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Abstract

This paper presents a comparative study between a large number of different existing
sequential quadrature schemes suitable for Robust Design Optimization (RDO), with
the inclusion of two partly original approaches. Efficiency of the different integration
strategies is evaluated in terms of accuracy and computational effort: main goal of this
paper is the identification of an integration strategy able to provide the integral value
with a prescribed accuracy using a limited number of function samples. Identification
of the different qualities of the various integration schemes is obtained utilizing both
algebraic and practical test cases. Differences in the computational effort needed by the
different schemes is evidenced, and the implications on their application to practical RDO
problems is highlighted.
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1. Introduction

Robust Design Optimization (RDO) is performed when uncertainties
into the optimization cycle are to be included. Classically, design opti-
mization considers one or more objective functions, obtained by comput-
ing/evaluating the performances of a system in some prescribed operative
conditions. In reality, some of the parameters influencing the performances
of the system are not assigned rigorously, or they cannot be controlled: one
classical example, in ship design, is represented by the environmental con-
ditions. In RDO, some of the main parameters are regarded as stochastic
variables, possibly with a known probability distribution coming from pre-
vious experiences or theoretical considerations. The concept of RDO has
been firstly introduced by Taguchi in late fifties, and than further devel-
oped in [1,2]: this represents a really active research area, with practical
applications in the majority of the industrial fields [3–6].
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In RDO, the value of the objective function, usually computed in a single
operative condition, is substituted by the expected value (and/or variance)
of a specific quantity characterizing the system over the assumed interval of
variation of the stochastic variables, weighted by their probability density
function. As a consequence, an integral needs to be computed in order to
evaluate the probabilistic quantities associated with the new definition of
the optimization problem.

Uncertainty Quantification (UQ) is aimed to this purpose: identify the
degree of complexity of the dependence between the objective function and
the stochastic variables, quantifying the uncertainties of the objective func-
tion subject to stochastic parameters. To do that, one of the main points is
the identification of an accurate estimate of the expected value and variance
of the objective function. This operation is performed through the evalua-
tion of the integral of the objective function on the stochastic domain

(1) E(X) =

∫
X
f(x) · p(x)dx ,

where X is the integration domain, f(x) is the objective function and
p(x) is the probability density function, for which holds the property∫

X
p(x)dx = 1 .

If the expected value E(X) represents the objective function of the
optimization problem, the integral (1) needs to be computed in order to
provide the value of the objective function, and it will be computed each
time the objective function value is required by the optimization algorithm:
as a consequence, this operation could be performed a really large amount
of times during the optimization process. Consequences may become even
more critical if the objective function is provided by a complex numeri-
cal simulation tool, since the computational time required by this class of
solvers is typically high. The precision of the discrete form of (1) is really
important, because the optimization algorithm may discriminate between
two different system configurations, and sometime their relative difference
is of the same order of magnitude of the accuracy of the evaluation of (1),
in particular when local information about the objective function (gradient
or Hessian) are required. In literature, quadrature schemes are adopted for
the evaluation of (1). The integral is reduced in the form

(2) I =

∫
X
f(x)dx '

N∑
i=1

f(xi)wi .
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In other words, a number of punctual values of the objective function
are computed in some selected points xi, and the integral is obtained by
applying a proper weight wi to each computational point. The accuracy
of the integration scheme is connected with the number of points adopted
for the quadrature formula, so that an appropriate selection is necessary in
order to support the optimization algorithm in discriminating between two
similar solutions, limiting at the same time the order of the scheme - and the
number of necessary sample points. This operation is commonly performed
once and for all analyzing the original configuration only: different schemes
are tested, changing their order, as soon as the most economic combination
is identified. The selected combination will be adopted without any further
change during all the optimization process.

Anyway, the modification of the system configuration during the opti-
mization process does not guarantees the conservation of the good features
of the integration procedure with respect to the stochastic variables, and a
constant verification of the accuracy of (2) is needed in order to guarantee a
prescribed level of accuracy along the optimization process. In other words,
the position of the integration points is fixed once the order of integration
is selected, and their position is not changing if a different integrating func-
tion (generated by the change of the system configuration) is considered:
position of the integration points may be particularly suitable for the initial
configuration of the problem, but this feature may be lost once the system
configuration is changing. For this reason, integration scheme is required
also to be able to provide an estimate of the accuracy of the integral: this
feature can be obtained i.e. by comparing the results obtained rising of one
unit the order of integration. Order of integration is further increased un-
til the accuracy of the integral computation is satisfactory. Unfortunately,
some of the most popular quadrature schemes do not share the integration
point positions when the order of integration is changed, and the computa-
tional price of the procedure may become huge. On the contrary, sequential
quadrature schemes are able to recycle some of the previously computed
sample points when the order of integration is changed, so that they appear
to be more suitable to this context. For this reason, they will be considered
in this particular application. Since the overall numerical effort is largely
dependent upon the selection of the integration scheme, this paper is aimed
at the identification of the most economic integration strategy.

In the following sections, a number of sequential quadrature schemes will
be presented. Some interpolation and approximation methods, able to pro-
vide the exact value of the integral above the interpolating/approximating
curve, will be proposed. Then, all the different integration schemes will be
tested on a practical ship design exercise, in order to evaluate also the ef-
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fect of the presence of numerical noise: an algebraic reformulation of the
ship design problem is adopted for the fast selection of the most promising
schemes, and finally the most promising ones are applied to the real ship
design problem. As a conclusion, some examples of numerical optimiza-
tion procedure will be presented and discussed under the perspective of the
reduction of the overall computational effort.

2. Sequential quadrature formulae

The most simple strategy for the evaluation of an integral is the trape-
zoidal rule: the integration interval is divided into a number of smaller
intervals, and the integral is approximated by the sum of the areas of all
the intervals ∫ b

a
f(x)dx ' (b− a) · (f(b) + f(a)

2
.

The accuracy of the computation is connected with the density of the
sub-intervals. This is a very poorly efficient strategy, because a dense and
uniform subdivision of the integration interval is required. This approach
can be viewed as a local linear interpolation of the function: the speed of
convergence of this scheme is, consequently, very slow. A faster convergence
is obtained once the function is approximated by a series of orthogonal
functions, whose integral is known in closed form. This is the approach
shared by a large number of quadrature formulae: the integrand is fitted by
a series of polynomials, and the value of the integral (1) is provided in the
form (2): position of points and value of weights have been computed once
for all. If the function is smooth and regular, a very good approximation
can be obtained by using a moderate number of points.

One of the most popular schemes is the Gaussian Quadrature formula.
This is commonly adopted for a large number of applications and typically
provides a good approximation of the integral also with a moderate degree
of the polynomials, that is, using a limited number of samples. A large liter-
ature for the convergence studies of different versions of the method is avail-
able, in [7–9] to report a few, for continuous and discontinuous functions.
Since the integral is obtained without an iterative process, no statistical
properties of the integral value are available: as a consequence, if we need
to check if convergence of the integration procedure has been achieved, in
cases where the exact value of the integral is unknown, the only possibility
is to evaluate the integral by using two different orders and then comparing
the results. Unfortunately, the position of the Gauss point may be com-
pletely different if we pass from 2 to 3 integration points and so on: as a
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consequence, if we want to check the convergence of the value of the inte-
gral by comparing two successive values of the discrete estimate, typically
we cannot recycle the previously evaluated values of the objective function.
This strategy may become really expensive if the objective function inte-
gration requires a large number of integration points: the evaluation of the
objective function could be repeated thousands of times during the solu-
tion of an optimization problem, and each time the integral computation is
involved. To give an example, 54 evaluations of the objective function are
needed to cover up the range from order 2 to order 10, so that the overall
optimization time is increased by a factor 54 with respect to a standard
optimization process where the objective function is computed by using a
single value.

A sub-class of quadrature formulae is defined as ”recursive” (or sequen-
tial) because some of the integration points are shared between the different
orders of integration. In other words, if we compute the integral by adopt-
ing a 2 point scheme and than we want to evaluate the same integral by
using a 3 points scheme, we do not need to add 3 new points, while some
of the previous 2 (1 or 2, depending from the scheme) have been already
computed previously.

The accuracy of the various formulae is connected with the ability of
the base functions to interpolate the candidate function, so that the shape
of the function may result more suitable for a specific quadrature law, or
a set of orthogonal functions may result more flexible than another. As
a consequence, a large number of algebraic functions should be adopted
in order to derive some generic conclusions. In the present study, our aim
is not to identify the overall best integration scheme, but to compare the
performances of different schemes in terms of number of integration points
in the spite of a sequential approach, identifying the most appropriate and
efficient formula to be adopted for some practical and specific applications.

The QUADRULE packagea provides a number of different quadrature
rules, already implemented: it has been adopted to this purpose, testing
all the different sequential quadrature rules from this package on specific
applications. In the paper, the nomenclature adopted by the authors of the
package is reported, and we refer to the documentation for more details.

3. Interpolation and approximation schemes

The aforementioned quadrature schemes share the basic principle of in-
terpolating a curve by a series of orthogonal functions, whose integral is
analytically known. As a consequence, the integral of the curve is obtained

ahttp://people.sc.fsu.edu/∼jburkardt/f src/quadrule/quadrule.html
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by the sum of the integrals of the components. A different approach could
be the application of standard interpolation/approximation techniques, se-
lecting those methods able to provide the value of the integral of the limiting
curve in closed form. In this paper, we selected one approximation and one
interpolation method to compare with standard quadrature rules. As an
approximation method, Bézier curves are tightened to this problem: they
are highly flexible and adaptable curves, able to provide a precise fit with
a prescribed number of points (training points) if the number of control
points is large enough. Bézier curves preserve regularity even if the num-
ber of control points is high. Furthermore, Bézier curves have an analytical
expression of the area included under the curve: by the way, the integral is
represented by the sum of the vertical coordinate of the control points [10].
The identification of the Bézier curve fitting a prescribed dataset can be
obtained by solving a minimization problem where the objective function
if the sum of the square of the distance between the data points and the
corresponding point on the Bézier curve.

As interpolation method, we are here adopting cubic splines. Also in
this case, the exact value of the integral of the limit curve is available.
Cubic splines are more sensible to the effects of numerical noise possibly
introduced by the simulations: as a consequence, an uneven spacing of the
training points may cause instabilities. On the other hand, they do not re-
quire a complex procedure for the determination of the fitting parameters,
as required by Bézier curves, so that they are much easier to apply. Since
interpolation is possible for every training set, training points can be dis-
tributed in a convenient way for a complete description of the integrating
curve, depending on the shape of the curve itself. We have here considered
two different alternatives. Firstly, we can progressively increase the number
of training points preserving the uniformity of the description of the inte-
gration interval, presuming an uniform distribution of the prediction error
for the model over the integration interval. In this case, we can talk about
”uniform distribution”: the Halton distribution [11] belongs to the class
of the Uniformly Distributed Sequences (UDS), and it has been adopted
to this aim. It is sequential, so that the computation of the N th point is
not influencing the position of the previous points. Halton distribution al-
lows the generation of a sequence of points uniformly distributed along the
integration interval.

Another approach for the determination of the integration points can be
based on the information about the features of two different fitting models.
According to [12], we can use the discrepancies between two different inter-
polation or approximation methods in order to detect areas in which the
information about the objective function are poor. Using this approach,
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we are assuming that the differences between the estimates provided by
two different interpolation/approximation models are also indicative about
the prediction error. As a consequence, a new training point will be placed
in the region where the difference between the two selected fitting mod-
els is larger. The goal is to better distribute the training points, reducing
their density in regions where the shape of the target function is potentially
already well described.

An example is reported in figure ??, where a multimodal function (the
same adopted in the following for testing the integration schemes) is fitted
by a cubic spline. In the top part of the figure, points are added preserving
uniformity: no further information on the fitting function is utilized, so
that the procedure will be the same for every function. On the bottom
part of the figure, points are added adaptively, comparing two different
interpolation models and checking for regions where predictions show larger
discrepancies: the sequence of added points will be different from function
to function, typically concentrating new points in the regions where the
gradient of the fitting function is larger.

Bézier and cubic spline present a great advantage with respect to the
classical quadrature formulae in the spite of a sequential evaluation of the
integral: all the previously computed points are useful and utilized. As a
consequence, if we compute sequentially the integral of the target function
starting from order 2, stopping at order 10, this operation requires 10 train-
ing point when Bézier or Spline are applied, while it requires 49 function
evaluations with Gaussian Quadrature (not fully sequential) and 29 with
Clenshaw-Curtis (sequential).

Different strategies can be adopted as stopping criterion for the inte-
gration procedure: we can compare the value of the integral obtained using
with N and N + 1 training points, as commonly adopted for quadrature
formulae, or we can compare the values of the integral provided by Bézier
and cubic spline, stopping the procedure once the two values are below
a prescribed limit. In the following, in order to preserve uniformity, the
criteria of the convergence of the computed integral will be adopted.

3.1. Sequential use of integration schemes

Scope of this paper is not to develop a new quadrature formula or a vari-
ant of an existing one: as a consequence, the strategies available from the
aforementioned QUADRULE package are adopted. In the table 1, a com-
parison in term of objective function evaluations required by the available
integration schemes in a sequential usage is reported. First column is re-
porting the order of the integration scheme, the other columns are reporting
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the number of points effectively required if we are starting from a 3 points
scheme and we proceed step by step by increasing the integration order of
a single point each time. Differences are due to the different requirement of
each quadrature formula in fixing the position of the integration points. Un-
fortunately, position of the integration points is dictated by the base theory,
so that they result ineffective in a sequential use of the scheme, since a large
part of the previously computed points are discharged. The data reported
in table 1 are independent from the function we are going to integrate: here
we are simply checking how many points are recurring during the different
degrees of integration for each integration scheme. In the table, the number
of function evaluation needed to cover up all the precision levels from 3 up to
a 20 point are reported. We can see from table 1 how a fully non-sequential
scheme requires 207 evaluations of the integrating function for evaluating
all the alternatives between 3 and 20-points scheme. Gauss-Legendre is re-
using the central point and the extreme points, so that it saves 18 point:
189 points are required for the investigation of all the same levels. On the
other side, the Clenshaw-Curtis requires only 121 evaluations, saving 86
objective function evaluations (42%). Bézier, as well as Cubic Splines, is
using all the available points, so that the order of integration is equal to
the number of points (saving 90% of the computations): they are the most
economic, and the most efficient integration schemes under this perspec-
tive. The forecoming analyses will tell us if the precision of the computed
integral is comparable with the classical quadrature rules.

Ord. NS GA CC F1 F2 JA LO RA NC BE
3 3 3 3 3 3 3 3 3 3 3
4 7 7 5 7 7 7 5 5 5 4
5 12 11 7 11 11 11 7 10 9 5
6 18 17 11 17 17 17 11 16 13 6
7 25 23 13 23 21 23 15 23 17 7
8 33 31 19 31 27 31 21 31 23 8
9 42 39 23 37 31 39 27 40 31 9
10 52 49 29 45 41 49 35 49 37 10
11 63 59 33 55 45 59 43 60 45 11
12 75 71 43 63 57 71 53 72 55 12
13 88 83 47 73 63 83 63 85 63 13
14 102 97 59 85 71 97 75 98 75 14
15 117 111 65 91 79 111 87 112 87 15
16 133 125 73 107 95 125 99 126 95 16
17 150 139 81 121 101 139 113 142 111 17
18 168 157 97 131 119 157 127 156 127 18
19 187 169 103 149 125 169 143 173 139 19
20 207 189 121 163 137 189 159 189 157 20

Table 1. Number of points required for each level of accuracy by the dif-
ferent integration schemes. First column is reporting the order of the in-
tegration scheme, then the number of points required for each scheme at
the reported level. NS = Non-Sequential, GA = Gauss-Legendre, CC =
Clenshaw-Curtis, F1 = Fejer (1), F2 = Fejer (2), JA = Jacobi (Elhay-
Kautsky), LO = Lobatto, RA = Radau, NC = Newton-Cotes, BE = Bézier.
Gauss-Legendre and Gauss-Jacobi behave identically.

30



Sequential quadrature methods for RDO

4. Practical ship design example

In order to define a practical design exercise for which integration of
the objective function is non trivial, an example from ship design has been
adopted, so that a catamaran hull and their performances will be the base
element for this study. Main characteristics of the selected ship hull are
reported in [13]. The choice of a catamaran hull is driven by the observation
of a strong effect of wave interference between the two demi-hulls, reflecting
on the powering requirements of the catamaran, on the radiated waves and
their impact on the shore. In fact, depending on the shape of the hull,
the mutual distance of the two demi-hulls and the forward speed, the two
wave systems generated by each single demi-hull interacts is a way such
that the powering of the ship may experience strong variations: this kind
of interference could be positive or negative, in the sense that the wave
resistance coefficient of the catamaran (that is, the portion of the total
resistance of the hull associated with the production of the wave field) may
become higher or lower than the wave resistance coefficient of the isolated
single hull, depending on the aforementioned parameters. As a consequence,
an accurate design of the catamaran could take advantage of this situation
for a specific speed or for a limited speed range, if the ship hull is properly
tuned with the wave system: optimization of the hull shape can result in a
reduced energy dissipated into the water for a specific speed, limiting the
impact of the hull motion on the shore, since a less aggressive wave pattern
is impacting the coast. Under this perspective, the consideration of a RDO
problem for the optimization of this kind of hulls is straightforward, since we
could be interested in extending the speed range for which the wave effects
are beneficial. Consequently, the objective function adopted for the RDO
of the catamaran is the expected value of the wave resistance coefficient
in calm water: it is here computed by using a simple layer potential flow
solver in steady flow condition.

Forward speed is here assumed as the uncertain parameter. Here we will
adopt a non-dimensional quantity related to the forward speed, that is, the
Froude numberb. For high Froude numbers (say Fr ≥ 0.5) the interference
effects is vanishing while it is evident for the lower values (figure 1). For
this reason, this study has been concentrated in low-medium Froude number
region, 0.25 ≤ Fr ≤ 0.40, where the variations of the wave resistance is more
pronounced, and the complexity of the objective function may evidence
the qualities and possibly the difficulties for each investigated integration
scheme.

bFr = U√
gL

, where U is the forward speed, L is a reference length and g is the gravity

acceleration
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4.1. Shape of the objective function

In figure 1 the wave resistance coefficient as a function of the Froude
number is represented. On left of figure 1, the comparison of the wave
resistance coefficient of the catamaran and its equivalent single hull config-
uration is shown: here we can observe the oscillations of the wave resistance
coefficient in the low Froude regime, while a similar behavior is observed
from Fr=0.4 on. In the central part of figure 1, the sub-region where the in-
tegral will be computed is shown. The is regular and smooth, and it appears
to be a challenging function to be integrated.

Since the exact value of the integral is unknown, a reference value of
the objective function, to be used for judging the convergence qualities of
the methods, is not available. The computational cost of a single evalua-
tion of the wave resistance makes the use of a Montecarlo method at full
convergence prohibitive. As an alternative, to be adopted for a preliminary
selection of the various integration schemes, an interpolation of the wave
resistance coefficient has been considered. Being some of the methods based
on polynomial interpolation, here we preferred to apply a Fourier expansion
of the wave resistance coefficient, in order not to produce an interpolation
implicitly favoring on method with respect to another. The Fourier expan-
sion has been truncated at the 5th order, since it has been demonstrated
to be sufficient for a good fitting of the original function: in fact, the cor-
responding coefficients are vanishing from this order on. The effect of the
approximation is reported in the right end side of figure 1c. The exact value
of the integral of the Fourier expansion is analytically known, so that the
performances of all the different integration schemes can be evaluated. Ob-
serving the results obtained on the Fourier expansion of the wave resistance
coefficient, a selection of the best integration schemes will be performed,
an the selected schemes will be applied to the real data (coming from the
numerical simulation): results may be different due to the presence of nu-
merical noise in the simulation.

5. Uncertainties Quantification for the wave resistance

In this section, all the different integration schemes will be tested on an
algebraic function, mimic the behavior of the wave resistance coefficient of
the selected ship in the speed range in between Froude number 0.25 and
0.4. In particular, the effective value of the wave resistance on the select
interval will be assumed as the quantity of interest. After that, a selection
of the best performing integration schemes will be applied directly on the

cit must be stressed that the scale of the vertical axis is of about ±4×10−5
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Figure 1. Form left to right: shape of the objective function in a large
Froude number range (comparison of the catamaran with the corresponding
isolated single hull), zoom of the objective function on the the integration
domain and difference between the true objective function and the Fourier
expansion.

data coming from the numerical simulation of the steady motion of the ship
in calm water.

5.1. Fourier expansion of the objective function

Here a Fourier expansion of the wave resistance coefficient is replacing
its true value: consequently, the real value of the integral over the assigned
interval is analytically known. All the available integration schemes have
been applied on this problem, monitoring the value of the integral and the
percentage difference between two successive iterations (corresponding to
different orders of the scheme). In practical applications, the latter quantity
only can be adopted as a stopping criteria for the scheme, being the real
value of the integral unknown: once the predicted value of the integral
becomes stable from iteration to iteration, we can stop increasing the order
of the scheme.

In table 2, the accuracy of the integral computation is reported. Among
the 16 different schemes included in the package, some of them are exactly
replicating each other: for this reason, they have been excluded from the
forecoming computations. By the way, also Jacobi and Legendre produce
exactly the same results: they have been reported in the table simply to
certify this situation, and Jacobi will be not used in further tests.

Integration schemes reported in table 2 are ranked by the number of
evaluations required when the target precision is 0.1%: this value has been
selected because it will be used in the forecoming optimization problem so-
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Scheme 1% 0.1% 0.01% 0.001%
Spline Uniform 11 12 20 20
Spline Adaptive 10 15 19 19
Bézier Uniform 10 16 27 50
Bézier Adaptive 10 17 43 108
Radau 16 23 40 50
Newton-Cotes Closed 20 25 — —
Lobatto 21 27 35 43
Clenshaw-Curtis 19 29 33 47
Gauss-Legendre 23 31 39 49
Fejer (1) 31 31 45 87
Jacobi (Elhay-Kautsky) 23 31 39 49
Legendre (Stroud-Secrest) 23 31 39 49
Jacobi (Stroud-Secrest) 23 31 39 49
Legendre (Davis-Rabinowitz) 23 31 39 49
Legendre (Elhay-Kautsky) 23 31 39 49
Gegenbauer 23 31 39 49
Legendre (Golub-Welsch) 23 31 39 49
Fejer (2) 27 41 63 79
Newton-Cotes Open 35 47 — —
Newton-Cotes Half 27 53 — —

Table 2. Convergence analysis for different quadrature schemes. Under four
different convergence criteria, that is, the percentage variation of the nu-
merical value of the integral between two successive iterations, the number
of points required at the current iteration is reported.

lution. Furthermore, the resulting number of evaluations is pretty high but
still acceptable for practical applications. Schemes with the same outcome
have been grouped between two horizontal lines. Clearly, being Spline and
Bézier curves purely additive, they are in the top part of the table. Radau is
the best performing among the classical integration schemes, while Newton-
Cotes Open is ranking good, but it is unable to get higher precision limits
in within 150 computations due to slow convergence.

A graphical representation of the convergence of the scheme is reported
in figure 2. As anticipated, not all the results are plotted, being some of
the integration schemes perfectly equivalent. Jacobi and Legendre are re-
ported in the top right part of the figure 2 uniquely with the purpose of
certificating this equivalence. All the classical integration schemes suffer
from data saturation for order higher than 20 approximatively: over-fitting
occurs as well as for polynomials, but the orthogonality of the base func-
tions is probably delaying this phenomenon. Newton-Cotes appears to be
not influenced by this phenomenon, and this is connected with the decom-
position of the interval: in fact, the whole interval is decomposed into a
collection of sub-interval of order 4, so that the over-fitting problem is not
experienced. Spline is providing the faster convergence, and the coherence
of the prediction when the number of samples is increasing is evident. On
the contrary, Bézier curve requires an optimization procedure for the de-
termination of their coefficients, so that an uncertainty connected with the
precision of the base parameters is included: the graph is evidencing this
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Figure 2. Convergence of the percentage difference between two successive
computed values of the integral for the most relevant integration schemes:
results obtained on the Fourier expansion of the objective functions. On the
horizontal axis, the number of computed points. On the vertical axis, the
percentage differences between two successive value of the integral (obtained
by raising up the order of the scheme of one unit).

kind of inaccuracies.
Table 3 is similar to table 2, but here the differences between the true

value of the integral and the current value provided by the integration
schemes are reported. In other terms, while table 3 is presenting elements
about the celerity of convergence of each scheme to its asymptotic value,
table 2 is providing elements about the exactness of the asymptotic value
to witch each scheme is converging to, if convergence is observed. In table
3, the number of computation associated with an assigned level of precision
(with respect to the analytical value of the integral) is reported. Schemes
are again ranked by the number of evaluations needed in order to reach
a precision limit of 0.1%. Ranking order is pretty different from the one
reported in table 3, and this difference is due to two different factors: first,
the difference between the asymptotic value and the true value; second, the
stability of the asymptotic value. As for the previous data from table 2,
the criteria is fulfilled if a certain level is obtained: unfortunately, we have
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no indication about the stability of the precision level. In other words, we
cannot state that a good approximation of the true value of the integral
has been obtained with stability or occasionally. Keeping in mind this con-
sideration, we observe how Radau quadrature scheme approached the true
value rapidly, since a difference smaller than 0.1% is obtained by using 10
computations only. A comparison with a standard Montecarlo method is
reported on the bottom of the table: the application of this approach is not
a viable solution in this context.

In figure 3, the convergence of the integral with respect to its analytical
value is reported. Newton-Cotes is presenting the most regular behavior,
but also the slowest convergence speed. Both Spline and Bézier are able
to get a good value of the integral with a small number of computational
points, with accuracy similar to classical integration schemes. They produce
very good results when the required accuracy is not so stringent. Bottom left
frame of the picture is reporting the fast convergence of Radau and Lobatto
schemes, but it is also evidencing some irregularities in their behaviour,
unlike Gauss-Legendre and Clenshaw-Curtis (top left frame of the picture).

Scheme 1% 0.1% 0.01% 0.001%
Radau 10 10 23 31
Bézier Adaptative 8 15 15 70
Lobatto 11 15 21 27
Gauss-Legendre 11 17 23 31
Jacobi (Elhay-Kautsky) 11 17 23 31
Legendre (Stroud-Secrest) 11 17 23 31
Jacobi (Stroud-Secrest) 11 17 23 31
Legendre (Davis-Rabinowitz) 11 17 23 31
Legendre (Elhay-Kautsky) 11 17 23 31
Gegenbauer 11 17 23 31
Legendre (Golub-Welsch) 11 17 23 31
Bézier Uniform 8 18 20 53
Spline Adaptative 10 18 28 62
Spline Uniform 5 18 33 34
Clenshaw-Curtis 13 19 23 33
Fejer (1) 7 23 31 63
Newton-Cotes Closed 13 25 —- —-
Fejer (2) 7 27 45 63
Newton-Cotes Open 15 47 —- —-
Newton-Cotes Half 8 51 —- —-
Montecarlo 64 512 4098 —-

Table 3. Convergence analysis for different quadrature schemes. Using four
different convergence criteria, that is, the percentage difference between
the computed value and the analytical value of the integral, the number
of points required by each quadrature scheme at the current iteration is
reported.

There is not a clear indication if the constant step or the variable step is
preferable for the interpolation/approximation methods. Uniform sampling
is performing better with Splines, while adaptive scheme is preferable in
conjunction with Bézier. In general, the uniform distribution provides more
stable and regular results: nevertheless, since instabilities are experienced
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Figure 3. Convergence of the percentage difference between the computed
value of the integral and its analytical value for the most relevant integration
schemes: results obtained using the Fourier expansion of the wave resistance
coefficient. On the horizontal axis, the number of computed points, on the
vertical axis, the percentage difference between the computed value and the
analytical one.

for a pretty large number of evaluating points, the use of the adaptative
approach will be further investigated.

5.2. Numerical simulation results

In this section, the mathematical model is directly applied for the de-
termination of the wave resistance coefficient. Since the true value of the
integral is not available, we applied a trapezoid method on regular grid
(made by 32768 samples), and the final value was 1.023272×10−4, not far
from the analytical value of the Fourier expansion (1.023306×10−4). Al-
though the effect on a global quantity is not so large, we are going to check
the ability of the different integration techniques to deal with the numerical
noise typically produced by a simulation code.

Numerical noise is generated by a number of different sources, partly
addressed to rounding error. As a consequence, noise is here similar to a
random quantity added to the wave resistance coefficient. A quantification
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of the numerical noise is reported in figure 4.
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Figure 4. Numerical noise associated with the computation of the wave
resistance coefficient for the current application. On left, the wave resis-
tance coefficient as a function of the Froude number: computation on 1001
punctual values is here fitted by a 10th order polynomial. Black dots are
representing the samples, thick line is the interpolating polynomial. On left:
percentage difference between the polynomial and the true value. The in-
terval has been selected in order to have a nearly linear behaviour of the
wave resistance coefficient, so that no further irregularities are introduced.

In figure 5, we can observe the speed of convergence of the selected
methods when the real value of the wave resistance coefficient is integrated.
Maximum number of computed points has been reduced to 50, in order
not to increase the overall computational cost up to unsustainable levels,
in the view of an application to optimization. Convergence is slower than
the one obtained with the Fourier expansion (reported in figure 2), where
we have obtained rapidly convergent values. On the contrary, here classical
quadrature rules seems not to be able to reduce convergence more than
10−2%, while Spline and Bézier get the same values as before, preserving a
gain of nearly two order of magnitude with respect to classical quadrature
rules. In figure 5 the visualization is stopped at 50 integration points, but
its behavior is unchanged if we extend the analysis up to 250 integration
points.

On the contrary, a substantial equivalence is observed for the precision
of the integral. In figure 6, we are looking at the percentage difference
between the real value of the integral and the current value provided by the
different integration strategies. All the schemes are stabilizing on a value
close to 10−1%: also in this case, the graph has stopped at 50 integration
points, but results are not changing if we increase up to 250 integration
points. In this case, the incomplete convergence of the Montecarlo method
could play a role.
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Figure 5. Convergence of the percentage difference between two successive
evaluations of the integral for the most relevant integration schemes: results
obtained using the simulation tool. On the horizontal axis, the number of
computed points. On the vertical axis, the percentage difference between
two successive evaluations of the integral.

In conclusion, Spline and Bézier outperforms the other integration
schemes if the celerity of convergence of the computed value is adopted
as a criteria: a reduced number of integration points could be required if
these schemes are applied during the optimization loop, without any loss
of precision. Correctness of this sentence has been investigated in the next
section.

6. Optimization test case

In this section, a complete optimization process has been performed
adopting different choices for the integration scheme. As in the last example,
the objective function is the expected value of the wave resistance coefficient
of the Delft catamaran, computed by mathematical model.

In order to define an optimization problem, a parametric expression of
the hull geometry is required. To this aim, parameterization of the hull has
been obtained by using an FFD (Free Form Deformation) approach [14,15].
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Figure 6. Convergence of the percentage difference between the computed
value of the integral and its value provided by a Montecarlo method. Re-
sults are obtained by using the true objective functions. On the horizontal
axis, the number of computed points. In the vertical axis the difference
between the current value and the reference value obtained by Montecarlo
simulation.

In this method, the object to be deformed is embedded into a parallelepiped.
The parallelepiped is subdivided into regular slices along the three Carte-
sian axis. A selection of the corners (cross intersection of the dividing lines)
are shifted along one or more directions, and the volume included into the
parallelepiped is modified according to the movement of the control points.
A graphical example is provided in figure 7.

A box embedding the right side of one demihull is modified by 5 different
control points. The demi-hull symmetry is preserved since the left side of the
demihull is obtained by mirroring the right side. The optimization process
has been repeated changing the integration scheme. Precision limit for the
scheme is fixed at 10−1%: this quantity is not particularly small because
we do not want to increase too much the computational effort, due also to
the limited available hardware.

Optimization has been performed by using Adaptive and Uniform
Splines, Adaptive and Uniform Bézier curves, Gauss-Legendre, Newton-
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Figure 7. Example of FFD applied to the bow of a surface combatant. On
left, the undeformed geometry, on right, the geometry after modification.
Only two design variables are shifting the selected control points along the
longitudinal axis. Only the lower part of the bow is modified.

Cotes Closed, Lobatto and Radau schemes. Selection has been performed
looking at the best ranking obtained from table 2 and 3. Newton-Cotes has
been added due to the good regularity, also if the overall performances are
not at the top. Consequently, 8 different optimal configurations have been
obtained, one for each integration scheme. A perspective representation of
the hull shape before and after the optimization process is reported in figure
8. Deformation of the hull shape is evident. Optimal configuration obtained
by using the Radau scheme is reported: the other optimal shapes do not
present large differences with respect to the one reported in figure 8.

Figure 9 is reporting a comparison of the performances of the optimal
configurations with respect to the original one, and the differences between
the solution provided by adopting a different integration scheme. In the top
left graph of figure 9 the improvement of the wave resistance coefficient in
the lower range of speeds is evident. On the contrary, we observe a small
increase of the wave resistance in the high speed range (Froude number
greater than 0.375). This is a classical result of RDO: the average value is
minimized, but we have not the guarantee (unless some further constraints
are utilized) that the objective function is reduced over the entire inves-
tigated range. The other graphs in figure 9 are presenting a substantial
equivalence of the optimal solutions provided by the different integration
schemes. However, a deeper analysis of the results is revealing some differ-
ences between the optimal solutions.
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Figure 8. Modification of the Delft catamaran hullform at the end of the
optimization process by Radau scheme. Hull geometry and FFD frame are
reported. On left, the original geometry, on right, the geometry after modifi-
cation. Five design variables are shifting along the longitudinal and lateral
axis the FFD frame. Some of the corners are linked together, while the
central part of the frame is locked in order to preserve continuity on the
symmetry plane.
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Figure 9. Comparison of the integrand function (wave resistance coefficient)
over the full speed range before and after the optimization process. On top
left, a comparison between original and optimal geometry produced by using
the Gauss-Legendre integration scheme is reported. On the other pictures,
a comparison of the results provided by the Gauss-Legendre scheme and all
the other alternatives are reported.

In table 4, some significative quantities are reported. First column is
indicating the adopted integration scheme. Second and third columns are
reporting the estimated value of the integral and its exact value. Exact
value is computed by means of a regular sampling of the integration inter-

42



Sequential quadrature methods for RDO

val, using 32768 points, and than applying the simple trapezoidal rule: a
convergence study is guaranteeing the precision of the integral up to the
fifth digit. Fourth column is reporting the percentage error between the
exact value and the estimated one. Estimated value is computed using the
indicated quadrature method: order of the method is increased sequentially,
and the procedure stops when the percentage difference between two suc-
cessive evaluations is lower than 0.1%. Quadrature scheme is reliable if the
value reported in the fourth column is of the same order of magnitude of the
stopping criteria. Under this perspective, all the investigated methods meet
the requirement: Gauss-Legendre, Lobatto, Radau and Bézier Adaptive are
providing an estimate whose precision is one order of magnitude lower than
required, while the error observed for all the other is of the same order of
magnitude of the accepted one.

The fifth and sixth columns of table 4 are reporting the optimal value
of the objective function: again, both values provided by the quadrature
scheme (with approximation and true value) are reported. Seventh column
is reporting the percentage difference between the two. Results are showing
something different with respect to the previous ones: in fact, some of the
quadrature schemes are showing greater differences, well above the adopted
precision limit. Bézier and Adaptive Spline are providing differences of one
order of magnitude larger than the adopted precision limit, while all the
others are confirming the results of the test on the original geometry. This
is a confirmation of the idea that the results provided by the quadrature
schemes are problem-dependent, and a single test is not a guarantee of the
accuracy of the integral computation along the full optimization problem
solution.

Last column is reporting the full number of simulations needed for the
complete solution of the optimization problem. This is one of the most
important elements, since it gives a measure of the time needed for the
full optimization problem solution. Gauss-Legendre, Lobatto and Radau
schemes are substantially equivalent: if we compare their requirements with
the ones of a full sequential scheme, like Bézier and Splines, we observe a
reduction of the computational effort of about 30-40% by the Bézier and
about 60% by the Splines. Among the last ones, Uniform Splines are able to
preserve the accuracy, and their results are comparable with the outcome
of some of the classical quadrature formulae.

In figure 10 the differences between approximated value and true value
are evidenced. In this picture, the cases of the optimal configurations are
reported. The Bézier Uniform (BU) scheme is providing the best solution
when comparing the approximated value, while this configuration reveals
to be the better one once the true value is computed. BU is also providing
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Method Original Optimal Points
Quad. Form. Exact % diff. Quad. Form. Exact % diff.

RA 1.023003E-4 1.023272E-4 0.0263 6.363469E-5 6.363722E-5 0.0040 29475
LO 1.023064E-4 1.023272E-4 0.0203 6.366491E-5 6.367956E-5 0.0230 26952
GA 1.023562E-4 1.023272E-4 0.0283 6.361283E-5 6.359716E-5 0.0246 30828
SU 1.022296E-4 1.023272E-4 0.0954 6.350983E-5 6.360077E-5 0.1432 11974

NCC 1.021242E-4 1.023272E-4 0.1984 6.334666E-5 6.359032E-5 0.3846 53458
BA 1.023114E-4 1.023272E-4 0.0155 6.264679E-5 6.373667E-5 1.7397 22543
SA 1.020111E-4 1.023272E-4 0.3089 6.318611E-5 6.449119E-5 2.0654 11853
BU 1.020887E-4 1.023272E-4 0.2331 6.096539E-5 6.438658E-5 5.6117 16862

Table 4. Objective function value for the original and optimal configu-
ration. 8 different optimization problems have been solved, one for each
selected quadrature scheme. Precision limit required for the quadrature
scheme is 0.1%. The value provided by the integration scheme with the
indicated accuracy is compared with the exact value, computed by using
trapezium rule (32768 points). BA = Bézier Adaptative, BU = Bézier Uni-
form, GA = Gauss-Legendre, LO = Lobatto, NC = Newton-Cotes, RA =
Radau, SA = Spline Adaptative, SU = Spline Uniform. Data are ordered
by the percentage differences between approximated and exact value of the
objective function for the optimal configuration. Table is split in two parts,
isolating the schemes presenting a precision of the integral of the same order
of magnitude of the required precision.

the larger difference between predicted and true value of the integral. Best
configuration is the one computed by Newton-Cotes (NC) scheme, but the
difference with the true value is pretty large. Gauss-Legendre (GA) and
Uniform Spline (SU) behave similarly, with a small preference for GA, due
to the higher precision.

A last consideration about the variation of the order of the quadrature
scheme with the configuration of the system. Checking the history of the
solution obtained by using the Radau scheme, objective function has been
computed 1001 times: among them, 27 solutions have been computed by
using order 7, 140 with order 8 and 834 with order 9. If a fixed order
have been adopted, 9 in this case, the full number of calls to the fluid
dynamic solver would be 9009 instead of 29475. The variability of the order
of integration is lower for Gauss-Legendre, since only one solution has been
computed by a 6 point scheme, and 19 using an 7 order scheme, all the
others requiring an 8 point scheme. Here, since an order 8 is sufficient, 8008
calls were needed for the complete solution. Unfortunately, the information
about the maximum order of integration is available not prior than the end
of the optimization process, so that we cannot fix a priori the order of the
scheme. However, we can observe that an adaptive integration scheme by
Uniform Splines is potentially increasing the total number of calls to the
solver of about 50%, if compared with Gauss-Legendre at constant order,
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Figure 10. Difference between the approximated value and the true value
of the objective function provided by the 8 different integration schemes.
Optimal configurations are adopted for the comparison.

but it is also saving 60% of the calls if compared with a sequential use of
the same integration scheme. What is important in the preservation of the
accuracy is the effect of each single objective function computation over
the evolution of the optimization process: in fact, an erroneous evaluation
of the objective function on a single configuration may drive the search
away from a promising area, or it can deviate the algorithm toward an
uninteresting region. The effects of the inaccuracies in the evaluation of
the objective function are particularly evident in the case of the use of a
gradient-based optimization algorithm, where the inaccuracy of the gradient
approximation is inducing a great loss on the speed of convergence of the
algorithm. As a consequence, the highest value of the adopted integration
order is to be considered when comparing the price of constant and variable
integration order. Table 5 is reporting the order of integration needed for
the original and the optimal configuration. In this application, the majority
of the integration schemes are using the same order of integration for both
the original and the optimal configuration. In few cases, there is an increase
of the required order, as for Radau. The only scheme for witch a reduction is
experienced is the Adaptive Spline, that is also the most economic scheme,
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but also one of the worst in terms of precision.

Method Original Optimal Points
% diff. Order Comp % diff. Order Comp

BA 0.0155 18 18 1.7397 24 24 22543
BU 0.2331 13 13 5.6117 15 15 16862
GA 0.0283 8 31 0.0246 8 31 30828
LO 0.0203 9 27 0.0230 9 27 26952
NCC 0.1984 11 55 0.3846 11 55 53458
RA 0.0263 8 23 0.0040 9 31 29475
SA 0.3089 14 14 2.0654 11 11 11853
SU 0.0954 12 12 0.1432 12 12 11974

Table 5. Order of the scheme and solutions needed for a single objective
function computation: original and optimal configuration. Precision and full
cost of the optimization problem solution are also reported (from table 4).
BA = Bézier Adaptative, BU = Bézier Uniform, GA = Gauss-Legendre, LO
= Lobatto, NC = Newton-Cotes, RA = Radau, SA = Spline Adaptative,
SU = Spline Uniform. Alphabetic order.

7. Conclusions

Some different additive quadrature schemes have been compared on
algebraic function and a practical naval application. A time saving of about
40% can be obtained by adopting an appropriate quadrature scheme, while
the saving becomes close to 60% if we apply an interpolation/approximation
integration scheme. Final results are comparable, so that no preclusion
of the usage of Spline and Bézier curves in this context is evidenced. In
particular, Uniform Splines provide a level of accuracy similar to the best
quadrature schemes, with a strong reduction of the overall computational
time. On the contrary, if the order of integration is kept fixed, and there is
no room/interest for the qualification of the integral value, the use of the
classical integration schemes is still recommended, with some preferences
for the Radau scheme.
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