Wan-Wan Wang, Hai-Tao Zong\* and Wei-Na Wu

# Crystal structure of ethyl 5-formyl-3,4dimethylpyrrole-2-carboxylate-1-(propan-2ylidene)thiosemicarbazide (1/1), C<sub>14</sub>H<sub>22</sub>N<sub>4</sub>O<sub>3</sub>S



https://doi.org/10.1515/ncrs-2018-0015 Received January 8, 2018; accepted April 25, 2018; available online May 16, 2018

## Abstract

C<sub>13</sub>H<sub>17</sub>N<sub>3</sub>OS, triclinic,  $P\bar{1}$  (no. 2), a = 6.9906(9) Å, b = 8.0075(11) Å, c = 16.057(2) Å,  $\alpha = 81.822(2)^{\circ}$ ,  $\beta = 89.151(2)^{\circ}$ ,  $\gamma = 70.735(2)^{\circ}$ , V = 839.4(2) Å<sup>3</sup>, Z = 2,  $R_{\rm gt}(F) = 0.0444$ ,  $wR_{\rm ref}(F^2) = 0.1299$ , T = 296(2) K.

## CCDC no.: 1839491

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

# Source of material

Ethyl 5-formyl-2,4-dimethylpyrrole-3-carboxylate (0.390 g, 2 mmol) and thiosemicarbazide (0.091 g, 1 mmol) were dissolved in acetone (10 mL). The mixture was stirred for 1 h under refluxing. The resulting solution was left in air for a few days, yielding colorless block-shaped crystals.

Table 1: Data collection and handling.

| Crystal:                                                                   | Block, colorless                                   |
|----------------------------------------------------------------------------|----------------------------------------------------|
| Size:                                                                      | $0.20\times0.18\times0.16~\text{mm}$               |
| Wavelength:                                                                | Mo <i>Kα</i> radiation (0.71073 Å)                 |
| μ:                                                                         | 0.21 mm <sup>-1</sup>                              |
| Diffractometer, scan mode:                                                 | Bruker SMART, $arphi$ and $\omega$ -scans          |
| $\theta_{\max}$ , completeness:                                            | 25°, >99%                                          |
| N(hkl) <sub>measured</sub> , N(hkl) <sub>unique</sub> , R <sub>int</sub> : | 4412, 2938, 0.014                                  |
| Criterion for I <sub>obs</sub> , N(hkl) <sub>gt</sub> :                    | $I_{ m obs}$ $>$ 2 $\sigma$ ( $I_{ m obs}$ ), 2341 |
| N(param) <sub>refined</sub> :                                              | 204                                                |
| Programs:                                                                  | Bruker programs [1], SHELX [2]                     |
|                                                                            |                                                    |

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å<sup>2</sup>).

| Atom | X           | у           | z            | U <sub>iso</sub> */U <sub>eq</sub> |
|------|-------------|-------------|--------------|------------------------------------|
| S1   | 1.03937(12) | -0.06446(8) | -0.37095(4)  | 0.0675(3)                          |
| 01   | 0.7242(3)   | 0.4375(2)   | -0.17547(10) | 0.0720(6)                          |
| 02   | 0.6332(3)   | 0.72001(19) | -0.14989(9)  | 0.0554(4)                          |
| 03   | 1.0119(3)   | -0.0173(2)  | 0.11150(10)  | 0.0681(5)                          |
| N1   | 0.8341(3)   | 0.3153(2)   | -0.00592(10) | 0.0403(4)                          |
| H1   | 0.866051    | 0.228980    | -0.035393    | 0.048*                             |
| N2   | 0.8885(3)   | 0.2275(3)   | -0.29905(11) | 0.0597(6)                          |
| H2A  | 0.830903    | 0.341024    | -0.301183    | 0.072*                             |
| H2B  | 0.921847    | 0.160435    | -0.251145    | 0.072*                             |
| N3   | 0.8688(3)   | 0.2703(2)   | -0.44204(10) | 0.0473(5)                          |
| H3   | 0.889395    | 0.232314    | -0.489961    | 0.057*                             |
| N4   | 0.7759(3)   | 0.4510(2)   | -0.43706(11) | 0.0464(4)                          |
| C1   | 0.7474(3)   | 0.4913(2)   | -0.03652(12) | 0.0391(5)                          |
| C2   | 0.7177(3)   | 0.5904(3)   | 0.02966(12)  | 0.0410(5)                          |
| C3   | 0.7901(3)   | 0.4678(3)   | 0.10292(12)  | 0.0430(5)                          |
| C4   | 0.8624(3)   | 0.2976(3)   | 0.07912(12)  | 0.0417(5)                          |
| C5   | 0.7020(3)   | 0.5434(3)   | -0.12715(13) | 0.0458(5)                          |
| C6   | 0.5835(5)   | 0.7851(3)   | -0.23865(15) | 0.0695(8)                          |
| H6A  | 0.482558    | 0.739195    | -0.258090    | 0.083*                             |
| H6B  | 0.703533    | 0.746150    | -0.271503    | 0.083*                             |
| C7   | 0.5027(5)   | 0.9842(4)   | -0.24833(17) | 0.0790(9)                          |
| H7A  | 0.379470    | 1.021278    | -0.218333    | 0.119*                             |
| H7B  | 0.475701    | 1.031844    | -0.306908    | 0.119*                             |
| H7C  | 0.600834    | 1.027718    | -0.225975    | 0.119*                             |
| C8   | 0.6252(4)   | 0.7886(3)   | 0.02710(15)  | 0.0553(6)                          |
| H8A  | 0.729003    | 0.837939    | 0.037466     | 0.083*                             |
| H8B  | 0.525566    | 0.813641    | 0.069515     | 0.083*                             |
| H8C  | 0.561693    | 0.841346    | -0.027313    | 0.083*                             |
| C9   | 0.7889(4)   | 0.5149(3)   | 0.19010(14)  | 0.0607(7)                          |
| H9A  | 0.854398    | 0.408651    | 0.228885     | 0.091*                             |
|      |             |             |              |                                    |

3 Open Access. © 2018 Wan-Wan Wang et al., published by De Gruyter. CC BYANC-ND This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

<sup>\*</sup>Corresponding author: Hai-Tao Zong, School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, P.R. China, e-mail: haitaozong@163.com Wan-Wan Wang and Wei-Na Wu: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, P.R. China

Table 2 (continued)

| Atom | x         | у         | Z            | U <sub>iso</sub> */U <sub>eq</sub> |
|------|-----------|-----------|--------------|------------------------------------|
| H9B  | 0.651507  | 0.567555  | 0.205952     | 0.091*                             |
| H9C  | 0.860194  | 0.598555  | 0.191259     | 0.091*                             |
| C10  | 0.9512(4) | 0.1308(3) | 0.13234(13)  | 0.0540(6)                          |
| H10  | 0.963968  | 0.136369  | 0.189369     | 0.065*                             |
| C11  | 0.9257(3) | 0.1561(3) | -0.36944(12) | 0.0462(5)                          |
| C12  | 0.7206(3) | 0.5610(3) | -0.50505(13) | 0.0458(5)                          |
| C13  | 0.7457(4) | 0.5155(3) | -0.59216(14) | 0.0598(6)                          |
| H13A | 0.886266  | 0.453851  | -0.600452    | 0.090*                             |
| H13B | 0.699340  | 0.623267  | -0.631883    | 0.090*                             |
| H13C | 0.667730  | 0.440024  | -0.600338    | 0.090*                             |
| C14  | 0.6217(4) | 0.7537(3) | -0.49573(16) | 0.0602(6)                          |
| H14A | 0.607477  | 0.765180  | -0.437065    | 0.090*                             |
| H14B | 0.490327  | 0.798036  | -0.523586    | 0.090*                             |
| H14C | 0.703962  | 0.821470  | -0.520562    | 0.090*                             |
|      |           |           |              |                                    |

## **Experimental details**

The hydrogen atoms were placed at calculated positions and refined as riding atoms with isotropic displacement parameters.

### Discussion

Cocrystals are an important class of crystalline materials, which can enhance physicochemical properties of drugs such as solubility and bioavailability [3, 4]. Our previous work shows that the pyrrole moiety is an excellent hydrogen bond donor, and there exist different weak interactions in the crystals of its derivaties [5, 6]. As part of our ongoing studies, the title compound was synthesized and characterized by X-ray diffraction.

In the title structure, there are two independent and different molecules with the 1:1 ratio in the asymmetric unit, namely ethyl 5-formyl-3,4-dimethylpyrrole-2-carboxylate and 1-(propan-2-ylidene)thiosemicarbazide, respectively. As previously reported, two pyrrole aldehyde molecules are linked into a centrosymmetric dimer by pairs of intermolecular N– H···O hydrogen bonds, forming a  $R_2^2(10)$  ring motif [3, 4]. Similar dimer could be observed in the case of 1-(propan-2-ylidene)thiosemicarbazide with a  $R_2^2(8)$  ring motif. Dimers are connected alternately *via* classic intermolecular N–H···O hydrogen bonds, forming an one-dimensional chain along c axis. The structure is also stabilized by weak N–H···O and C–H···S interactions.

#### References

- 1. Bruker: APEX3, SAINT-Plus, XPREP. Bruker AXS Inc., Madison, WI, USA (2016).
- Sheldrick, G. M.: SHELXT Integrated space-group and crystal-structure determination. Acta Crystallogr. A71 (2015) 3–8.
- Thakuria, R.; Delori, A.; Jones, W.; Lipert, M. P.; Roy, L.; Rodríguez-Hornedo, N.: Pharmaceutical cocrystals and poorly soluble drugs. Inter. J. Pharm. 453 (2013) 101–125.
- Amombo Noa, F. M.; Jacobs, A.: Phenylacetic acidco-crystals with acridine, caffeine, isonicotinamide and nicotinamide: crystal structures, thermal analysis, FTIR spectroscopy and Hirshfeld surface analysis. J. Mol. Struct. **1139** (2017) 60–66.
- Wu, W.-N.; Li, X.-X.; Wang, Q.-F.; Li, Y.-W.: Ethyl 3,4-dimethyl-1H-pyrrole-2-carboxylate. Acta Crystallogr. E66 (2010) 02309.
- Wu, W.-N.; Yang, L.; Li, X.-X.; Qin, B.-F.; Wang, Q.-F.: Ethyl 3,4dimethyl-5-[(*E*)-(phenylimino)methyl]-1*H*-pyrrole-2-carboxylate. Acta Crystallogr. E66 (2010) 01655.