
have shown that SARS-CoV-2 results in altered platelet transcriptome [66] Whether
platelets express enough angiotensin-converting enzyme 2 (ACE2) on their surface
for SARS-CoV-2 entrance is not completely clear; other potential mechanisms of
SARS-CoV-2 penetration have been also identified independent of ACE2 receptors
[67]. Studies of influenza viral infection show that platelets have many receptors
necessary for viral penetration, and platelet infection leads to platelet apoptosis [68].
In addition, taking into consideration that platelets have the properties of innate
immune cells, viral penetration may occur as a part of a platelet-mediated antiviral
response to SARS-CoV-2. Platelet uptake and degradation of influenza and HIV
(human immunodeficiency virus) viruses, single-stranded RNA viruses, like SARS-
CoV-2, occur through the TLR-mediated endosomal pathway [55]. The penetration
of SARS-CoV-2 into platelets is probably associated with a similar mechanism
leading to platelet activation [55].

Platelet apoptosis is associated with the release of numerous proinflammatory
and procoagulant factors. Immune complexformation is another possible mechanism
for platelet hyperactivation and development of thrombocytopenia in COVID-19; this
mechanism may be similar to heparin-induced thrombocytopenia (HIT), which
involves formation of heparin—PF4-antibody complexes recognizing the FcyR
receptor on platelet surface and causing platelet activation and clearance [69]. SARS-
CoV-2 can form immune complexes with reactive antibodies in the host, as it is
observed in critically ill patients with influenza (H1N1) infection [70] binding
platelet FcyRIlla and inducing activation platelets [71]. Virus-induced platelet
activation can increase the number of platelet-leukocyte conjugates [72], potentially
causing NETosis. Interestingly, platelet PF4 deposits in the lungs were found at
autopsy of patients with COVID-19 and have been correlated with increased NETosis

and microthrombus formation [60].



Due to the high loss of platelets, the essential work of megakaryocytes
becomes of paramount importance. Autopsies revealed the abnormal distribution of
megakaryocytes and the formation of prothrombocytes in the tissues of patients with
COVID-19. Studies have shown that in COVID-19, megakaryocyte count increases,
whereas the lungs represent the site of platelet biogenesis with intravascular and
extravascular reservoirs of megakaryocytes [73]. The compensatory increase in
platelet production to maintain a normal level of peripheral platelet count in patients
with COVID-19 varies: some patients develop thrombocytopenia, while the others do
not (Fig. 2) [27].

Immune factors: NETS, ‘ Concomitant
chemokines, conditions: age,
autoantibodies, obesity, diabetes

complement factors mellitus

thrombocytopenia thrombus formation endotheliopathy inflammation

Figure 2. Thrombocytopathy in COVID-19 [drawed by authors].
Note: NETs — neutrophil extracellular traps.
Pucynok 2. Tpomoouuromnanus npu COVID-19 [pucyHok aBTOpOB].

IIpumeuanue: NETS — BHEKIIETOUHBIE JIOBYIITKH HEUTPODHUIIOB.

Endothelial dysfunction / {uchynkuus 3H10TE U
The endothelial functions are devoted to maintain the integrity of the vascular
wall, create a barrier, and prevent progression of inflammatory reactions by limiting

an interaction of inflammatory agents with immune cells and platelets [74].



Endotheliopathy, or endothelial dysfunction, is an important pathological feature of
COVID-19. Endothelial cell damage and apoptosis were found in autopsy samples
from patients with COVID-19 by using transmission electron microscopy [9, 75].
Endothelial damage plays an essential role in the stimulation of angiogenesis.
Autopsy of patients who died from COVID-19 revealed an active angiogenesis in the
lungs, which was detected more often than in case of influenza infection. Whether
endothelial dysfunction primarily results from direct infection of SARS-CoV-2 in
endothelial cells remains to be determined, but biomarkers of endothelial dysfunction
such as thrombomodulin, VWF, angiopoietin 2, and plasminogen activator inhibitor-1
(PAI-1) have been found to be elevated in COVID-19 patients compared with control
groups, and hadba prognostic value due to their association with severe course of the
disease [76, 77].

Endothelial dysfunction is a major factor in the pathophysiology of
thrombotic complications associated with COVID-19, including myocardial
infarction and stroke developing due to a combination of viral damage with the
endothelial response to inflammation, activation of immune responses, cytokine
production, and complement production [47, 49, 50].

Plasma analysis of 68 patients hospitalized with COVID-19 revealed
increased concentration of various circulating markers of endothelial damage, such as
VWEF, PAI-1, soluble thrombomodulin, angiopoietin 2, and follistatin [76, 77]. High
levels of VWF, PAI-1, and angiopoietin 2 were observed in ICU patients as well as
elevated levels of soluble thrombomodulin, PAI-1, angiopoietin 2, and follistatin in
hospitalized patients with COVID-19, which all correlated with mortality.

Age is the leading risk factor for death associated with COVID-19: 304.9
deaths per 1,000 cases were reported among patients aged > 85 years, compared with
0.3 deaths per 1,000 cases among patients aged 5-17 years. Age-related changes in
the endothelium can be one of the causes for severe complications of COVID-19
[78]. NADPH-oxidases and mitochondria generate reactive oxygen species (ROS),
and dysregulation of such pathways with age can lead to ROS accumulation [79]. In

the endothelial cells of the elderly subjects, elevated ROS levels reduce the



availability of nitric oxide (NO), which is a vasodilator and antiplatelet agent with
cardioprotective effects [80].

Another function of the vascular endothelium is to maintain a balance
between proinflammatory and anti-inflammatory factors. Chronic inflammation is
associated with age-related endothelial dysfunction, characterized by increased C-
reactive protein, proinflammatory cytokines, and adhesion molecules that recruit
immune cells, disrupt mitochondrial function as well as cellular energy metabolism
[79]. In addition, the intensity of endothelial cell apoptosis increases with age [81].
An age-related decrease in NO bioavailability along with increased mitochondrial
oxidative stress and chronic inflammation induces apoptosis of endothelial cells [81].

Neutrophil extracellular traps / BuekeTouHble JIOBYIIKU HEHTPOPUIOB

The development of endotheliopathy can be caused by the massive activation of
neutrophils during the cytokine storm with release of abundant NETs and
uncontrolled course of the thromboinflammation.

Neutrophils are attracted to the site of inflammation via several stages:
activation, adhesion, and extravasation occurring with involved selectins,
chemokines, including P-selectin, P-selectin glycoprotein ligand 1 (PSGL-1). P-
selectin is expressed on the surface of activated endothelial cells and platelets.
Integrin aLB2 and intercellular adhesion molecule 1 (ICAM-1) are also involved in
neutrophil adhesion [82].

NETSs are ectopic intracellular DNA with fixed granular material, necessary for
inactivation of infectious agents (fungi, viruses, and protozoa), limiting infection,
especially where phagocytosis not possible. Recently, the role of NETs has been
recognized as necessary not only in the pathogenesis of respiratory diseases.
Intracellular material is released during the activation of neutrophils called NETosis.
Previously, NETosis was thought to be a terminal event for neutrophils; however, it
has been shown that some neutrophils survive this process, becoming nuclear-free,
and continue to have a damaging effect on tissues. NETosis is not a single process

but a multitude of events resulting in the expulsion of the nuclear contents [83].



Suicidal, vital, and mitochondrial types of NETosis have already been described in
the literature [84].

NETS, produced in large quantities during COVID-19, contribute to alveolitis
development, damage to the endothelium, and trigger intravascular coagulation [85,
86]. Excessive activation of neutrophils with the production of NETs contributes to
acute damage to lung tissue, microthrombus formation, hemorrhage, and pulmonary
failure. Histones are protein components of NETs exerting cytotoxic activity.
Chromatin networks in the NETs destroy the alveolar-capillary barrier, leading to
epithelial damage, epithelial damage, blood vessel integrity, and hemorrhage [87].
Overproduction or impaired utilization of NETs leads to pathological
microthrombosis in sepsis [88]. Under the influence of endogenous and exogenous
DNases, degradation of NETs and massive release of histones bound to DNA occur,
manifested by thrombosis [89]. K. Martinod and D.D. Wagner have shown that both
arterial and venous thrombi contain neutrophils and NETs [90]; NETs are always
present in thrombi, especially at the organizational stage.

NETSs activate the procoagulant link, disrupt fibrinolysis and anticoagulant
function [88]. DNA in NETs triggers a coagulation cascade along the intrinsic
pathway because negatively charged surfaces increase the activation of factor XIl, the
initiator of this pathway [91]. DNA in NETs acts as a cofactor for thrombin-
dependent activation of factor Xl [92] and promotes the successful course of
reactions of the external pathway associated with TF [93]. During the endothelium
activation and its death [94], caused by the cytotoxic action of histones, H,O, is
released, which further stimulates NETosis [83]. Weibel-Palade bodies in the
endothelium undergo exocytosis and VWF, which binds to platelets and maintains
thrombosis. Histones activate platelets through TLR2 and TLR4 [95] and enhance
thrombin-dependent platelet activation [96]. Histone H4, by binding to prothrombin,
promotes its autoactivation [97]. Histones disrupt the antithrombin-dependent
inactivation of thrombin [98] and interfere with the interaction of thrombin-
thrombomodulin [99]. Histones in NETS trigger the pathways of activating protein C

(APC), an anticoagulant that can inhibit NETosis through protease-activated



receptors (PARSs) on neutrophils [100]. In particular, neutrophil oxidase and elastase
are capable of inactivating APC. Histones are able not only to activate hemostasis but
also to increase the stability of the thrombus. They enhance structural changes in
fibrin, making it more resistant to fibrinolysis. By activating soluble plasminogen,
histones suppress plasmin, acting as competitive substrates. The protection of fibrin
from the action of plasminogen is also enhanced by the covalent binding of histones
to fibrin, catalyzed by activated transglutaminase, coagulation factor Xllla. Through
non-covalent interactions, histone-associated lateral aggregation of fibrin protofibrils
occurs, leading to thickening of fibrin filaments followed by complications of
fibrinolysis processes. Plasmin is a broadly specific serine protease that binds to
arginine and lysine, implying that histones are candidates for plasmin targets.
Competing with fibrin, histones interfere with plasmin activity and fibrinolysis
triggered by tissue plasminogen activator (tPA). DNA increases the formation of
complexes between tPA and PAI-1 [101], reducing the intensity of plasmin synthesis
from plasminogen via tPA acting on the thrombus surface [98], binding proteins
responsible for fibrin degradation, and reducing their release by fibrin thrombi [102],
finally also penetrating fibrin filaments and blocking plasmin-mediated thrombolysis.
NETSs result in decreased ADAMTS-13 (a disintegrin and metalloproteinase with a
thrombospondin type 1 motif, member 13) activity. Both extracellular DNA and
histones in NETs can bind to VWF, leading to even greater recruitment of new
neutrophils to the focus, enhancing the pro-inflammatory effect. Plasma von
Willebrand glycoprotein ensures the delivery of platelets to the sites of damage to the
vascular wall and promotes their subsequent activation and aggregation [103]. Super-
large VWF multimers (UL-vWF) released from endothelial cells can spontaneously
activate circulating platelets and other blood cells, promoting thrombosis
development [104]. Metalloproteinase ADAMTS-13 specifically cleaves the
multimer at Tyr1605-Met1606 bond in the A2 domain, thereby regulating the size
and activity of vVWF multimers and preventing thrombus formation [105].



DISTURBANCES IN THE ANTI-COAGULANT SYSTEM
- endothelial damage

- decrease in the synthesis of glycosaminoglycans by the endothelium
- violation of antithrombin dependent inactivation of thrombin

- violation of thrombin-thrombomodulin interactions

- inactivation of ARS

- proteolysis of tissue factor pathway inhibitors

- associated with von Willebrand factor
- proteolytically cleave ADAMTS13

- proteolytically cleave the binding site of
ADAMTS13 on von Willebrand factor
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- 1 formation of tPA complexes with PAI-1
- 1 intensity of plasmin synthesis from plasminogen under tPA
- bind proteins responsible for the degradation of fibnin and reduce their
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- penetrate the fibnin filaments and block fibrnin-mediated lysis of the
thrombus
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Figure 3. NETs and thrombotic storm [drawed by authors].

Pucynoxk 3. NETS u TpomOGoTHueckuii MITOpM [pUCYHOK aBTOPOB].

Macrophage Activation Syndrome and Hyperferritinemia / Cuaapom
aKTHUBaUMM Makpo(daroB u runepeppuTUHEMHs

MAS can accompany the cytokine storm and hypercoagulable state seen in
COVID-19. MAS develops when activated antigen presenting cells cannot be lysed
by CD8 T cells or natural killer cells (NK cells) [35]. After the onset of the
inflammatory response, an increased level of IL-6 lowers the cytolytic function of
NK cells. As a result, a prolonged interaction between immune cells, which
intensifies cytokine storms, hemophagocytosis, and multiple organ dysfunction. Two
COVID-19 biomarkers could reflect the development of MAS. The first is IL-6, the
concentration of which rises to levels higher than in other viral diseases. The second
biomarker of MAS is ferritin, which concentration also increases during COVID-19.
In two comparative studies, 653 COVID-19 demonstrated plasma ferritin level that
was higher than 408 ng/ml (95 % CI = 311-505 ng/ml) in severe disease. Moreover,
ferritin levels were up to 760 ng/ml that was higher in survivors vs. non-survivors (95
% CIl = 561-959 ng/ml) [37]. Thus, the detection of elevated concentrations of MAS



biomarkers in severe COVID-19 points at potential involvement of MAS in pro-
inflammatory, prothrombotic conditions and the hyperferritinemia syndrome [106].

Hyperactivation of the renin-angiotensin system / I'unepakTuBanus
peHI/IH-aHFI/IOTeH3I/IHOBOﬁ CUCTEMBbI

Infection with SARS-CoV-2 occurs through the binding of the virus to ACE2,
similar to other SARS-CoViruses [107]. ACE2 is a membrane-bound protein in
various organs and tissues, including the lungs, small intestine, heart, brain, adipose
tissue, and endothelium [108]. It is especially abundant in the lungs, heart, arteries,
and veins [109]. Angiotensinogen is converted to angiotensin (Ang) | by renin, Ang |
is converted to Ang Il by ACE, and Ang Il promotes vasoconstriction and pro-
inflammatory and prothrombotic effects by acting on the angiotensin Il receptor type
| (AT1R) and angiotensin Il type IV receptor (AT4R) [110]. ACE2 reduces renin-
angiotensin system (RAS) activity vi atwo mechanisms: i) ACE2 degrades Ang | and
Ang Il, depleting the substrate available for AT1R activation via the classic RAS
cascade, ii) Ang Il is directly cleaved to Ang, a vasoactive peptide with vasodilating
and anti-inflammatory effects via the MAS receptor.

SARS-CoV-2 uses ACE2 to enter the cell after interaction with the serine
protease TMPRSS2, which activates the viral spike protein [67]. As a result, it is
possible that the pulmonary expression of membrane-bound ACE?2 is suppressed that
shifts the balance towards pro-inflammatory and prothrombotic effects mediated by
Ang Il and AT1R. This could potentially translate into increased local or circulating
Ang 1l to Ang ratio or the absolute Ang Il level. Y. Liu et al noted an increased
plasma concentration of Ang Il in patients with COVID-19 compared with the
control group [111].

Angiotensin Il has several pro-inflammatory and prothrombotic effects that
COVID-19 may exacerbate. Thrombosis in microcirculation has been demonstrated
in mouse models injected with Ang 1l [112]. Ang Il is involved in the pathogenesis of
endothelial dysfunction and oxidative stress [113]. AT1R activation by Ang II

enhances platelet activation and impairs fibrinolysis [114]. Ang Il also increases



tissue factor expression, which triggers the external coagulation pathway and PAI-1,
which is the primary endogenous inhibitor of tPA and urokinase [115].

The majority of ICU patients with COVID-19 have shown hypofibrinolysis
[116]. PAI-1, as the primary inhibitor of plasminogen activation along with increased
concentrations in COVID-19 leads to apparent alteration of fibrinolysis processes. An
increase in IL-6 levels is also associated with elevated PAI-1 [117]. Increased
expression of PAI-1 leads to increased pulmonary fibrosis mediated by transforming
growth factor-p [118]. PAI-1 is expressed in various tissues, including adipose tissue
[119], indicating a possible link between obesity and death in COVID-19, especially
in younger patients without other comorbidities.

Antiphospholipid antibodies / AuTtudocdoaunuanbie aHTHTEIA

Several studies in patients with COVID-19 have shown a high circulation of
APAs [120]. Laboratory confirmation of APS by measuring APA, LA, anticardiolipin
antibodies, and anti-B,-glycoprotein 1, often accompanies both arterial and venous
thrombosis. Clinical cases of three patients with COVID-19 and multiple cerebral
infarctions with concomitantly detected APA have been described [65]. A high rate
of detected APAs was noted in patients with COVID-19 and prolonged APTT [16,
121]. In another study, the percentage of patients who were positive for LA was
significantly higher among patients with COVID-19 than those without COVID-19
[122]. APAs interact with endothelium, platelets, and complement factors and
promote the development of thrombosis [123—-126]. APAs are often detected in viral
infections. Their presence may be temporary and do not always imply an increased
risk of thrombosis [127]. Applying anticoagulant therapy may be also coupled to
false-positive LA test [128].

Anti-thrombotic therapeutic strategies/ Crpareruu
NMPOTHBOTPOMOOTHYECKOM TepaNuu

Current recommendations indicate the need for thrombosis prophylaxis in all
hospitalized patients, unless contraindicated due to the high risk of bleeding.

Given the high risk of bleeding with fibrinolytic therapy, its use in severe
COVID-19 is not justified.



Conclusion / 3akaro4enue

Macro- and micro thrombosis often complicate the course of Covid-19,
significantly increasing mortality.

Several thrombogenic mechanisms can potentially be involved in thrombotic
features in COVID-19: cytokine storm, antiphospholipid syndrome, its catastrophic
variant, macrophage activation syndrome, massive NETosis, activation of the
complement system, dysregulated renin-angiotensin system, hypofibrinolysis,
thrombotic syndrome, microangiopathic syndrome, and intravascular coagulation.

A genetic predisposition to thrombosis can be a significant factor in the
increased risk of thrombotic complications, including death, in patients with COVID-
19.

Thrombophilia in these patients and poorly controlled inflammation
overactivate the blood coagulation system and can result in severe forms of COVID-
19 as the pathogenetic mechanism of thrombus inflammation and thrombotic storm

are implicated.
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