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Abstract: Plasmonic response of the metallic structure characterized by sub-nanometer dielectric
gaps can be strongly affected by nonlocal or quantum effects. In this paper, we investigate these
effects in spherical Na and Au nanomatryoshka structures with sub-nanometer core-shell
separation. We use the state-of-the-art quantum hydrodynamic theory (QHT) to study both
near-field and far-field optical properties of these systems: results are compared with the classical
local response approximation (LRA), Thomas–Fermi hydrodynamic theory (TF–HT), and the
reference time-dependent density functional theory (TD–DFT). We find that the results obtained
using the QHT method are in a very good agreement with TD–DFT calculations, whereas other
LRA and TF–HT significantly overestimate the field-enhancements. Thus, the QHT approach
efficiently and accurately describes microscopic details of multiscale plasmonic systems whose
sizes are computationally out-of-reach for a TD–DFT approach; here, we report results for Na
and Au nanomatryoshka with a diameter of 60 nm.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

Plasmonic systems have been a topic of substantial research due to their promising applications
such as optical sensing [1], nanolasing [2], surface-enhanced Raman scattering [3] and enhance-
ment of nonlinear optical processes [4], to name a few. Metallic structures with sub-nanometer
inter-distances make an important class of plasmonic systems presenting unique properties [5–8].
At such distances in fact conventional classical theories, such as Drude-type models, fail to cor-
rectly describe electron dynamics inside the metallic system. This deviation is due to microscopic
details that are neglected in the traditional approach but that give rise to a nonlocal response or
quantum effects, which become observable in the macroscopic properties of the system [9–12].
A correct theoretical description of the optical response of these systems can be obtained

by first-principle quantum mechanical calculations, such as time-dependent density functional
theory (TD–DFT) [13]. However, TD–DFT methods are applicable only to very small systems,
a few nanometers in size. Most of the plasmonic components involved in experiments are tens
to hundreds of nanometer in size and the TD–DFT is unable to handle such scales as their
computational cost increases cubically with the number of electrons.
A computationally less demanding alternative to the first-principle approach is the hydrody-

namic theory (HT) [14–17], in which the quantum electron dynamics is solved via macroscopic
observable quantities, such as the charge density n(r, t) and the current density J(r, t). In the
HT quantum properties are taken into account via complex expressions of the electron internal
energy or pressure. In the local response approximation (LRA) in fact, induced charges can be
squeezed into an infinitesimal thin layer at the surface of the metallic particle. The role of the
electron pressure is then to smoothen the singularity so that the induced charges spread out from
the metal surface.

The most common and simple approximation in the HT is obtained using the Thomas–Fermi
(TF) expression for the electron pressure [18–22], which is usually combined with the hard-wall
boundary condition (electrons cannot escape the metal boundary) and a uniform equilibrium
electron density. Although the TF–HT gives a good qualitative description of gap-dependent
resonance shifts in plasmonic systems [8, 9], it neglects important quantum effects such as
electron spill-out and quantum tunneling. These effects can be incorporated in HT by taking into
account the spatial dependence of the electron density. However, in order to avoid unphysical
plasmonic modes [23, 24], the TF kinetic energy needs to be enriched with a new ∇n-dependent
term: the von Weizsäcker kinetic energy. This method is referred in the literature as the quantum
hydrodynamic theory (QHT). The QHT has been applied to study optical properties of spherical
and cylindrical monomer and dimer structures and it has been seen to efficiently describe the
nonlocal or quantum effects [23, 25–29].
Concentric core-shell nanostructures—also known as nanomatryoshka—offer an unusual

large tunability due to strong coupling between core and shell elements. These structures could
be fabricated in very small sizes with subnanometer core-shell spacing and might be useful
in surface enhanced spectroscopy and biomedical applications [30, 31]. These structures with
dielectric or metallic core have been extensively studied in classical framework [32–36]. A full
quantum mechanical treatment for spherical and cylindrical nanomatryoshka (NM) structures has
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Fig. 1. Geometry of the nanomatryoshka structure made up of a solid metallic core
encapsulated by a concentric metallic shell. R1 represents the radius of the core while R2
and R3 are the internal and external radii of the shell.

been presented in [37, 38]. They showed that at core-shell spacing below 5 Å, the charge transfer
between the core and shell takes place and the the tunnelling effect substantially influences the
absorption cross-section and field enhancement. Reference [39] presents an ab initio study of
bimetallic core-shell nanostructures emphasizing the quantum effects on the optical response of
these nanoparticles. However, the plasmonic systems considered in these works are much smaller
than those of practical interest.

In this paper, we apply the QHT to investigate microscopic and macroscopic optical response
of so-called nanomatryoshkas (NMs) which are composed of a solid metallic spherical core
surrounded by a concentric metallic spherical shell. A systematic analysis within local, TF–HT
and QHT approximations has been presented and the impact of core-shell spacing on the optical
properties of Au and Na NMs has been studied. For Na NMs, we performed TD–DFT calculations
which show that the QHT approach is very accurate both in reproducing the optical spectrum as
well as the induced density. It is worth noticing however that the QHT does not fully incorporate
the wave nature of an electron and, therefore, it does not capture the Friedel (quantum) oscillations.
Similar findings are found for Au NM nanostructures, where TD–DFT results can be found
in literature [37]. Finally, NMs with sizes much larger than those which can be handled by
the TD–DFT have also been considered both for Au and Na metals. We take full advantage of
symmetry of the structure and use a 2.5D technique for numerical implementation, which reduces
the computational burden to a great extent [40].

2. Theory and computational details

2.1. System details

We consider a spherical structure composed of a metallic solid core encapsulated by a thin
metallic shell, as shown in Fig. 1. For simplicity we assume that the dielectric medium between
the core and shell is vacuum. The dimensions of the NM are represented by (R1, R2, R3) where
R1 represents the radius of the core while R2 and R3 indicate respectively the inner and outer
radii of the encapsulating shell. We model the NM using Jellium approximation [41, 42] where
the electrons in the metal are confined by uniformly-distributed positive background charges with
density n+ = (r3

s 4π/3)−1 inside and zero outside the metal boundary. The Wigner-Seitz radius
rs = 3.02 a.u. for Au and rs = 4 a.u. for Na metal.
For comparison, we perform calculation within the LRA. In this case we use a Drude-type
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dielectric function for the metal description:

ε(ω) = ε∞ −
ω2

p

ω(ω + iγ), (1)

where ε∞ represents the background core permittivity, ωp is the spatially constant plasma
frequency and γ is the electron collision rate. For Au we choose ε∞ = 8, ωp = 9.07 eV and
γ = 0.135 eV, as given in [37] and for Na we use ε∞ = 1, ωp = 6.04 eV and γ = 0.16 eV, taken
from [43].

2.2. Quantum hydrodynamic theory

Hydrodynamic equation of motion of an electronic system when coupled to Maxwell equations
leads to the following system in frequency domain [28]:

∇ × ∇ × E − ω
2

c2 E = ω2µ0P, (2)

− n0e
m
∇

(
δG
δn

)
1
+

e
m
∇ · σ(kxc) − (ω2 + iωγ) = n0e2

m
E, (3)

where E is the electric field, P is the polarization and µ0 and c represent the magnetic permeability
and speed of light in free-space respectively; n0(r) is the spatially dependent equilibrium charge
density, γ is the damping rate, e and m are the electron charge and mass respectively. In the QHT
the internal energy of the electronic system is:

G[n] = TTF[n] + TvW[n] + Exc (4)

where TTF and TvW are the Thomas–Fermi and von Weizsäcker kinetic energy functional and
Exc indicates the exchange and correlation (XC) energy. σ(kxc) in Eq. (3) is the viscoelastic
kinetic-exchange-correlation tensor which takes into account the nonlocal broadening of the
plasmon energies. Explicit expressions for the terms in Eq. (3) can be found in [27, 28]. The
TF–HT approximation can be recovered if the XC and von Weizsäcker energy functional are
neglected in Eq. (4) and the equilibrium electron density is assumed as constant, i.e., n0(r) = n0.

We solve Eqs. (2) and (3) under plane-wave excitation for E and P fields, which are further used
to compute optical properties of the plasmonic systems. In particular, Eq. (3) is only imposed
in a region that contains the NM. On the boundary of this region, far enough form the ion
edge, we impose P = 0; here the equilibrium density and hence P is practically zero (although
not exactly since the electron density decays exponentially). Commercial software Comsol
Multiphysics [44], which allows a flexible implementation of these equations, has been used.
We exploit the symmetry of the geometry and use the 2.5D simulation technique [40], which
significantly reduces the computational efforts in terms of memory and processing time. 2.5D
method requires all fields to be written in terms of an azimuthal mode number m, such that
for a vector field v can be expressed as: v(ρ, φ, z) = ∑

m∈Z v(m)(ρ, z) exp[−imφ], where m ∈ Z.
The advantage of this method is that an initially three-dimensional problem is reduced to a
few (2mmax + 1) two-dimensional problems. For sub-wavelength structures mmax < 3 is usually
enough to accurately describe the problem.
The equilibrium electron density is computed self-consistently from the following nonlinear

differential equation [25, 28],

∇2
(
∂G[n]
∂n

)
n=n0

+
e2

ε0
(n0 − n+) = 0, (5)

where ε0 is the permittivity of the free-space and n+ represent the uniform background positive
charge. The ground-state density n0(r), which include the spatial dependence of the electron
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density, has a strong impact on the QHT optical response. To calculate the unperturbed electron
density n0(r) of the NM self-consistently, we consider the following expression for the initial
guess (as used in [27, 28] for spheres):

nguess(r) =
(

1
1 + exp[−κ(r − R1)]

+
1

1 + exp[κ(r − R2)]

) (
1

1 + exp[−κ(r − R3)]

)
, (6)

where r is the distance from the center of the NM and κ represents an asymptotic decay of the
electron density. The solution is then found solving Eq. (5) iteratively.

2.3. DFT and TD–DFT calculations

DFT data are obtained by solving self-consistently the Kohn-Sham (KS) equations and computing
the TD–DFT optical spectra of jellium NM systems with the Wigner-Seitz radius rs=4. Calcula-
tions have been performed using an in-house developed code using a uniform numerical grid.
The implemented TD–DFT algorithm follows the literature [41,45,46]. We used an empirical
broadening of 40 meV. In this work we only consider jellium NM systems with filled shells.
A NM system described by an arbitrary (R1, R2, R3) may not have filled shells nor an integer
number of electrons. Thus, for a given NM system described by (R1, R2 = R1 + ∆, R3) we first
considered only the core of the jellium nanomatryoshka system, i.e. a jellium nanosphere with
Nc electron and we searched for the filled-shell jellium nanosphere with a radius R′1 closest to the
target one R′1 ≈ R1. Then we added the shell with Ns electrons considering the exact gap region
(i.e. R′2 = R1 + ∆) and an external radius giving a magic-number total number (Nt = Nc + Ns) of
electron and an external radius R′3 closest to the target one R′3 ≈ R3).

3. Numerical results and discussion

3.1. Optical response of scaled NM structures

In this section, we consider five NM structures (see Fig. 1) with dimensions SF ×(R1, R2, R3)
with R1 = 8.5 Å, R2 = 9.5 Å and R3 = 15.9 Å where SF is the scaling factor taking an integer
value from 5 to 1 corresponding to a core-shell separation from 5 to 1 Å. According to classical
electrodynamics, scaling of a plasmonic system does not change its optical properties: only the
amplitude of the spectra is affected while the plasmon resonance remains exactly at the same
position [47]. Since the particle sizes under study are much smaller than the operating wavelength,
therefore, the retardation effects can be entirely neglected [37]. The NM structure supports three
hybridized plasmon modes arising from the interaction of the core mode and the two bonding and
antibonding modes of the shell. [37, 38]. In the classical framework the Au (Na) NMs support a
lower energy mode (LEM), localized in the gap, approximately at 1.77 (1.38) eV and a higher
energy mode (HEM) at 2.86 (3.46) eV in the absorption spectra, whereas the third mode is not
visible in the spectrum due to low dipole moment.

Absorption efficiency (i.e. the photoabsorption cross-section divided by the geometrical
cross-section, πR2

3 ) for the five NMs computed within the LRA, TF–HT and QHT methods for
Au (left panels) and Na (right panels) are shown in Fig. 2. It is evident from the LRA calculations
that the scaling of the structure affects only the relative amplitude of the absorption spectrum for
both Au and Na. The positions of lower and the higher energy resonant modes are unchanged
after such scaling. The TF–HT predicts a blue-shift with respect to local calculations for both
lower and higher energy modes with a larger shift for smaller SF (or gaps). This shift of the HEM
peak towards the higher energies has already been found in dimer structures with sub-nanometers
gaps [48].
The QHT, on the other hand, predicts spectra whose shift direction (with respect to LRA)

depends on the material. For Au NMs, as in the TF–HT case, HEM peaks undergo a blue-shift
(however smaller) as the SF decreases from 5 to 1. Conversely, for Na NMs, the QHT predicts
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Fig. 2. Absorption efficiency calculated within LRA (a,b), TF–HT (c,d) and QHT (e,f)
methods for Au (left panels) and Na (right panels) NMswith dimensions SF×(8.5, 9.5, 15.9)Å.
SF indicates the scaling factor which varies from 1 to 5. A zoom-in on the lower energy
mode is shown in the insets.

a red-shift with respect to LRA. When the gap between the core and shell decreases the LEM
starts vanishing due to electron spill-out, and for the gap size below 3 Å for Au and below 4Å for
Na (i.e. with SF smaller than 3 and 4 respectively) the LEM completely disappears in the QHT
spectrum, as shown in the Fig. 2(e)-2(f).

It is clear that for sodium, quantum mechanical effects are more pronounced compared to gold.
This is due to two reasons: i) Na has a lower work function so that electrons are more relaxed at
the surface and hence the spill-out region has a slightly larger extension; ii) Na does not have
d-band electrons, which in Au systems counteract the effects of free electrons [49].
The results above are in a very good agreement with the previously published TD–DFT

calculations presented in [37] for Au nanomatryoshkas. A more detailed comparison for the Na
systems is reported in the next section.

3.2. Comparison with TD–DFT results

TD–DFT calculations have been performed for filled-shell Na nanomatryoshka systems, cor-
responding to SF=1-4. The properties of considered systems are reported in Tab. 1. Note that
the Nt increase very fast (cubically) with SF: due to some technical limitation of the current
implementation (no fractional occupation numbers implemented) we couldn’t compute systems
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Table 1. Number of electrons in the core (Nc), in the shell (Ns), their sum (Nt = Nc + Ns),
the core radius (R′1) and the external radius (R′3) for the filled-shell Na nanomatryoshka
systems considered for DFT calculations.

SF Nc Ns Nt R′1 R′3
1 68 330 398 8.64Å 15.90Å
2 508 2604 3112 16.89Å 31.55Å
3 1760 9224 10984 25.54Å 48.01Å
4 4154 21358 25512 34.01Å 63.60Å

with SF larger than 4. We found that the filled-shell NM are very close to the target systems, with
deviation in the radius less than 0.3Å.
In Fig. 3 we report (from top to bottom) the ground-state density n0, the photoabsorption

spectrum, the induced charge density n1 at the resonance peak, for SF=4 (left column) and SF=1
(right column).

As previously discussed for jellium spheres [27], the QHT density reproduces the DFT density
quite accurately and the agreement increases for large systems, see Figs. 3(a) and 3(b). Clearly,
(quantum) oscillations are neglected, due to the approximate KE functional: however, their
amplitude decreases with the system size.

Concerning the main plasmon peak (HEM) in photoabsorption spectrum (see Figs. 3c and 3d)
QHT is in very good agreement with the TD–DFT one, whereas LRA and TF–HT are significantly
blue-shifted. We recall that in TD–DFT the line-shape originates from the convolution of many
electronic transitions. This is quite evident for SF=1. For large systems, all electronic transitions
collapse into a single plasmon peak. On the other hand, in the QHT approach, only one collective
(plasmon) excitation is computed, which is broadened [28] with the viscoelastic term from Eq.
(3). Concerning the LEM peak, both QHT and TD–DFT do not present any significant peak, in
contrast to LRA and TF–HT, see insets in Figs. 3(c) and 3(d).
A more detailed comparison between QHT and TD–DFT is illustrated in Figs. 3(e)-3(f)

(induced polarization density). Interestingly, the QHT approach reproduces very accurately the
main oscillations at the external surface of the system as well as inside the gap. On the other
hand, not all (quantum) oscillations can be reproduced by the QHT, which results averaged out
inside the metal [see e.g. Figs. 3(e) and 3(f)].

3.3. Field enhancements

Having validated the accuracy of the QHT approach, in this section we will discuss in more details
the field enhancements, i.e. |Etot |/|Einc | = |Etot |/E0, which is together with the resonance shift,
the most relevant feature for applications.
A comparison of the electric field distribution at LEM and HEM computed within LRA,

TF–HT and QHT for Na NMs for SF=5 are shown in Fig. 4. It can be seen that the HEM produces
a strong electric field inside the gap as well as outside the particle whereas at the LEM the
induced field is confined only in the gap region.
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Fig. 3. (a,b) Ground-state density, (c,d) absorption efficiency, and (e,f) induced polarization
density obtained as nind = ∇ · P/e for SF=4 (left panels) and SF=1 (right panels) for
LRA,TF–HF, QHT and (TD–)DFT calculations.
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Fig. 4. Distribution of the normalized electric field for Na NMs at HEM (upper panel) and
LEM (lower panel) NMs with SF=5 calculated using LRA, TF–HT and QHT methods. The
fields are plotted at the resonances and the corresponding energies in eV are mentioned on
the maps.
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The electric field enhancement inside the gap region, obtained by employing the LRA, TF–HT
and QHT theories, is plotted as a function of distance in Fig. 5. Figures 5(a) and 5(b) report
respectively results for Au and Na nanostructures for SF=5 at the resonance frequencies. The plot
shows that LRA and TF–HT predict almost the same field enhancement with a linear profile inside
the gap. On the other hand much lower field enhancement is predicted by the QHT approach and
with a more parabolic profile, due to the spill-out effects.

Fig. 5. Electric field enhancement profile inside the gap for Au (upper panel) and Na (lower
panel) for SF=5 at the corresponding resonance frequency by using LRA, TF–HT and QHT
methods.

Despite such more complicated profile, in the following we consider the field enhancement
averaged in the gap, in order to have a global indicator to compare different methods and systems.
In Fig. 6 we report the electric field enhancement averaged inside the gap as a function of

scaling factor (SF) at the lower and higher energy modes both for Au and Na. Note that for
QHT spectra, LEM peaks result damped for small SFs. The field enhancement becomes then
independent on the frequency within the associated region. The comparison shows that LRA and
TF–HT predict similar field enhancements whereas much lower values are obtained from QHT
due to quantum effects. More specifically, while LRA field enhancements are independent from
the SF, TF–HT results show a weak size-dependence, converging towards the LRA results for
larger SF. On the other had, QHT field enhancement increases quite rapidly with SF, for both
modes.
It is worth noting that QHT field enhancement results are in good agreement with TD–DFT

results, confirming the discussion of previous section. This is shown for Na NMs with SF=1-4
[see Fig. 6(b)]. Remark that TD–DFT LEM peaks cannot be identified for SF=3 or lower. This is
true for QHT spectra as well, however in this case the field enhancement becomes independent
on the frequency within the region associated to the LEM.
It is important to point out that the distribution of the electric-field enhancement (see Fig. 5)

directly depends on spill-out effects. On the other hand, the absolute value of the electric-field
enhancement (or its averaged values, reported in Fig. 6) depends on the absolute absorption
efficiency at the resonance frequency, i.e. on the broadening of the plasmon resonance, which is
treated differently by the different methods. In TD-DFT a myriad electronic transitions exist that
translate into a broadening of the collective plasmon resonance. In QHT single-particle excitations
cannot be exactly taken into account (since the basic assumption is that all the electrons lay in
identical states) and the broadening is effectively described via a density-dependent viscous-like
tensor [28]. In both cases, the broadening depends on the gap distance, contrarily to LRA and
TF-HT in which the broadening only depends on the bulk electron collision rate.
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Fig. 6. Average electric field enhancement inside the gap as a function of scaling factor (SF)
for Au and Na NMs at HEM (upper panel) and LEM (lower panel) computed using LRA,
TF–HT and QHT methods.

Results in Fig. 6 are very important for applications. It is shown that TF–HT is even less
accurate than LRA to described field enhancement in the gap. On the other hand, due to the
importance of spill-out effects in these systems, QHT is the method of choice, being as accurate
as TD–DFT.

3.4. Optical response of NMs with D=60 nm

In this section, we consider Au and Na NM structures with a fixed particle size of diameter
D = 60 nm. Systems of such size cannot be handled by TD–DFT methods. In particular, we
consider a system with dimensions (R1, R2, R3) where R1 = 17 nm is the fixed radius of the solid
core, R2 = R1 + g nm is the inner radius and R3 = 30 nm is the outer radius of the shell. The gap
between the core and shell is represented by g and it will vary from 4 nm to 0.1 nm.

The large size of the particle with sub-nanometer separation makes the problem multiscale and
its numerical implementation to study both microscopic as well as macroscopic details becomes
computationally virtually impossible for a TD–DFT approach but still possible, although every
demanding, for QHT (and TF–HT for structures for which no analytical solution exists). As we
mentioned before, the 2.5D formulation makes this task much easier. The absorption spectra for
Au NMs calculated using the LRA, HT-TF and QHT methods are plotted in Fig. 7 (left panel).
The change in core-shell spacing strongly influences the LEM whereas the plasmon peaks of
HEM remain roughly at the same energy as the overall size of the particle remains the same
(D = 60 nm). Results based on LRA and TF–HT show that as the core-shell distance gets smaller,
the amplitude of the LEM decreases but there is always a distinct and well-defined peak for each
gap size. However, in agreement with the previous study conducted in section Sec. 3.1 [Fig. 2
(c)], the QHT predicts that the amplitude of the LEM diminishes as the gap between the core and
shell closes and it completely disappears for the gaps smaller than 0.3 nm (3Å) due to quantum
effects.
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Fig. 7. Absorption spectra calculated within (a) LRA (b) TF–HT and (c) QHT methods for
Au (left panel) and Na (right panel) NMs with dimensions (R1, R1 + g, R3) where R1 = 17
nm, R3 = 30 nm and the gap g varies from 4 to 0.1 nm. A zoom-in on the lower energy
mode is shown in the inset.

Na NM absorption spectra show a third hybridized resonant mode, resulting from the
combination of core resonant mode and antibonding resonant mode of the shell (see right panel
of Fig. 7).We see that when the core-shell gap closes the spectra follow a similar trend as shown
in Fig. 2 (f). That is, the LEM vanishes for the gaps smaller than 0.4 nm (4 Å). The QHT then
efficiently describes near- and far-field optical properties of microscopic as well as macroscopic
plasmonic systems.
Finally, in Fig. 8, we plot the average electric field in the gap for the LEM and HEM both for

Au and Na. The insets present the results normalized with the average field in LRA for the gap
sizes from 5 to 1Å. The plots show similar trend for average field as it was seen for the case of
scaled Au and Na NMs, given in Fig. 6. It is interesting to observe that quantum effects, and
particularly quantum tunneling, have the same impact on macroscopic systems as it was observed
in small systems. This means that in sub-nm gap regimes, single-particle excitations might still
drive the system optical response even when a system of millions of electrons is considered.

4. Conclusions

We have investigated near- and far-field optical properties of many Au and Na core-shell spherical
nanomatryoshka structures, where the concentric core and shell are separated by a vacuum gap.
The impact of particle size and core-shell spacing on the optical response was studied within the
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Fig. 8. Average electric field measured inside the core-shell gap at HEM (upper panel) and
LEM (lower panel) for Au (right) and Na (left) NMs with D=60 nm. The insets show a
zoom-in of the average fields, normalized by the field predicted by the LRA, for the gap
sizes from 0.1 to 0.5 nm

LRA, TF–HT, and QHT approximations and compared with TD–DFT results. We have found that
LRA and TF–HT methods could be quite inaccurate to describe the microscopic behavior of these
system, as essential quantum effects like electron spill-out and tunneling are neglected. The QHT,
on the other hand, efficiently predicts their optical response and shows a very good agreement
with full quantum TD–DFT calculations, not only for the absorption spectrum but also for the
induced polarization density and local field enhancements. In fact, the field enhancement in the
gap region is greatly reduced, particularly for smaller gaps, as compared to LRA and TF–HT
results. Due to the importance of spill-out effects in these systems, QHT can be as accurate as
TD–DFT.

Finally, we also considered large NM structures (D = 60 nm), with subnanometer gaps,
whose sizes make them computationally prohibitive for TD–DFT. We found that when the gap
size is fairly large, LRA, TF–HT and QHT theories approximate the same response because
of absence of charge transfer between core and shell. However, as the core-shell separation is
sufficiently decreased, one has to take into account quantum effects in order to correctly account
for the correct response. The QHT can efficiently describe quantum spill-out effects as well
as the plasmon resonances and near-field properties, thus providing an excellent tool to probe
microscopic and macroscopic optical response of multiscale plasmonic systems.
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