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Abstract: a. Background: Dengue is an acute illness caused by a virus. The complex behaviour of the virus
in human body can be captured using mathematical models. These models helps us to enhance our under-
standing on the dynamics of the virus.
b. Objectives: We propose to study the dynamics of within-host epidemic model of dengue infection which
incorporates both innate immune response and adaptive immune response (Cellular and Humoral). The pro-
posedmodel also incorporates the time delay for production of antibodies from B cells. We propose to under-
stand the dynamics of the this model using the dynamical systems approach by performing the stability and
sensitivity analysis.
c. Methods used: The basic reproduction number (R0) has been computed using the next generationmatrix
method. The standard stability analysis and sensitivity analysis were performed on the proposed model.
d. Results: The critical level of the antibody recruitment rate(q) was found to be responsible for the exis-
tence and stability of various steady states. The stability of endemic state was found to be dependent on time
delay(τ). The sensitivity analysis identi�ed the production rate of antibodies (q) to be highly sensitive param-
eter.
e. Conclusions: The existence and stability conditions for the equilibrium points have been obtained. The
threshold value of time delay (τ0) has been computed which is critical for change in stability of the endemic
state. Sensitivity analysis was performed to identify the crucial and sensitive parameters of the model.
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1 Introduction
Dengue is a mosquito-borne viral disease transmitted by female mosquitoes mainly of the species Aedes
aegypti and, to a lesser extent, Ae. albopictus. It is an acute illness of sudden onset that usually follows a
benign course with symptoms such as headache, fever, exhaustion, severe muscle and joint pain, swollen
lymph nodes (lymphadenopathy), and rash. Dengue virus has four serotypes denoted by DEN I, DEN II,
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DEN III and DEN IV. When a person is infected �rst time by a dengue virus, the immune system against the
dengue virus is activated. The infection of dengue virus for the second time by a di�erent serotype leads to
secondary infection.

Mathematical models play a crucial role in understanding and controlling the dengue virus. Many
vector-host models are developed to study the dengue virus at population level [2, 4, 9]. There are very
few works performed to understand the dengue viral dynamics in human body [10, 15]. But, not one of
the current models [6, 8, 12, 13] have considered the role of innate immune response in the defence to the
dengue viral attack until recently [5] introduced innate immune response and show that it can reproduce the
characteristic features of the primary infection.

Innate immune response is the �rst line of defense mechanism in the human body to �ght against any
invading pathogen. This is non-speci�c to invading pathogen. The innate immune system thus produces a
type I interferon(IFN), with main interferon’s being IFNα/β. The IFN produced induce resistance in infecting
the neighboring uninfected cells thus, limiting the quick spread of the virus [11, 14, 16]. Not only this, the IFN
has ability to active the natural killer cells(NK) during the primal stages of the infection, that have ability
to destroy infected cells [14, 3, 17]. In dengue, we can detect IFN generally in 24-48 hours after the infection
and correlating with the virus titer peak [1]. Thus, IFN produced can act as early indicator for the infection.
Dengue patients have also shown early activation of the NK cells [5, 7].

In the second stage of infection, the viral pathogen will be carried to the thymus to activate the adaptive
immune response which is more powerful andmore speci�c to the invading pathogen. The adaptive immune
system takes longer to respond but it provides a long term immunity against the virus [8, 12]. The adaptive
immune system consists of both cellular and humoral responses. In Cellular response, T-cells will clear the
virus and in humoral response, B-cells will mature into plasma cells and secrete antibodies that neutralises
the antigen-presenting viruses.

In this paper, a non-linear model is proposed which incorporates innate and adaptive (both cellular and
humoral) immune responses. The equilibrium points and the stability analysis is carried out. The time delay
has been considered during the process of antibody secretion and its further impact on stability of steady
states have been discussed. The paper is organized as follows: In section 2, the mathematical model has
been formulated. In section 3, model analysis has been performed. In section 4, the sensitivity analysis has
been performed. In section 5, discussion has been given.

2 Mathematical Model
The present model is an extension of the model in [10]. Let S, I and V be the number of healthy target
cells(monocytes,macrophages or dendritic cells etc), infected cells and dengue virions respectively. Tomodel
the innate immune response on dengue viral dynamics, let F denote the interferons (IFN) released by the in-
fected cells. Let Z be thenumber density of T immune cells due to adaptive immune response (cellular immune
response). The T cells activate B cells (humoral immune response) that again di�erentiate to plasma cells to
produce antibodies. Let B and A be the density of B cells and neutralizing antibodies respectively. Let τ be the
time delay in the production of antibodies from B cells. The antibodies bind the virions and neutralize them.
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The dynamics of S, I, V, Z, B, A, F are described in the following system of di�erential equations.
dS
dt = µ − dS − β1SV (1)
dI
dt = β1SV − d1I − ϕIF (2)
dV
dt = kI − d2V − p1AV (3)
dZ
dt = β2ZI − d3Z (4)
dB
dt = η + c1BZ − d4B (5)
dA
dt = qB(t − τ) − d5A (6)
dF
dt = q1I − d6F (7)

The values for parameters are given in table 1. Using the parameter values in table 1, the dynamics of all
the compartments (S, I, V, Z, B, A, F) from the initial point (S,I,V,Z,B,A,F) = (200,50,100,6,50,0,0) are given in
the �gure 1.

Table 1: Table describing parameter values

Variable Description Value Source
µ Rate of production of susceptible cells 10 [10]
d Death rate of target cells 0.05 [10]
d1 Death rate of infected cells 0.5 [10]
d2 Death rate of virus particles 0.5 [10]
d3 Death rate of immune cells 0.002 [10]
d4 Death rate of B cells 0.049 [10]
d5 Death rate of antibodies 0.051 [10]
d6 Death rate of IFN 0.7 [15]
β1 Transformation rate of target cells to infected cells 0.001 [10]
β2 Activation rate of immune response due to infected cells 0.005 [10]
c1 Rate of activation of B cells by T immune cells 0.001 [10]
p1 Rate at which antibodies neutralise virions 0.001 [10]
q Rate of production of antibodies by infected cells 0.3 [10]
q1 Rate of production of IFN(F) by infected cells 0.8 [15]
η Rate of production of B-cells 10 [10]
k Burst rate of virus particles 5 [10]
ϕ Rate at which infected cells are killed by NK-cells 0.002 [15]

3 Mathematical Analysis
Positivity of Solutions
For any mathematical model it is fundamental to show that the system of equations considered are positive
and has bounded solutions. We now show that if the initial conditions of the system (1) - (7) are positive,
then the solution remain positive for any future time.
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Figure 1: The dynamics of S, I, V, Z, B, A, F. The parameter values are as in table 1. Initial Conditions (S,I,V,Z,B,A,F) =
(200,50,100,6,50,0,0).

Using the equations (1) - (7), we get,

dS
dt

∣∣∣∣
S=0

= µ ≥ 0 dI
dt

∣∣∣∣
I=0

= β1SV ≥ 0
dV
dt

∣∣∣∣
V=0

= kI ≥ 0 dZ
dt

∣∣∣∣
Z=0

≥ 0

dB
dt

∣∣∣∣
B=0

= η ≥ 0 dA
dt

∣∣∣∣
A=0

= qB(t − τ) ≥ 0 dF
dt

∣∣∣∣
F=0

= q1I ≥ 0
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Thus all the above rates are non-negative on the bounding planes (given by S = 0, I = 0, V = 0, Z = 0, B = 0,
A = 0, F = 0) of the non-negative region of the real space. So, if a solution begins in the interior of this region,
it will remain inside it throughout time t. This happens because the direction of the vector �eld is always in
the inward direction on the bounding planes as indicated by the above inequalities. Hence, we conclude that
all the solutions of the the system (1) - (7) remain positive for any time t > 0 provided that the initial conditions
are positive. Next we will show that the solution is bounded with each of the bounded control variables.

Boundedness of Solutions
Let N(t) = S(t) + I(t) + V(t) + Z(t) + B(t) + A(t) + F(t). Now,

dN
dt = dS

dt +
dI
dt +

dV
dt +

dZ
dt +

dB
dt +

dA
dt +

dF
dt ≤ 0 (8)

As analytically it is tough to show that N(t) = C for a constant C, we show that the sys-
tem (1) - (7) is a bounded space by simulating the system at di�erent initial points such as P1 =
(160, 0.2, 0.05, 3, 150, 100, 2), P2 = (180, 0.3, 2, 8, 200, 111, 4), P3 = (192, 0.1, 0.5, 6, 240, 140, 6).
These plots are shown in �gure 2.

Therefore the biologically feasible region is given by the following set,

Σ =
{(
S(t), I(t), V(t), Z(t), B(t), A(t), F(t)

)
: N(t) ≤ C, t ≥ 0

}

Basic reproductive number
The basic reproductive number for the model (1) - (7) is de�ned as the average number of infected target
cells generated by a single infected cell placed in an uninfected target cell population [13]. Basic reproductive
number computed by next generation approach is obtained as

R0 =
β1d4d5µk

dd1(d2d4d5 + ηqp1)
(9)

3.1 Equilibrium states and their stability

Three equilibrium solutions are obtained for the dengue model (1) - (7).

3.1.1 Infection-free state(E0)

The equilibrium densities for the state E0 is given as

E0 =
(
(Ŝ, 0, 0, 0, B̂, Â, 0

)
; Ŝ = µd , B̂ = η

d4
, Â = ηq

d4d5

Now, for the stability analysis, the jacobian matrix (J) for the system (1) - (7) is computed as

J[E] =



−(d + β1V) 0 −β1S 0 0 0 0
−β1V −(d1 + ϕF) β1S 0 0 0 −ϕI
0 k −(d2 + p1A) 0 0 −p1V 0
0 β2Z 0 β2I − d3 0 0 0
0 0 0 c1B c1Z − d4 0 0
0 0 0 0 qe( − λτ) −d5 0
0 q1 0 0 0 0 −d4


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Figure 2: The dynamics of S, I, V, Z, B, A, F at various initial points P1, P2, P3. The parameter values are as in table 1.

The characteristic equation about infection free state is given as

(λ + d) (λ + d3) (λ + d4) (λ + d5) (λ + d6)G(λ) = 0 (10)
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where,

G(λ) = λ2 + λ
(
d1 + d2 +

p1ηq
d4d5

)
+ d1d2

(
1 + p1ηq

d2d4d5

)
(1 −R0)

From the above equation 10, the following observations are made:

a. It is independent of time delay.
b. When R0 < 1, all the eigenvalues are negative. Therefore, disease-free state is locally asymptotically sta-

ble.
c. When R0 > 1, the two eigenvalues will have negative real parts provided

d1d2(1 +
p1ηq
d2d4d5

−R0) > 0

Then,
q > (R0 − 1)d2d4d5

p1η
(= qc)

Thus, even forR0 > 1, there is the critical level of antibodies(qc) over which infection will die out and the
E0 becomes locally asymptotically stable. If q ≤ qc, then E0 will be unstable.

3.1.2 Ine�ective cellular immune response state(E1)

The expression for this state E1 =
(
S, I, V , 0, B, A, F,

)
are obtained as:

S = µ
d + β1V

;V = dd1R0
β1µ

I; F = q1
d6
I; B = η

d4
;A = ηq

d4d5
;

I = d6
2ϕq1d1R0

[
−
(
d21R0 +

µϕq1
d6

)
+

√(
d21R0 +

µϕq1
d6

)2
− 4ϕq1d1µd1d6

R0 (1 −R0)
]

The existence condition for E1 becomes :R0 > 1. This is because only then we can have I ≥ 0,which is our
initial condition.

The characteristic equation about the state E1 is given as:

(λ + d3 − β2I) (λ + d4) (λ + d5)
(
λ4 + A1λ3 + A2λ2 + A3λ + A4

)
= 0 (11)

where,
A1 =

(
d + d1 + d2 + d6 +

p1ηq
d4d5

)
+
(
dd1R0
µ + ϕq1d6

)
I

A2 =
[
1 + dd1 + dd2 + dd6 + d1d2 + d1d6 + d2d6 + (d + d1 + d6)

p1ηq
d4d5

]
+
[
ϕq1dd1R0

µd6

]
I2+[

(d + d2 + d6)
ϕq1
d6

+ (d1 + d2 + d6)
dd1R0
µ + p1ηqd4d5

(
dd1R0
µ + ϕq1d6

)]
I −
[

kµβ1
d + dd1R0

µ I

]

A3 =
[
d (1 + d1d6)

β1µk
dd1R0

(1 + dd1 + dd6 + d1d6)
]
+
[
dϕq1 + d1βk + d6k+

dd1R0
µ (1 + d1d6) +

β1µkϕq1
dd1d6R0

(d + d6)
]
I +
[
1 + d2d4d5 + ηqp1d4d5d6

]
ϕq1dd1R0

µ I2

−kβ1 (d + d6)
(

µ
d + dd1R0

µ I

)

A4 = (ϕq1β1k) I2 +
(
β1k + β1kd1d6 +

β1µkϕq1
d1R0

)
I + β1µkd1R0

(1 + d1d6) − kβ1dd6S

Now it is observed from the above characteristic equation that all the eigenvalues are found to be negative
provided q > qc.
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3.1.3 Endemic equilibrium state(E*)

The expression for this state E* =
(
S*, I*, V*, Z*, B*, A*, F*

)
are obtained as:

S* = 1
d

(
µ − d1d3β2

− ϕq1d
2
3

d6β22

)
; I* = d3β2

;V* = 1
β1

( µ
S* − d

)
;

Z* = 1
c1

(
d4 −

η
B*
)
; B* = d5q A

*;A* = 1
p1

(
kd3
β2V*

− d2
)
; F* = q1d3β2d6

The endemic equilibrium point (E*) exists for the following conditions to be satis�ed,

kβ1β22d6µ > (kd3β1 + dd2β2) (ϕq1d3 + β2d1d6)

and
d1d6µβ22R0 > (µβ2 + d1d3R0) (ϕq1d3 + β2d1d6)

Further, to analyze the stability of endemic state,the characteristic equation about endemic state is given
as:

λ7 + C1λ6 + C2λ5 + C3λ4 + C4λ3 + C5λ2 + C6λ + e−λτ
(
D1λ2 + D2λ + D3

)
= 0 (12)

where,

C1 = B1 +
( η
B* + d5

)
;

C2 = B2 +
( η
B* + d5

)
B1 +

ηd5
B* ;

C3 = B3 +
( η
B* + d5

)
B2 +

ηd5
B* B1;

C4 = B4 +
( η
B* + d5

)
B3 +

ηd5
B* B2;

C5 =
η
B* B4 +

( η
B* + d5

)
B4 +

ηd5
B* B3;

C6 =
ηd5
B* B4;

D1 = Θ;D2 = Θ (d + d6) ;D3 = dd6Θ;

Θ = kβ1d3d4d5d

[
µ −

(
d1 +

ϕq1d3
β2d6

)(
d3
β2

+ µ
dd1R0

)]

B1 = d1 + d6 +
ϕq1d3
β2d6

+ µ
S* +

kβ1β2d6S*
ϕq1d3 + β2d1d6

B2 = 1 + d1d6 +
ϕq1d3
β2d6

(
d6 +

kd3
β2V*

+ µ
S*

)
+ kd3
β2V*

( µ
S* + d1 + d6

)
+ µ
S* (d1 + d2 + d6)

B3 =
µ
S* +

kd3
β2V*

+ kd3d6β2V*

(
d1 +

ϕq1d3
β2d6

+ µ
S*

)
+
(
d6 +

kd3
β2V*

)(
µd
S* + µϕq1d3β2d6S*

)
− kβ1 (d + d6) S*

B4 =
µkd3
β2S*V*

+ d
2
1d2d3d6
β2S*

+ kdd1d3d6β2V*
+ ϕq1d2d

2
3

β22S*

(
1 + d1 +

ϕq1
d6

)
+ q1kdd

2
3ϕ

β22V*
+

d3
β32d6S*

(ϕq1d3 + β2d1d6)2
(
kd3
β2V*

− d2
)
− kβ1dd6S*

In the absence of delay,the characteristic equation (12) becomes

λ7 + C1λ6 + C2λ5 + C3λ4 + C4λ3 + C5λ2 + C6λ +
(
D1λ2 + D2λ + D3

)
= 0 (13)

Since the terms are very lengthy and complex, Routh-Hurwitz criteria for determining the sign of λ
is of little use. Hence, we numerically show the stability of E* in the absence of delay. This is shown in �gure 3.
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Figure 3: Starting from the initial point P = (200,50,100,6,50,0,0), the time series for virus count showing the stability of E*
when τ = 0.

When delay is present, the characteristic equation is modi�ed by substituting λ = iω as

ω14 + E1ω12 + E2ω10 + E3ω8 + E4ω6 + E5ω4 + E6ω2 + E7 = 0 (14)

where,

E1 = C21 − 2C2;
E2 = C22 − 2C1C3 + 2C4;
E3 = C23 − 2C4C2 + 2C1C5 − 2C6;
E4 = C24 − 2C3C5 + 2C2C6;
E5 = C25 − 2C2C4 − D2

1;
E6 = C26 − D2

2 + 2D1D3;
E7 = −D2

3;

For this equation to have at least one positive root, E7 < 0. Thus, there will exist a positive root ω0, which
will satisfy the equation (14). It is given as:

τj =
1
ω0
arccos

[
Θ1

D2
1ω4 +

(
D2
2 − 2D1D3

)
ω2 + D2

3

]
+ 2jπ
ω0

, j = 0, 1, 2, . . . (15)

where,

Θ1 = (D2 − C1D1)ω8 + (C1D3 − C2D2 + C3D1)ω6 + (−C5D1 + C4D2 − C3D3)ω4 + (−C6D2 + C5D3)ω2

The corresponding critical delay with the parameters as in table 1 is computed as τ0 = 12.3168. We
now show numerical simulations in �gure 4 that the virus count converges to E* from the initial point
P = (200, 50, 100, 6, 50, 0, 0) and exhibits a stable behaviour when τ < τ0. But, the system admit peri-
odic solution or more complex behavior when τ > τ0. Thus, the system undergoes Hopf-bifurcation with the
critical delay given by equation 15.
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Figure 4: The virus population when τ < τ0 and τ > τ0.

4 Sensitivity Analysis
Sensitivity Analysis of Rate of Infection(β1)
To analyze the sensitivity of the model with respect to the rate of infection (the rate at which healthy cells
are converted to infected cells due to interaction with virus particles (β1), we solve the model numerically
for randomized values of β1. Using the method mentioned in [15], we can analyze how sensitive the system
reacts to �uctuations in β1. Here we use initial conditions (S, I, V, Z, B, A, F) = (192,0.1,0.5,6,240,1400,6) and
the parameter values from table 1. Figures 5, 6 contains two subplots each, where the �rst subplot the time
series for virus count at random values of β1 in the respective ranges. The second subplot gives the mean
value of virus count in the range of β1. From �gure 5, the mean value of virus count reaches peak around
�ve days and declines slowly till 10 days. From �gure 6, the mean value of virus count reaches peak value
initially and declines very rapidly in the short span of 5-10 days. Further, by comparing �gure 5, �gure 6 it is
observable that, for small values of β1, the infection takes longer time to clear when comparedwith the larger
values of β1. Thus the model is stable with respect to the infection rate β1.

Sensitivity Analysis of Burst Rate of Virus Particles(k)
Here the variation dynamics of model (1) - (7) with respect to the burst rate of virus particles, k, is considered.
The time series for virus count at random values of k and themean value of the virus count is given in the two
subplots in �gure 7. This plot means that for various values of k, the mean virus count declines faster before
5 days very rapidly. From this plot, it can be inferred that the burst rate of particles has a predictable e�ect on
the behaviour of the virus count.

Sensitivity Analysis of Production Rate of Antibodies(q)
Figures 8, 9 contains two subplots each, where the �rst subplot the time series for virus count at random
values of q in the respective ranges. The second subplot gives the mean value of virus count in the range of
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q. From �gure 8, the mean virus count remains low till 5 days and starts increasing after that. As the value of
q increases, from �gure 9, the mean virus count starts decreasing from �rst day and reaches to the minimum
by 15 days. Further, by comparing �gure 8, �gure 9 it is observable that, for small values of q, the mean virus
increases over time. As the value of q increases from 0.4, the mean virus count starts decreasing and reaches
to the minimum. Thus we can infer that the system is highly sensitive for changes in the parameter q.

Figure 5: The virus count for values of β1 from 0 to 0.001 and the mean value of the virus count. The rest of the parameters are
chosen from table 1.

5 Results
From the abovemathematical analysis it can be seen that the critical level of the antibody recruitment rate(q)
has been found to be responsible for the existence and stability of various steady states. The stability of
endemic state was found to be dependent on time delay(τ). The critical value of time delay(τ0) was obtained
from Hopf bifurcation analysis.

Findings from the sensitivity analysis of several key parameters such as β1, k, q that are thought to play
a signi�cant role in dengue infection are the following:

• The production rate of antibodies (q) was found to be highly sensitive.
• It was observed that the burst rate of virus particles (k) has a predictable behaviour and the rate of

infection(β1) is sensitive only in some interval range.
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Figure 6: The virus count for values of β1 from 0.0012 to 0.1 and the mean value of the virus count. The rest of the parameters
are chosen from table 1.

Figure 7: The virus count for values of k from 0.01 to 3 and the mean value of the virus count. The rest of the parameters are
chosen from table 1.
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Figure 8: The virus count for values of q from 0.001 to 0.28 and the mean value of the virus count. The rest of the parameters
are chosen from table 1.

Figure 9: The virus count for values of q from 0.4 to 0.7 and the mean value of the virus count. The rest of the parameters are
chosen from table 1.

6 Conclusions
In this study, a conceptual model was developed using a system of non-linear ordinary di�erential equations
to understand the dynamics of dengue virus. The ordinary di�erential equations describe the dynamical



A Study of Within-Host Dynamics of Dengue Infection | 79

behaviour of healthy cells, infected cells, virus count, T-cells, B-cells, antibodies and interferons. The model
incorporates the e�ects of innate and adaptive(humoral and cellular) immune responses to present the
mechanism of viral infection. Also, a delay in the B-cell production has been considered.

The existence and stability conditions for the equilibrium points have been obtained. The threshold
value of time delay (τ0) has been computed which is critical for change in stability of the endemic state.

It has been observed that that innate response co-relates with the virus titer in the early stages of the
infection which can help in an early detection of a serious disease.

Sensitivity analysis was performed to identify the crucial and sensitive parameters of the model. It
was see that the burst rate of virus particles and the the rate of production of antibodies are the sensitive
parameters in our system.

In the end we conclude by stating that the human immune system is very complex and the works
presented in this paper could enhance our understanding of this complex immune response.
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