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“Invariants” in Koffka’s Theory of Constancies in Vision:  
Highlighting Their Logical Structure and Lasting Value

1. Introduction

In present-day perceptual psychology, Gestalt theory is mostly referred to in terms 
of its structural side, that is, as a theory regarding how the visual field organis-
es into definite perceptual units, the grouping or unit formation problem1. But 
the Gestalt theory also has a metrical side, which concerns the properties – size, 
distance, colour, shape, orientation, etc. – possessed by those perceptual units, 
the factors that are influential on such properties, and how coexisting perceptual 
properties may depend on one another.

This article is about a special aspect of the metrical side of the Gestalt theory of 
vision. Specifically, it is about the concept of “invariants”, as elaborated by Kurt 
Koffka in his Principles of Gestalt Psychology (1935) – in particular, in Chapter 
VI of the book, concerning “constancies”. Besides the saliency of the concept in 
Koffka’s work, there are other reasons that draw our interest towards it. One is 
that the concept, as we interpret it, allows for a description in set-theoretic terms, 
so that it is open to formal developments. Another reason is that the concept has 
enduring significance, witnessed by the fact that tracks and implications of it may 
be detected, possibly under different names, in present-day theories of vision.

We develop our study in three stages. First, starting from basic examples of Koff-
ka’s invariants, we propose a formal definition of the concept (Section 2) and go 
into the meaning of the terms and assumptions it involves (Section 3). Then, we 
illustrate the use of that formal definition by commenting on the relationship 
between Koffka’s invariants and the so-called “constancy hypothesis” (Section 4) 
and by discussing “conditional indeterminacy” of perceptual properties and pos-
sible ways of overcoming the indeterminacy (Section 5). Lastly, we illustrate the 
lasting value and theoretical power of Koffka’s construct by indicating concepts 
in modern perceptual psychology that are intrinsically associated with it and by 
describing a model of perceptual transparency (Section 6).

1	 Detailed information on the status of Gestalt theory in present-day vision science may be found in the studies 
by Spillmann (2012) and Wagemans et al. (2012a, 2012b), as well as in a special issue of the journal Vision 
Research introduced by Jäkel, Singh, Wichmann, and Herzog (2016).
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In our discourse, we shall use technical words consistent – as much as possible – 
with those used by Koffka. Specifically, by an “invariant”, we mean an invariant 
in Koffka’s sense exemplified in Section 2; the same word also has other meanings 
in vision science. By “distal stimuli”, “proximal stimuli”, and “perceptual scene”, 
we mean, in this order, the set of optically relevant physical properties of the en-
vironment under view, the set of its optical effects upon the eyes of an observer, 
and the scene subjectively experienced by the observer in an act of vision. By a 
“property”, we mean any identifiable characteristic possessed by units or events 
in the distal stimuli (distal property), proximal stimuli (proximal property), or 
perceptual scene (perceptual property). Under suitable conditions, a property ac-
quires the logical form of a “variable”, i.e., an entity that may be tested on several 
occasions and that may show different “values” on those occasions. By the “range” 
of a property thus conceived, we mean the set of values it may take on during the 
several occasions in which it can be tested. For example, the range of “perceptual 
size”, as referring to a definite kind of visual situation, is the variety of possible 
degrees in perceived size, from those of small objects to those of large objects, in 
the visual situations of the kind considered2.

2. Examples and Logical Structure of Koffka’s Invariants

This section provides a profile of the subject of our study. First, we cite two 
examples of invariants discussed by Koffka and point out the main terms in them; 
then, taking account of those terms, we propose a formal general definition of 
invariants; lastly, we return to the examples by illustrating how they fit that gen-
eral definition.

A simple and generally known example is the “size–distance invariant”, as dis-
cussed on p. 222 in Koffka (1935). In the book, there are several references to it, 
among which, we quote the following from p. 229: 

“a relation of proportionality exists between perceived size and distance, so 
that if two equal retinal lines give rise to the perception of two behavioural 
lines of different length, these two lines appear at correspondingly different 
distances.”

From this description, the size–distance invariant involves three properties: the 
size of a component of the retinal image (e.g., the length of a “retinal line”), 

2	 The expressions preferred by Koffka are “distant stimuli” (rather than “distal stimuli”) and “perceptual orga-
nization” or “behavioural environment” (rather than “perceptual scene”) (e.g., Koffka, 1935, pp. 33, 80, and 
211). What we call “range of a property”, Koffka called “field of a property” (e.g., p. 244). We prefer the term 
“range”, as the term “field” also has other meanings (e.g., “psychophysical field”, p. 67; “field of stress”, p. 231; 
and “surrounding vs. inlying fields”, p. 248). We adopt this classic and relatively simple ontological set-up – 
distal stimuli, proximal stimuli, etc. – because it is the one actually used by Koffka in his discussion of invariants 
and other perceptual issues, and because it is sufficient for the purposes of our analysis.

(1)
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the size of a corresponding entity in the perceptual scene (e.g., the length of a 
“behavioural line”), and the apparent egocentric distance of the same entity in the 
scene. The first, denoted here as X, is a proximal property; the second and third, 
denoted Y1 and Y2, are perceptual properties. The invariant itself presents both a 
“freedom” and a “constriction” aspect. The freedom aspect lies in that the proximal 
property X is not determinative on the perceptual properties Y1 and Y2; that is, for 
any fixed value of X, there may be different values of Y1 compatible with it (e.g., 
“behavioural lines of different lengths” may correspond to “equal retinal lines”), 
and the same for Y2. The constriction aspect lies in that the proximal property X 
is determinative on a relation between the perceptual properties Y1 and Y2; that 
is, for any fixed value of X, a definite “relation of proportionality” holds true be-
tween Y1 and Y2, so that any difference in Y1 is accompanied by a proportionate 
difference in Y2, and vice versa. Note that the word “invariant” literally evokes the 
constriction aspect of the concept, i.e., the relation between Y1 and Y2 “does not 
vary” when the value of X is fixed; but the meaning of the concept also depends 
substantially on its freedom aspect, i.e., Y1 and Y2, individually considered, are to 
some extent “free to vary” when the value of X is fixed.

A peculiarity of the example now considered is that the perceptual properties 
it involves are properties of different types (size and distance) but reside on an 
equal bearer (properties of one and the same object or “field part” in the percep-
tual scene). This peculiarity is shared by other invariants discussed by Koffka, 
such as the shape–orientation invariant (pp. 228–229), the whiteness–brightness 
invariant (pp. 243–244), and the coloured surface–coloured illumination invari-
ant (pp. 256–258)3.

The second example we mention may be named the “direction–direction invari-
ant” as discussed on pp. 218–219. Among the statements referring to it, we quote 
the following from p. 255: 

“the angle between two lines is an invariant, whereas the absolute orientation 
of the perceived lines depends upon the general field conditions.”

As we interpret it, this invariant involves four properties, which are the directions 
of the two linear components of the retinal image and the directions of the two 
objects in the perceptual scene that correspond to those linear components. The 
first two properties, denoted here as X1 and X2, are proximal properties, and the 
other two, denoted Y1 and Y2, are perceptual properties. The freedom aspect is 
implicit in the phrase “the absolute orientation of the perceived lines depends 
upon the general field conditions”; this means that, for fixed values of X1 and X2, 

3	 From p. 247 of Koffka (1935), we infer that “whiteness” is the perceptual analogue to albedo (“lightness” is 
the term preferred in present-day perceptual psychology; cf. Gilchrist, 2006), and “brightness” is the perceptual 
analogue to illuminance (how much light a surface appears to receive as it stands in a perceptual scene).

(2)
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the values of Y1 and Y2 may vary for varying “general field conditions”, so that 
X1 and X2 fail to determine Y1 and Y2 uniquely. The constriction aspect is implicit 
in the phrase “the angle between two lines is an invariant”, which means that, 
for fixed values of X1 and X2, a relation between Y1 and Y2 becomes determined; 
that relation lies in the constant “angle” between “perceived lines” that vary in 
“absolute orientation”.

The perceptual properties involved in this invariant are of equal type, as both are 
directions, but reside on different bearers, as they are properties of two distinct 
objects or “field parts” in the scene. In this respect, the direction–direction invari-
ant is representative of a kind of invariant different from that illustrated by the 
size–distance invariant (perceptual properties of equal bearer but different types). 
In Koffka’s analysis, there are also other exemplars of the kind now considered. 
We mean, in particular, the invariants that involve the concept of a “gradient”, 
when this is understood as the difference or ratio between values taken by a per-
ceptual property for two distinct objects in the scene – e.g., gradient in size on p. 
244; gradient in whiteness on p. 246; and gradient in apparent colour on p. 2554.

In light of these examples, we now describe a set-theoretic framework of Koffka’s 
invariants, composed of three parts. 

Part 1. Any invariant concerns a set Y = (Y1,...,Yn) of two or more perceptual 
properties, and a proximal property X – this may be a composite property, 
so that X = (X1,...,Xm). Each of the properties, viewed as a variable, has a 
range of possible values. Symbols Y1,...,Yn, X will denote their ranges. 

Part 2. An invariant on the system of properties (X,Y) = (X,Y1,...,Yn) con-
sists in a family of conditional dependences as follows:

D X= ∈D x( : ).x

Family D is indexed by the possible values of the proximal property X. 
Each member Dx of the family is a relation between the perceptual prop-
erties Y1,...,Yn, that is,

,D      x n1Y Y⊆ × ×

which means that Dx is a subset of the Cartesian product of the ranges of 
the perceptual properties involved. 

Part 3. On the one hand, the fact that for any x ∈ X (i.e., any x belonging 
to X), there corresponds a definite Dx ⊆ Y1 × ... × Yn means that under con-
dition X = x, which concerns the proximal property, a definite dependence 
Dx holds true between the perceptual properties. This association between 

4	 This meaning of the word “gradient” is quite different from that prevailing in contemporary perceptual psy-
chology. Regarding the change of the concept “gradient” from Koffka’s theory to Gibson’s theory, refer to the 
book by Cutting (1986, p. 73).
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values of X and dependences on (Y1,...,Yn) is tantamount to the constriction 
aspect of the invariant. On the other hand, each dependence Dx may be such 
that its projection on dimension Yj (for j = 1,...,n) is a set of several possible 
values of property Yj (the projection may even coincide with the whole range 
Yj), which means that condition X = x is unable to fix the value of Yj. This 
is evidence of residual indeterminacy of each perceptual property Yj under 
the condition X = x and thus points to the freedom aspect of the invariant.

Figure 1 schematically illustrates this definition. It represents an invariant acting 
on a stimulus property X with range X = {x1,…,x5} of possible values, mapped on 
the vertical dimension of the diagram, in addition to two perceptual properties Y1 
and Y2 with ranges Y1 = {y1,1,…,y1,4} and Y2 = {y2,1,…,y2,4}, mapped on the frontal 
and depth dimensions of the diagram. To each value x ∈ X, a conditional de-
pendence Dx ⊆ Y1 × Y2 is associated, which is represented by the set of filled 
small circles in the x-layer; e.g., Dx3

={(y1,1,y2,2), (y1,2,y2,4), (y1,3,y2,1), (y1,4,y2,3)}. The 
constriction aspect of the invariant lies in the fact that each conditional depen-
dence Dx is a proper subset of the Cartesian product Y1 × Y2, which means that 
under any stimulus condition X = x, a definite dependence holds true between 
the perceptual properties Y1 and Y2; in the example cited, these dependences 
are one-to-one correspondences between ranges Y1 and Y2, which means that 
each value of Y1 uniquely determines a value of Y2, and vice versa. The freedom  
aspect lies in the fact that the stimulus property X is unable to specify either  
Y1 or Y2 separately considered; in the example, the projection of the filled circles 
on the dimensions (X,Y1) covers the whole product X × Y1, which means that every  
value of X is compatible with every value of Y1, and the same is true of X and Y2. 
Note that the association between elements x of X and subsets Dx of Y1 × Y2 may 
be termed a “psychophysical” dependence, because X is a stimulus property and 
(Y1,Y2) constitutes a pair of perceptual properties. Instead, for any fixed x, the 
conditional relation Dx between Y1 and Y2 may be termed an “intra-perceptual” 
dependence, because Y1 and Y2 are both perceptual properties5.

We also illustrate the proposed framework by applying it to the two examples 
cited herein. The size–distance invariant concerns a system (X,Y1,Y2) of one 
proximal and two perceptual properties. Statement (1) implies that property X 
(proximal size) fails to determine Y1 (perceptual size) as well as Y2 (perceptual dis-
tance), so that Y1 and Y2 have residual indeterminacy under any condition X = x.  
Statement (1), however, also includes the hypothesis of a “relation of 

5	 Koffka (1935, p. 229) refers to such dependences by the phrase “aspects of the percept coupled together”. The 
same concept has received various names by subsequent authors. For example: “response–response correlation” 
in Oyama (1969), “perceptual interaction” in Gogel (1973), “percept–percept coupling” in Epstein (1982), and 
“perceptual interdependence” in Rock (1983).
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proportionality” between Y1 and Y2, which may be given this interpretation: un-
der any condition X = x, the equation

=Y Y c x/ ( )1 2 � (3)

holds true, where c(x) (the proportionality coefficient) depends on the value x 
and, possibly, on other characteristics of the visual context. In terms of the sug-
gested framework, this is tantamount to hypothesising that, under any condition 
X = x, the dependence relation Dx = {(y1,y2) ∈ Y1 × Y2: y1/y2 = c(x)} holds true for 
the pair (Y1,Y2) of perceptual properties. In turn, the direction–direction invari-
ant concerns a system (X1,X2,Y1,Y2) of two proximal and two perceptual proper-
ties. Statement (2) implies that, although X1 does not determine Y1, nor does X2 
determine Y2, the pair (X1,X2) of proximal directions – more precisely, the angle 
between them – does determine the angle between the perceptual directions Y1 
and Y2. A reasonable expression of this hypothesis is the following equation:

=Y Y a x x– ( , ),1 2 1 2 � (4)

Fig. 1  Diagram of an abstractly conceived invariant involving a stimulus variable (represented 
on the vertical dimension) and two perceptual variables (represented on the two horizontal 
dimensions). The ternary dependence relation characterising the invariant is represented by the set 
of small filled circles in the diagram.
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in which the term a(x1,x2) is the angle between the directions X1 and X2 under a 
condition (X1,X2) = (x1,x2). This is tantamount to hypothesising that, under such a 
condition, a definite dependence relation D(x1,x2) = {(y1,y2) ∈ Y1 × Y2: y1–y2 = a(x1,x2)}  
is in force on the pair (Y1,Y2) of perceptual properties.

The proposed framework is flexible enough to fit invariants more complex 
than the examples mentioned so far. In Section 6, we consider an invariant con-
cerning the transparency phenomenon, which involves five properties, one of the 
stimulus type plus four of the perceptual type [equation (11)].

3. Salient Points in the Logical Structure

In this section, we elaborate on the suggested framework by presenting specifi-
cations of crucial terms in it. The specifications are given as responses to three 
questions.

Question 1. In the framework, for the sake of generality, the conditional de-
pendences implicit in an invariant have been defined in set-theoretic terms: any 
dependence Dx has been meant as a subset of the Cartesian product Y1 × ... × Yn. 
But, in more practical terms, what may be the form of such dependences? What 
may be their algebraic expression?

One response to this question is that the dependences implicit in some exemplary 
invariants are suitably expressed in transformational form. By this, we mean that 
two transformations f and g may be defined, one acting on the values of the prox-
imal property X, the other on the combined values of the perceptual properties 
Y1,...,Yn. Then, for any x ∈ X, the associated dependence Dx is expressed by the 
following equation:

( )=g y y f x( , , ) .n1 � (5)

In other words, the dependence Dx is the set of all n-tuples (y1,...,yn) in Y1 × ... × Yn 
that satisfy this equation. In the words used by Koffka, the term g(y1,...,yn) in the 
equation is a “combination” of perceptual properties; for example, “combination of 
shape and orientation” on p. 233, “of size and distance” on p. 236, and “of white-
ness and brightness” on p. 244. Thus, equation (5) signifies that, under any condi-
tion X = x fixing the value of X [and consequently of f(X)], a suitable combination 
g(Y1,...,Yn) of the perceptual properties itself becomes fixed in its value, in spite of 
the individual freedom of those perceptual properties under that condition.

The size–distance invariant illustrates this possibility, because equation (3) is an 
instance of equation (5), with f(x) replaced by c(x) (the proportionality coeffi-
cient) and g(y1,y2) replaced by y1/y2 (the ratio between perceived size and distance). 
The same is true of the direction–direction invariant, as seen when comparing 
equations (4) and (5). Other examples are offered by Koffka’s invariants that 
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involve coupled “gradients”. In discussing such a case – e.g., gradient in perceived 
whiteness coupled with gradient in light intensity on the retina, p. 244; and gradi-
ent in apparent colour coupled with gradient in stimulus colour, p. 255 – a system 
of properties (X1,X2,Y1,Y2) is considered, a transformation g is defined that is appli-
cable both to proximal and to perceptual properties [e.g., g(x1,x2) = x1–x2, or else 
g(x1,x2) = x1/x2], and an equation in the following form is hypothesised:

( )=g Y Y g X X( , ) , .1 2 1 2 � (6)

This equation expresses the hypothesis that the perceptual gradient (on the left) 
is equal to the corresponding stimulus gradient (on the right) and is obviously 
of the general form shown in equation (5). Such a hypothesis implies that, un-
der any condition (X1,X2) = (x1,x2), the perceptual gradient g(Y1,Y2) has a fixed 
value [equal to g(x1,x2)], so that g(Y1,Y2) constitutes an invariant in Koffka’s 
sense.

Although suitable for several examples in Koffka, the transformational form in 
equation (5) is not the only form admissible. Suppose, for instance, that X1 and 
X2 are the light intensities on two regions of the retinal image, Y1 and Y2 are the 
whitenesses of the corresponding surfaces in the perceptual scene, and the follow-
ing rule is hypothesised:

Y1 is larger or smaller than Y2 depending on whether X1 is larger or smaller 
than X2.

In a sense, this rule expresses an invariant for properties (X1,X2,Y1,Y2); it has a 
constriction aspect (the order relation between X1 and X2 determines the order 
relation between Y1 and Y2), and a freedom aspect (Y1 and Y2 are not uniquely 
determined by X1 and X2, they may also depend on other “field conditions”). A 
natural way of expressing the conditional dependences implicit in this “ordinal 
invariant” is by splitting the product set Y1 × Y2 into parts { }= ≤P y y y y( , ) :    1 2 1 2  
and { }( )= >Q y y y y, :1 2 1 2  and then setting for all (x1,x2) ∈ X1 × X2

= = ≤ >( )D P Q x xor depending on whether   or .x x, 1 21 2 �
(7)

This observation illustrates the convenience of framing a general definition of 
invariants in set-theoretic terms, as we proposed. The variables involved in an 
invariant are not necessarily of the quantitative type – they could be variables on 
ordinal scales, categorical or predicative variables, etc. Furthermore, even when 
they are of a quantitative type, the dependences connecting them could not be 
expressed naturally by numerical equations.

Question 2. An invariant, as an item of a vision theory (e.g., Koffka’s theory), 
may be viewed as a scientific hypothesis. As a hypothesis, it comes up as the result 
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of some argument developed by vision scientists, that is, as the endpoint of some 
“heuristic path”. We then ask: are there typical paths at the origin of hypotheses 
of invariants in Koffka’s sense? Are there typical arguments apt to suggest the 
form of the conditional dependences implicit in an invariant?

As a (partial) response to this question, we suggest reference to so-called “reverse 
projection” (Johansson, 1970) or “inverse optics” (Poggio, Torre, & Koch, 1985), 
here understood as a heuristic method followed at times by vision scientists in 
deriving psychophysical hypotheses from known optical principles. On the opti-
cal side of the visual process – i.e., the optical transition from distal to proximal 
stimuli – a scientist may recognise the “compound nature” of a proximal prop-
erty X; that is, there may be several distal properties Z1,...,Zn that concur when 
determining X. For example, the length X of the retinal image of a pole in the 
physical environment jointly depends on the length Z1 of the pole, its distance Z2 
from the observer, and its slant Z3 relative to the line of sight. Thus, the proximal 
property in question may be regarded as a joint function X = g(Z1,...,Zn) of the 
distal properties contributing to its specification, and (in principle) the algebraic 
form of function g may be made explicit on the basis of known optical principles. 
In particular, for any fixed value x of X, its “inverse image” g–1(x) under function g 
can be determined, i.e., the set of all combined values (z1,...,zn) of (Z1,...,Zn) that 
give rise to the same value x in the optical process.

The inverse optics heuristic, in simplified terms, consists of a replacement and a 
transfer operation. In reference to the notation cited herein, this means that the 
distal properties Z1,...,Zn are replaced by analogous perceptual properties Y1,...,Yn 
(e.g., the distal length Z1 of a physical pole is replaced by the apparent length Y1 
of a perceptual pole, etc.), and the function g linking X to (Z1,...,Zn) is transferred 
as a relation between X and (Y1,...,Yn) (i.e., equation X = g(Y1,...,Yn) is hypothe-
sised). As a consequence, for any x ∈ X, the set g–1(x) of the combined values of 
(Z1,...,Zn) becomes reinterpreted as a set Dx of combined values of (Y1,...,Yn). This 
Dx may be the conditional dependence (under condition X = x) of a hypothetical 
invariant on properties (X,Y1,...,Yn), as represented in our set-theoretic frame-
work. For example, the conditional dependences implicit in the size–distance–
direction invariant – i.e., for a fixed retinal size, there is a definite dependence 
between the apparent size, distance, and slant of a perceived pole – could be con-
jectured on the basis of the optical dependence of retinal size on the size, distance, 
and slant of any physical pole in the environment.

In Koffka, we did not find explicit assertions of this approach. We did find, 
however, clues that the approach may have played a part in indicating possi-
ble invariants and suggesting the form of the conditional dependences in them.  
A clue is the following phrase (on p. 262), belonging to a discussion of perceptual 
transparency: “we apply the laws of colour mixture to the splitting up of the effect 
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of neutral stimulation”. It shows that reference to the “laws of colour mixture” – 
specifically, Talbot’s law, which is an optical principle – may have served as a guide 
in conjecturing the dependences holding true between the perceptual properties 
involved in the transparency phenomenon. Another clue can be found on pp. 
243–244, concerning the whiteness–brightness invariant, where the optical prin-
ciple is reminded that luminance (symbol i) amounts to the product of albedo (L) 
and illuminance (I). We shall refer again to these invariants in Section 6, when 
describing a model of perceptual transparency.

Question 3. The word “invariant”, in its literal sense, stands for something that 
does not vary, in spite of variations of other entities concomitant with it. We may 
ask: what is specifically invariant in Koffka’s invariants? What are the reasons for 
using this word?

There are at least three mutually compatible responses to this question. One is 
that, in an invariant concerning properties (X,Y1,...,Yn), the unchanging entities 
are the conditional dependences between the perceptual properties Y1,...,Yn. More 
precisely, for any x ∈ X, under condition X = x, a definite dependence Dx is 
hypothesised to be in force between the perceptual properties, which does not 
change in spite of variations of the values of those properties, or of other compo-
nents of the visual context. This response is implicit, e.g., in the statement “the 
invariants here are the relations between the different shapes” (p. 223).

A second response specifically applies to invariants whose conditional dependenc-
es are expressible in transformational form, generally represented by equation (5). 
The term g(Y1,...,Yn) in that equation may be interpreted as a derived perceptual 
property – e.g., if Y1 and Y2 are the directions of two oblong objects in a percep-
tual scene, and g(Y1,Y2) = Y1–Y2, then g(Y1,Y2) amounts to a derived perceptual 
property, i.e., the apparent angular separation between both objects. For such an 
invariant, we may then mean that the unchanging entity is the value of the derived 
perceptual property g(Y1,...,Yn). Specifically, for any x ∈ X, under condition X = x, 
the value f(x) becomes fixed, so that according to equation (5), the value of prop-
erty g(Y1,...,Yn) also becomes fixed, in spite of possible variations of the values of 
properties Y1,...,Yn. This alternative response to Question 3 is suggested, e.g., by 
the statement “the angle between two lines is an invariant”, in reference to the 
direction–direction invariant (p. 255).

A third response applies to invariants whose conditional dependences are express-
ible in transformational form [equation (5)] with f = g, that is, the same transforma-
tion applies to the proximal and the perceptual properties involved, a possibility il-
lustrated by equation (6). For such an invariant, we may mean that the unchanging 
entity is the value of the transformation g, which remains the same from g(X1,...,Xn) to 
g(Y1,...,Yn). Note that this third meaning is structurally different from the first two: 
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here the change of reference (for judging invariance) is the replacement of proximal 
properties (X1,...,Xn) by perceptual properties (Y1,...,Yn), whereas earlier, the change 
consisted of possible variations of the perceptual properties in their values.

4. “Our Invariance Principle Taking the Place of the Old Constancy Hypothesis”

The phrase set as the title of this section comes from p. 224 of Koffka (1935), 
wherein it concludes a couple of paragraphs entitled “Empiristic explanations 
of these constancies, and the reason for their popularity”. The phrase suggests 
that, in spite of the similarity between the words “constancy” and “invariance” 
in their ordinary meanings, the theory of invariants is something quite different 
from the traditional “constancy hypothesis” and is intended to positively over-
come the latter’s shortcomings. In Koffka’s book, there are other statements to 
the same effect. We quote the following (p. 97), which seems to us especially 
instructive: 

“All we intend to do is to replace laws of local correspondence, laws of 
machine effects, by laws of a much more comprehensive correspondence 
between the total perceptual field and the total stimulation, and we shall, 
in the search for these laws, find at least indications of some more specif-
ic constancies, though never one of the type expressed by the constancy 
hypothesis.”

In this section, we intend to illustrate what is peculiar in Koffka’s invariants as 
compared with the so-called “constancy hypothesis”, and we do this by taking 
advantage of the formal framework presented in Section 2.

In the Gestalt theory tradition, the constancy hypothesis (Konstanzannahme) is 
particularly known as having been the main polemic target of one of the earliest 
studies ascribable to the theory, a paper by Wolfgang Köhler dated 1913. The fol-
lowing excerpts from Koffka may be of help for specifying its meaning – or better, 
the meaning attributed to the hypothesis by Gestalt theorists, which is what really 
matters for our discussion.

“the constancy hypothesis which derives the looks of things from a univer-
sal point-to-point relation with the proximal stimulation” (p. 87);
“the constancy hypothesis maintains that the result of a local stimulation 
is constant, provided that the physiological condition of the stimulated 
receptor is constant” (p. 96);
“the implicit assumption, a special case of the constancy hypothesis, that 
what happens under a particular set of conditions must happen under all 
conditions” (p. 145).

In the terms we used in formulating our framework, the meaning implicit in 
these statements may be cast as follows: the constancy hypothesis, referring to a 

(8)

(9)
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perceptual property Y, maintains that a proximal property X can be found that is 
fully and universally determinative upon Y; in other words, for any value x of X, a 
definite value y of Y does exist that regularly corresponds to x in visual experienc-
es, irrespective of other varying “field conditions” in those experiences. Note that, 
in this use, the term “constancy” has no direct relationship with the “perceptual 
constancies” discussed in perceptual psychology (e.g., constancy in size, shape, 
colour, etc.). Rather, the term “constancy” in the “constancy hypothesis” is for 
marking the supposed universality of the connection between proximal property 
X and perceptual property Y: the association between any value of X and a cor-
responding value of Y is supposed to be “constant”, that is, independent of other 
peculiar features of the visual contexts in which those values occur [phrase “under 
all conditions” in excerpt (9)].

Now, let us come back to Koffka’s invariants. In our framework (Part 3), we noted 
that such an invariant has a freedom and a constriction aspect. For an invariant 
on a system of properties (X,Y1,...,Yn), the freedom aspect lies in that the proximal 
property X is unable to determine the values of perceptual properties (Y1,...,Yn) 
uniquely. In set-theoretic terms, this means that, for any value x of X, there may 
be several assignments of values (y1,...,yn) to (Y1,...,Yn) that are each compatible 
with the stimulus condition X = x – for instance, several triples (y1,y2,y3) of per-
ceptual size, distance, and slant that are each compatible with a fixed length x of 
an item in the retinal image, in the size–distance–direction invariant. Of course, 
the freedom aspect of an invariant, thus understood, is in direct contrast with the 
“old constancy hypothesis”, which (in suitable conditions) would maintain that 
X is fully and universally determinative upon (Y1,...,Yn), so that for any value x of 
the former there should be one single assignment of values (y1,...,yn) to the latter 
compatible with it. Thus, if the freedom aspect of invariants represents a real 
feature of perceptual phenomena, then the constancy hypothesis is untenable as 
a general principle.

But an invariant also has a constriction aspect. For any value x of X, a definite 
dependence Dx is presumed to hold true between perceptual properties Y1,...,Yn 
under stimulus condition X = x; in set-theoretic terms, Dx is nothing but the set of 
all assignments (y1,...,yn) compatible with that condition. In view of this, the “in-
variance principle” of Koffka may be regarded (as suggested, e.g., by Hochberg, 
1957, p. 76) as a higher-order constancy hypothesis: any condition X = x, suppos-
edly unable to determine the values of (Y1,...,Yn), nevertheless is presumed to be 
able to determine a definite dependence Dx between those values. This shift from 
the “old” to a higher-order constancy hypothesis goes hand-in-hand with a shift 
from studying the association between values of proximal properties and values of 
perceptual properties, to studying the association between relations of proximal 
properties and relations of perceptual properties (statement “relative properties 
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of the stimulus distribution determining relative properties of the objects and 
events in the behavioural world”, on p. 219). The latter view is tantamount to 
the “relational approach” in the study of vision, which is generally recognised as 
one salient characteristic of Gestalt theory of perception (e.g., Hatfield, 2003, 
p. 359; Kogo, Strecha, van Gool, & Wagemans, 2010, p. 411; Sarris, 2012, pp. 
257–258).

5. Conditional Indeterminacy of Percepts in Koffka’s Invariants

The freedom aspect of invariants is a sign of their theoretical flexibility, so that 
it is worthy of closer scrutiny. Actually, this aspect reveals that the relation-
ship between a proximal property X and perceptual properties Y1,...,Yn may be a 
mix of determinacy (any value of X determines a definite dependence between 
Y1,...,Yn) and indeterminacy (Y1,...,Yn, in their values, have residual freedom rel-
ative to X). This view naturally leads a scientist to inquire about the boundary 
between determinacy and indeterminacy in invariants, as well as about factors 
by which the indeterminacy is overcome – possibly, the “laws of a much more 
comprehensive correspondence” alluded to in excerpt (8). In this section, we 
present comments on these aspects of invariants, again by taking advantage of 
the formal framework proposed. We present our comments as responses to three 
further questions.

Question 4. What are the roots of the conditional indeterminacy of perceptual 
properties in Koffka’s invariants? Are they substantial roots, to be found in the 
vision processes themselves? Or methodological roots, which relate to how a sci-
entist defines an invariant as a theoretical construct?

In preparation for a response to this question, we quote the following passage 
from Koffka (p. 248):

“it is at least a real theory, i.e., an explanation which deduces the observed 
effects from the only available causes, the proximal stimulation which gives 
rise to perceptual organization.”

This is a judgement by the author on the discussion he had developed on the 
preceding pages, concerning phenomena relating to “brightness constancy”. The 
passage is significant for our purposes, as it indicates that, in Koffka’s view, a “real 
theory” of perceptual effects is one that searches for “only available causes” in the 
underlying “proximal stimulation”. This view presupposes the assumption that the 
proximal stimulation in an act of vision is indeed sufficient to determine the percep-
tual scene uniquely, so that if a vision scientist would take account of stimulus data 
exhaustively, then – by applying the laws of a suitable theory – the scientist should 
be able to predict the perceptual scene precisely, i.e., without residual indetermina-
cy of any property in the scene. In Koffka’s book, there are also other passages that 
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appear to attest to this view, e.g., the criticisms towards “empiristic explanations” 
of perceptual phenomena (on pp. 103, 209, 223–224, etc.), i.e., explanations that 
involve supplementary cognitive factors outside optical stimulation.

If this was the view of Koffka, then we conjecture that his response to Question 4 
would correspond to the second alternative indicated, namely, the roots of the 
conditional indeterminacy of the perceptual properties involved in an invariant 
are of a methodological, not of a substantial, kind. More precisely, the composite 
proximal property X = (X1,...,Xm) considered in an invariant regarding perceptual 
properties (Y1,...,Yn) may be non-exhaustive of the stimulus data that are influen-
tial on these, so that for any condition X = x, there may be several assignments of 
values (y1,...,yn) compatible with it [conditional indeterminacy of (Y1,...,Yn)]. This 
argument naturally entails that if (besides X) other data implicit in the proximal 
stimulation were also taken into account – e.g., the “general field conditions” 
mentioned by Koffka in excerpt (2) and elsewhere – then the conditional inde-
terminacy of the perceptual properties would vanish.

For example, the perceptual size and distance of a pole appearing in a scene – 
i.e., the perceptual properties in the size–distance invariant – have conditional 
indeterminacy so far as only the size of the corresponding image on the retina is 
considered. But optical stimuli may also include data (e.g., the “depth factors” 
mentioned on p. 235) capable of determining the perceptual distance of the pole, 
so that (through the invariant) its perceptual size would also become determined, 
and the conditional indeterminacy of both perceptual properties, namely, size 
and distance, would vanish.

Question 5. Indeterminacy and variability are distinct but related concepts. In 
particular, an effective method of showing that a perceptual property is not (fully) 
determined by a definite stimulus condition is by describing a set of vision situa-
tions across which this condition remains fixed whereas that property undergoes 
variations. Is this method used by Koffka when arguing about the conditional 
indeterminacy implicit in his invariants?

The demonstrations on “Hering’s hole method” and “Gelb’s experiment” 
(pp. 244–245), the effect of a “reduction screen” on colour perception (pp. 254–
255), etc., constitute the evidence for a positive response to this question. In the 
terms of our set-theoretic framework, such a demonstration amounts to showing 
that distinct vision situations may exist, or be constructed, across which the value 
of a definite proximal property X remains the same, but the combined values of 
perceptual properties (Y1,...,Yn) are variable, thus proving that the latter are not 
uniquely determined by the former (the freedom aspect of an invariant).

The conjoint variability of coexisting properties is also a standard method used 
in science for specifying the “direction” of a dependence relation – or, with some 
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abuse of terms, for deciding which is the “cause” and which is the “effect” among 
those properties. We note, in this regard, that the conditional dependences be-
tween the perceptual properties, as represented in our set-theoretic framework, 
do not have a prearranged direction. They are “functional relations”, as meant 
by Heidelberger (2010), and allow for different directions, depending on the 
context. Let us consider, for example, the conditional dependences implicit in 
the size–distance invariant. An observational context may be such that it includes 
cues for distance but not cues for size – e.g., what is shown is an abstract or unfa-
miliar figure, with no a priori privileged size in the perceptual representation. In 
such a context, the conditional dependence will be directed from distance to size: 
the perceptual distance, specified by the cues, will determine the perceptual size, 
through the conditional dependence. The orientation of the dependences will be 
the opposite in a hypothetical context in which there are cues for size (e.g., what 
is shown is a highly familiar object, which evokes a definite size in the perceptual 
representation), but the distance cues are weakened or removed (Gogel, 1976).

Question 6. Consider the view, apparently implicit in Koffka’s theory, that the 
whole of the stimulus information in an act of vision is sufficient to determine 
the perceptual scene unambiguously, so that if two acts of vision had equal sets of 
optical stimuli, then the perceptual scenes experienced in them should be equal6. 
The question is: what arguments are used by Koffka to show that the conditional 
indeterminacy implicit in an invariant is indeed compatible with this determin-
istic view?

Two distinct kinds of arguments are worthy of note in this regard, one referring to 
“internal forces”, and the other to “external forces” of perceptual organisation – a 
distinction on pp. 138–139. The former is signalled by the use of words such as 
“simple”, “unique”, “normal”, “well-balanced”, etc. (e.g., pp. 221, 224, and 231). 
In terms of our framework, for an invariant on properties (X,Y1,Y2), such an argu-
ment would mean that, within the range Y1 of perceptual property Y1, there may 
exist a value y*

1  which is a priori privileged, because of its simplicity, regularity, 
or other peculiarities. Thus, under a stimulus condition X = x, property Y1 will 
spontaneously settle on value y*

1 , in the absence of factors opposing this solution. 
In consequence, the perceptual property Y2 will take on a definite value y*

2 , specif-
ically, a value that is compatible with y*

1  according to the conditional dependence 
Dx. Conclusively, a definite combined value ( y*

1 , y*
2 ) becomes determined for 

properties (Y1,Y2) involved in the invariant, viz., the indeterminacy is overcome.  

6	 Examples such as ambiguous figures (Rock, 1983, pp. 65–67) are not by themselves contradictory to this 
view, as the alternation of different perceptual organisations under stable stimulus conditions might be thought 
of as a (surprising) property of the resulting perceptual scene, a property which would occur again if the same 
stimuli were viewed again.
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Arguments of this type may be found, e.g., in the following locations: on  
p. 219 concerning the direction–direction invariant, with the vertical and hor-
izontal directions of the linear elements in the scene as privileged attributes; on 
pp. 231–232 concerning the shape–orientation invariant, with the frontal paral-
lel position of a planar figure as a privileged attribute; and on p. 262 concerning 
the transparency phenomenon, with uniformity of colour as a preferential per-
ceptual attribute.

The other kind of argument, in terms of “external forces”, is illustrated by the fol-
lowing statement, which is extracted from a discussion of the shape–orientation 
invariant (on p. 235):

“All factors, therefore, which determine orientation must pari passu influ-
ence perceived shape.”

It suggests that in the “totality of stimulation”, there may be “factors” capable of 
determining the value of a perceptual property Y1 (viz., orientation), such that the 
value of another perceptual property Y2 (viz., shape) also becomes determined, 
due to the conditional dependence Dx (between Y1 and Y2) imposed by a stimu-
lus condition X = x (within a definite invariant). In Koffka, recurrent references 
to “total stimulation”, “extended processes”, “general field conditions”, etc. are 
tantamount to references to such “factors” in the “psychophysical field”, as well 
as their contribution to overcoming the conditional indeterminacy implicit in 
invariants.

6. Koffka’s Insights on Invariants Are Alive in Modern Perceptual Psychology

Koffka’s invariants are multifaceted constructs; in the previous sections, we have 
examined a sample of their aspects. Now we can see that some of those aspects 
occur – possibly in elaborate form and without reference to Koffka – in contem-
porary theories of visual perception, and we view this circumstance as proof of 
the substantial and productive character of the problems addressed under the title 
of “invariants”.

One aspect is the relational approach to perception (mentioned in Section 4), 
which is a basic tenet of the Gestalt theory in general and is accepted and suitably 
developed in contemporary theories. To name a few: the “relational psychophys-
ics” of human and animal perception (Sarris, 2006), the “anchoring theory” of 
lightness perception (Gilchrist et al., 1999), and the “differentiation–integration 
model” of anomalous surfaces and illusory contours (Kogo et al., 2010). A second 
aspect is the hypothesis of intra-perceptual dependences (mentioned in Section 2),  
which occurs under various names in authors following Koffka and is empha-
sised in certain present-day theories of vision, e.g., the “indirect/constructivist 
view” of perception (Rock, 1997) and the “experimental phenomenology” of  

(10)
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vision, which looks at those dependences as the privileged subject of study 
(Savardi & Bianchi, 2012, p. 194; Sinico, 2013, p. 371).

A third aspect is the hypothesis (mentioned in Section 5) that the dependence 
of perceptual properties on stimulus properties is flexible or non-deterministic 
in character, as well as the question about what factors may intervene to absorb 
or compensate for the residual indeterminacy in the psychophysical relationship. 
Similar questions and hypotheses are considered in current theories that deal with 
the integration of “sources of stimulus information” (Cutting & Vishton, 1995; 
Trommershäuser, Körding, & Landy, 2011) and discuss possible interventions of 
a priori factors in perceptual processes (e.g., “prior constraints” in the computa-
tional approach to vision, and “prior probabilities” in Bayesian modelling; Marr, 
1982, ch. 3; Kersten, Mamassian, & Yuille, 2004). As a fourth aspect, we men-
tion the notion of “invariant” itself, which has promoted the discovery of oth-
er notable exemplars (e.g., the shape–colour–illumination and the orientation–
lightness–illumination invariants; Bergström, 1977; Bloj & Hurlbert, 2002) and 
has been modulated into new concepts, such as “invariance” as a criterion for 
categorising perceptual properties (Chen, 2005; Todd, Chen, & Norman, 1998) 
and “invariants” as higher-order features of the optical stimulus (Gibson, 1979, 
ch. 14; Cutting, 1986, ch. 5).

Besides listing these correspondences, we wish to illustrate the theoretical con-
venience of Koffka’s invariants by reasoning on a specific problem of perceptual 
psychology. We choose the problem of perceptual transparency because it is a topic 
explicitly discussed by Koffka in the chapter on invariants (pp. 260–264); it is a 
subject of substantial research in modern perceptual psychology, and it is a prob-
lem that allows us to show how Koffka’s invariants may be the “gears” of articulate 
models of salient perceptual phenomena.

The phenomenon of perceptual transparency may be illustrated with stimuli of 
various complexities. For definiteness of our example, we refer to a homogeneous 
class of pictorial stimuli, of which the images (i)–(iv) in Figure 2 are four repre-
sentative members. These images – and all members of the intended class – share 
the property of being composed of six regions, topologically distinguished into 
three internal regions R1,1, R1,2, and R1,3, and three external regions R2,1, R2,2, and 
R2,3. Each region is filled with a grey colour, which is uniform within the region 
and different from the greys in the adjacent regions. Furthermore, there is con-
tinuity of the peripheral margins of the internal regions, which is a favourable 
condition in order that their aggregate R1,1+R1,2+R1,3 may give rise to a unitary 
entity in the perceptual rendering [a “figure” surface, denoted by A in Figure 
2(vi)]. For example, thanks to continuity of margins, the aggregate R1,1+R1,2+R1,3 
has the general form of a disk in image (i), of a square in image (ii), and so on. 
Similarly, there is continuity between the radial margins of each internal region 
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and the corresponding margins of the external region adjacent to it, which is a 
favourable condition in order that those two regions may give rise to a unitary 
entity (a “background” surface) in the perceived scene. The “background” surfac-
es are denoted B1, B2, and B3 in Figure 2(vi). It is seen that the aggregates to be 
considered are not mutually disjoint, as each internal region belongs both to the 
aggregate R1,1+R1,2+R1,3 (supporting the “figure” surface) and to one of the aggre-
gates R1,1+R2,1, R1,2+R2,2, R1,3+R2,3 (supporting the “background” surfaces). This is 
a typical property of the transparency phenomenon: “double representation” in 
transparency (Koffka, 1935, p. 261).

Fig. 2  A set of achromatic pictorial stimuli for testing perceptual transparency [parts (i)–(iv)], 
their common topology [part (v)], and the topology of a corresponding perceptual scene with 
transparency [part (vi)].
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In an observational context of this kind, six light-related stimulus properties are 
especially important. They are the intensities (luminances) of the light sent to-
wards the observer by the regions in the stimulus. In optical terms, each lumi-
nance Li,j (for i = 1,2 and j = 1,2,3) is the product of the reflectance (ability to 
reflect light) of region Ri,j and the intensity (illuminance) of the light falling upon 
the region from the light source. Furthermore, if we presume that the effect of 
perceptual transparency takes place, then in suitable conditions, six light-related 
perceptual properties also should be considered. They are the apparent transparen-
cy T and whiteness W of the figure surface A; the apparent whitenesses W1, W2, 
and W3 (of the background surfaces B1, B2, and B3); and the apparent intensity 
I of the illumination in the scene. On the whole, 12 light-related properties are 
involved in the transparency problem under the stated conditions: six are proper-
ties measurable on the stimulus (the luminance values L1,1, L1,2, L1,3, L2,1, L2,2, and 
L2,3) and six are properties available in the percept (properties T, W, W1, W2, W3, 
and I, as defined previously).

In line with modern treatments of the transparency problem (e.g., Beck, Prazd-
ny, & Ivry, 1984; Koenderink, van Doorn, Pont, & Richards, 2008; Metelli, 
1970), two kinds of psychophysical dependence may be hypothesised among 
those properties. One kind involves the luminance L1,j of any internal region 
R1,j in the stimulus, the apparent transparency T and whiteness W of the figure 
surface A in the percept, the apparent whiteness Wj of the background surface Bj, 
and the apparent intensity I of the illumination in the scene, which is expressed 
by the equation

( )( )= − × + × ×L T W T W I1    .j j1, �
(11)

This equation is tantamount to the hypothesis that the psychophysical relationship 
linking the optical property L1,j to the set (T,W,Wj,I) of perceptual properties is 
formally similar to the physical relationship linking the same L1,j to the set (T*,W *,
W *

j ,I*) of physical properties, in which T * is the transmittance of a filter (a number 
from zero to one), W * and W *

j  are the reflectances of the filter and of a surface lying 
behind it, and I* is the illuminance upon the stimulus. The relationship defined 
by equation (11) has the features of a Koffka’s invariant acting on five variables. 
Relationships of this kind are actually alluded to by Koffka on pp. 261–262, when 
he refers to “Talbot’s law” and “laws of colour mixture” in the discussion of “trans-
parency and constancy”. The other kind of psychophysical dependence involves 
the luminance L2,j of any external region R2,j in the stimulus and the perceptual 
properties Wj and I as defined earlier, and this is expressed by the equation

= ×L W I .j j2, � (12)
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It amounts to the hypothesis that the psychophysical relationship linking the 
optical property L2,j to the pair (Wj,I) of perceptual properties is formally similar 
to the physical relationship linking L2,j to the pair (W *

j ,I*) of physical properties 
(i.e., luminance equals the product of reflectance and illuminance). In addition, 
the relationship expressed by equation (12) has the features of a Koffka’s invariant 
acting on three variables. It is implicit in the discussion on pp. 243–244 about 
“whiteness constancy”.

When these two kinds of psychophysical dependences are made explicit for all 
regions in the stimulus, a system of six equations for 12 variables is obtained, 
whose graph is represented in Figure 3. This is a descriptive model of perceptual 
transparency for observational contexts of the type in Figure 2. Operating analyt-
ically on such models proved helpful in addressing both the existence problem of 
the phenomenon – i.e., what conditions the luminance values L1,1,…,L2,3 should 
satisfy in order that the figure surface A may appear as a transparent filter – and 
the evaluation problem – i.e., given apparent transparency, how to predict the 
perceptual properties T, W, etc. based on the luminance values L1,1,…,L2,3 (cf. 
Da Pos & Burigana, 2013). The model represented in Figure 3 is a system of local 
dependences, each dependence acting on a part of an exhaustive set of variables. 
More precisely, it is a system of numerical equations [of the type represented by 
equation (11) or equation (12)], such that analyses or computations with that 
model can be carried out following rules of ordinary algebra. However, when 
applying this approach to other perceptual problems, systems of dependences 
that are of a freer kind, not expressible in terms of numerical equations, could 
come out [refer the “ordinal invariant” defined by expression (7)]. Mathematical 
tools from the combinatorial theories of “networks of constraints” and “Bayesian 
networks” could prove useful for dealing with such generalised systems of local 
psychophysical dependences (Dechter, 2003; Neapolitan, 2004).

The network of dependences underlying perceptual transparency allows us to 
exemplify salient aspects of invariants extracted through conceptual analysis in 
the preceding sections. We mention four of them. First, any single invariant is 
a “tolerant” or non-deterministic dependence, in which the stimulus property is 
able to determine not the values of the perceptual properties involved, but a rela-
tion between them. For example, in an invariant of type (12), for any fixed value 
of L2,j, there corresponds not a single pair of values for (Wj,I), but an (infinite) 
set of such pairs, which however is a constrained set, as all pairs are supposed to 
satisfy equation (12). Second, any invariant (which is a psychophysical depen-
dence) is tantamount to a family of intra-perceptual conditional dependences. 
For example, in an invariant of type (11), for any fixed value of L1,j, there corre-
sponds a quaternary relation between variables (T,W,Wj,I), which may be termed 
a (conditional) intra-perceptual dependence, as those variables are defined as 
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properties of the percept. Thus, in the view we are suggesting, it becomes almost 
unavoidable, in the discussion of a perceptual problem, to bring into play both  
psychophysical and intra-perceptual dependences. Third, although every single 
invariant is generally local and tolerant in its action, nevertheless, a whole system 
of invariants, like that in Figure 3, could be fully deterministic in its effect, so that 
once the values of the stimulus variables are assigned, one single “solution” for the 
set of perceptual variables becomes determined by the system. This may happen 
because the same perceptual variable could belong to the fields of action of two 
or more invariants (which would cooperate in specifying its value) and because 
a network of dependences allows for processes of propagation of constraining 
effects [an idea implicit, e.g., in excerpt (10) from Koffka]. Lastly, the invariants 
defined by equations (11) and (12) are examples of psychophysical dependences 
that (possibly) are conjectured following the “inverse optics heuristic”, i.e., by 
resting on a known physical dependence (from projective optics) and turning 

Fig. 3  Graph of a network of psychophysical dependences for stimuli similar to those in Figure 2 
and the hypothesis of perceptual transparency; on the left are the stimulus variables, and on the 
right are the perceptual variables. Numbers in the circles indicate whether the dependences are 
defined by equation (11) or equation (12) in the text.
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it into a hypothetical psychophysical dependence, by suitable replacement of 
variables. The transition from the physical equation L W I*   *j j2, = ×  to the psycho-
physical equation = ×L W I j j2,  illustrates this possibility.

We are far from believing that invariants in Koffka’s sense may be the corner-
stones of a general theory of visual perception. Our analyses and examples show 
that they are a concept of limited extension, whose applicability is subject to 
definite conditions. What we believe is that, when those conditions are satisfied, 
then invariants may prove to be a flexible and effective tool of psychophysical 
modelling. More precisely, we recognise their main strength in the modulation 
of the concept of “psychophysical dependence” they imply, namely, to state that 
certain perceptual properties depend upon certain stimulus properties does not 
necessarily mean that the values of the latter uniquely determine the values of the 
former. As noted above, such a modulation of psychophysical dependences may 
allow for representing a perceptual problem as a system of several local and partial 
constraints, within which there is place for intra-perceptual dependences, prop-
agation of constraining effects, and possible contribution of a priori tendencies 
or preferences of the perceptual system. In turn, that modulation is the natural 
theoretical consequence of the refusal of the “constancy hypothesis” in strict form 
(commented on in Section 4) and the adoption of a “relational approach” to the 
study of vision, which are generally acknowledged as fundamental tenets of the 
Gestalt theory since its very beginning.

Summary
By introducing the concept of “invariants”, Koffka (1935) endowed perceptual psychol-
ogy with a flexible theoretical tool, which is suitable for representing vision situations in 
which a definite part of the stimulus pattern is relevant but not sufficient to determine 
a corresponding part of the perceived scene. He characterised his “invariance principle” 
as a principle conclusively breaking free from the “old constancy hypothesis”, which rig-
idly surmised point-to-point relations between stimulus and perceptual properties. In 
this paper, we explain the basic terms and assumptions implicit in Koffka’s concept, by 
representing them in a set-theoretic framework. Then, we highlight various aspects and 
implications of the concept in terms of answers to six separate questions: forms of invari-
ants, heuristic paths to them, what is invariant in an invariant, roots of conditional inde-
terminacy, variability vs. indeterminacy, and overcoming of the indeterminacy. Lastly, we 
illustrate the lasting value and theoretical power of the concept, by showing that Koffka’s 
insights relating to it do occur in modern perceptual psychology and by highlighting its 
role in a model of perceptual transparency.
Keywords: Invariance principle, Constancy hypothesis, Stimulus insufficiency, Perceptu-
al indeterminacy, Intra-perceptual dependence.

Zusammenfassung
Mit der Einführung des Invarianzkonzepts bietet Koffka (1935) der Wahrnehmungspsy-
chologie ein flexibles theoretisches Instrument. Mit diesem Konzept kann dargestellt 
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werden, dass ein bestimmtes Reizmuster für die entsprechende visuelle Wahrnehmung 
relevant, aber nicht ausreichend ist, um diese zu bestimmen. Er charakterisiert sein 
“Prinzip der Invarianz” als ein Prinzip, das die alte Konstanzannahme, die starr die Exis
tenz einer direkten Beziehung zwischen Stimulus und perzeptiven Eigenschaften an-
nahm, ersetzt. In diesem Artikel sollen die Grundbegriffe und die impliziten Annahmen 
Koffkas geklärt werden, indem sie in einem mengentheoretischen Rahmen dargestellt 
werden. Im Folgenden werden Aspekte und Folgerungen des Konzepts in Form von Ant-
worten auf sechs separate Fragestellungen hervorgehoben: die Form der Invarianten, heu-
ristische Wege zu ihnen, das Unabänderliche einer Invariante, das Wesen der bedingten 
Indeterminiertheit, Variabilität vs. Indeterminiertheit, Überwindung der Indeterminiert-
heit. Schließlich wird die dauerhafte Bedeutung des Konzepts erläutert, indem gezeigt 
wird, inwiefern Koffkas Erkenntnisse aktuelle Theorien der Wahrnehmungspsychologie 
beeinflussen.
Schlüsselwörter: Invarianzkonzept, Konstanzannahme, Stimulusinsuffizienz, perzeptive 
Indeterminiertheit, intra-perzeptuelle Abhängigkeit.
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