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Abstract: Contrary to single mode fibers, where random imperfections
are responsible for polarization-mode dispersion, modal dispersion (MD)
in multi-mode fiber structures for space-division multiplexed (SDM)
transmission, originates chiefly from the intrinsic non-degeneracy of the
propagating modes, also known as modal birefringence. The presence of
random imperfections in such fibers has a positive aspect, as it reduces the
intrinsic MD, and in the limit of strong coupling it causes the signal delay
spread to increase with the square root of the propagation distance, rather
than linearly, as would be the case in an ideal fiber. In this paper we derive
a formula that relates the signal delay spread to the fiber geometry and to
the statistical properties of the structural fiber perturbations. The derived
formula provides insight into the MD phenomenon and facilitates the design
of low-MD multi-mode fiber structures.

© 2015 Optical Society of America

OCIS codes: (060.2330) Fiber optics communications; (060.4510) Optical communications;
(060.4230) Multiplexing.

References and links
1. H. Kogelnik and P.J. Winzer, “Modal birefringence in weakly guiding fibers,” J. Lightwave Technol. 30, 2240–

2243 (2012).
2. C. Antonelli, A. Mecozzi, M. Shtaif, and P. J. Winzer, “Stokes-space analysis of modal dispersion in fibers with

multiple mode transmission,” Opt. Express 20, 11718–11733 (2012).
3. K-P. Ho and J.M Kahn, “Statistics of group delays in multi-mode fibers with strong mode coupling,” J. Lightwave

Technol. 29, 3119–3128 (2011).
4. R. Ryf, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. J. Winzer, R. Delbue, P. Pu-

palaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “SDM transmission over 4200-km 3-core microstructured
fiber,” OFC 2011, Paper PDP5C.2 (2011).

5. C. Antonelli, A. Mecozzi, M. Shtaif, and P. J. Winzer, “Random coupling between groups of degenerate fiber
modes in mode multiplexed transmission,” Opt. Express 21, 9484–9490 (2013).

6. L. Palmieri, “Coupling mechanism in multimode fibers,” SPIE OPTO (2013), Paper 90090G.
7. J.P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl.

Acad. Sci. USA 97, 4541–4550 (2000).
8. A. Mecozzi, C. Antonelli, and M. Shtaif, “Intensity impulse response of SDM links,” to be published (2015).
9. C. Xia, N. Bai, I. Ozdur, X. Zhou, and G. Li “Supermodes for optical transmission,” Opt. Express 19, 16653–

16664 (2011).
10. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62, 1267-1277 (1972).
11. A. Galtarossa and L. Palmieri, “Measure of twist-induced circular birefringence in long single-mode fibers:

theory and experiments,” J. Lightwave Technol. 20, 1149–1159 (2002).

#225564 - $15.00 USD Received 24 Oct 2014; revised 2 Dec 2014; accepted 5 Dec 2014; published 28 Jan 2015 
© 2015 OSA 9 Feb 2015 | Vol. 23, No. 3 | DOI:10.1364/OE.23.002196 | OPTICS EXPRESS 2196 



1. Introduction

One of the most critical challenges in space-division multiplexed (SDM) transmission over
multi-mode and multi-core fibers is the fact that different fiber modes propagate with distinc-
tively different velocities. This results in a significant delay spread, which constrains the com-
plexity of the digital signal processing (DSP) required for the implementation of multiple-input
multiple-output (MIMO) techniques. Unlike in the case of standard single-mode fibers, where
the delay spread results from the presence of structural imperfections which produce random
birefringence, in SDM fibers the delay spread is caused primarily by modal birefringence – an
intrinsic property of multi-mode waive-guides, that exists even in ideal structures. Interestingly,
in the multi-mode case, the existence of structural imperfections has a positive aspect. Indeed,
in their presence, the temporal broadening of the transmitted waveforms is proportional to the
square root of the system length, and not to the system length itself, as it would be in an ideal
fiber [1]. While this is a well-known fact, pointed out in early SDM studies [2, 3] and veri-
fied experimentally [4], the relation between the various fiber parameters and the delay spread
remains largely unknown. This relation is critical for the efficient design of SDM fibers with
the scope of reducing the delay spread, and with it the requirements from the MIMO-DSP
hardware.

In this paper we describe the mechanism which is responsible for the transition from a linear
dependence of the temporal broadening on system length, which characterizes short fibers, to
a square-root length dependence. In this sense, this paper generalizes our previous work [5],
which focused only on the regime characterized by the linear length dependence. We derive
a formula for the mean square length of the modal dispersion (MD) vector introduced in [2],
which uniquely determines the signal delay spread. The formula that we derive applies to all
types of SDM fibers, including multi-mode fiber (MMF) and multi-core fiber (MCF) structures,
and accommodates perturbations having arbitrary statistical properties (indeed the characteri-
zation of the mechanisms that cause random mode coupling are a subject of ongoing research
[6]). After introducing the general formula, we specialize it to the case of a three-core fiber of
the kind used in [4] and exemplify its power in predicting the observed growth-rate of the delay
spread with system length.

2. Problem setting and background

We consider an SDM fiber structure supporting 2N modes, where N is the number of spatial
modes and the factor of 2 accounts for polarization. We denote by �E the column vector whose
components Ej(ω) ( j = 1 . . .2N) are the Fourier transforms of the complex envelopes of the
electric field in the various modes. The linear evolution of the electric field in an SDM fiber is
governed by the equation

∂�E
∂ z

= iB�E, (1)

where B(ω) is a 2N × 2N propagation matrix, which can be divided to three contributions
B = β I+B0 +Bn. Here β is the mode-averaged propagation constant, I is the identity ma-
trix, B0 is a z-independent matrix accounting for differences in the deterministic propagation
constants and for the deterministic mode coupling, whereas Bn is a z-dependent matrix that
accounts for random perturbations. In the absence of mode-dependent loss, and omitting the
trivial contribution of mode-independent scattering losses (whose effect is immaterial to our
study), the matrices B0 and Bn are Hermitian. In addition, since β accounts for the (immaterial)
mode-averaged propagation constant, B0 and Bn are traceless.

B0 =
�b ·�Λ
2N

, Bn =
�n ·�Λ
2N

, (2)
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Fig. 1. On the left is the schematic of the three-core fiber that we assume in our examples.
The fiber parameters are taken from [4]: each core’s radius is r = 6.2 μm, the inter-core
distance is d = 29.4 μm, and the refractive index difference between cores and cladding
is of 0.27%. In the middle we show the structure of the Jones vector for this fiber in the
reference frame of the individual cores. On the right we show the deterministic coupling
matrix B0, where the coupling coefficient b can be obtained as in [10].

where�Λ is a vector whose D = 4N2−1 components are the generalized 2N×2N Pauli matrices
Λ j, and where �b and �n are generalized birefringence vectors, representing the effects of the
intrinsic fiber birefringence, and of the perturbations, respectively. Naturally 〈�n〉= 0, where the
angled brackets denote statistical averaging. The D components of�b and�n can be extracted as
b j = Trace[Λ jB0] and n j = Trace[Λ jBn]. In order to provide some intuition, we apply the above
to the example of the three-core fiber (N = 3) whose structure and propagation matrix B0, in
the basis of the individual cores, are shown in Fig. 1. In this case, using the above recipe and
the definition of the matrices Λ j given in [2], one finds that�b = 2b

√
N(ê10 + ê16 + ê18 + ê24 +

ê26 + ê32), where ê j ( j = 1 . . .D) is a unit vector corresponding to the j-th dimension of Stokes
space.

Another key concept that is necessary for our analysis is modal dispersion, which is repre-
sented in Stokes space by the MD vector �τ , also introduced in [2]. This vector is an extension
of the polarization-mode dispersion (PMD) vector used in the analysis of single mode fibers
[7], such that the principal states are the eigenvectors of the matrix�τ ·�Λ/2N and the delays are
the corresponding eigenvalues. The MD vector uniquely determines the temporal broadening of
the incident signal. This can be shown explicitly in two limiting cases; one where the principal
states are constant across the signal bandwidth and another when they change rapidly within it.
In the former case the delay spread T is defined as the difference between the largest and the
smallest eigenvalues of �τ ·�Λ/2N [3, 2], and it is a random quantity whose mean square value
is 〈T 2〉 = f 2(N)〈τ2〉, where f (N) is given in Eq. (3) of [2], and the angled brackets denote
averaging over the ensemble of fibers. In the latter case, the delay spread T can be defined as
the temporal root-mean square duration of the received pulse. It can be shown that in this case
T is a deterministic quantity and it is equal to T 2 = 〈τ2〉/4N2 [8, 4]. In order to allow a com-
parison with the experiments reported in [4], we assume in what follows the second definition
for the delay spread, while keeping in mind that the first definition is identical within a simple
numerical scaling factor.

The evolution of the MD vector is governed by the equation

∂�τ
∂ z

=�bω +�nω +
(
�b+�n

)
×�τ, (3)

where the subscript denotes differentiation with respect to the angular frequency ω and where
the symbol × denotes the generalized cross product between vectors [2]. The term �nω , which
accounts for the frequency dependence of the perturbations, contributes to the delay spread to
a negligible extent as compared to the term�bω , which accounts for the deterministic walk-off
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Fig. 2. a) The coupling coefficient b as a function of the inter-core distance d. Relative
changes of b of the order of 20% can be seen to correspond to variations smaller than 1μm
in the inter-core distance. b) The square delay spread T 2 versus distance for the displayed
perturbation parameters. The solid curve shows the results of Monte Carlo simulations with
104 fiber realizations; the dashed curve is based on Eq. (4). The asymptotic growth-rate κ2.

between non-degenerate modes. Therefore we neglect the contribution of �nω in what follows.
The final expression for T is provided below, while its derivation is deferred to Sec. 4.

3. Main results

Our main contribution in this Letter is in demonstrating that the delay spread T (which we
define as T 2 = 〈τ2〉/4N2) associated with the propagation of 2N modes, is given by

T 2 =
2

4N2
�bω ·Q−1 [Q−1 (exp(Qz)− I)− Iz

]
�bω � κz, (4)

where the second equality holds in the limit of large z, with κ =

√
−�bω ·Q−1�bω/4N2 being the

delay spread coefficient. The expression for the matrix Q is given by

Q =
1
Δz

∫

Δz
exp(z′�b×)

{
D

∑
i, j=1

êi ×
[∫ ∞

0
Ni, j(ζ )exp(ζ�b×)dζ ê j

]
×
}

exp(−z′�b×)dz′, (5)

where the external integration is performed over an interval of Δz, which is assumed to be
much larger than the beat length between the nearest non-degenerate true fiber modes. In the
example of a three-core fiber, the smallest beat length of the true modes, known in this case
as supermodes [9], is 2π/3b. The symbol (�u×) is an operator that performs the generalized
cross product, i.e. (�u×)�v =�u×�v, and it can be represented ay a skew-symmetric D×D matrix.
The symbol Ni, j(ζ ) is the cross correlation function of the i-th and j-th components of the
perturbation vector�n, namely Ni, j(ζ ) = 〈ni(z+ζ )n j(z)〉.

We now apply Eq. (5) to our example of a three-core fiber, assuming the fiber parameters
reported in [4]. We assume that perturbations are due to random and independent fluctuations in
the three core-to-core distances, as well as due to random polarization coupling in the individual
cores. The perturbations are therefore characterized by means of the standard deviation in the
core-to-core distance and in terms of the beat length LB between polarizations in the individual
cores. The effect of fluctuations in the core-to-core distance d on the coupling coefficient b is
summarized in Fig. 2a, which shows that changes of d smaller than 1μm around the nominal
value of 29.4μm correspond to variations of the order of 20% in the value of b. We hence
model these perturbations as independent complex circular Gaussian distributed fluctuations in
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the coupling coefficients between each two cores with a standard deviation of Δbrms = 0.2b. The
coupling between polarizations within each individual core is modeled by means of a standard
isotropically distributed birefringence vector, whose length is a Maxwellian random variable
with a root-mean-square value of 2π/LB, as is customarily done in single-mode fibers [11].
With these assumptions one can construct the generalized birefringence perturbation vector �n
as follows, using the definition of the matrices Λn, n = 1 . . .35, given in the appendix of [2]. All
of its nonzero entries are independent Gaussian random variables, where the standard deviation
σi of entries i ≤ 9 is 2π/LB, that of entries 10 ≤ i ≤ 33 is

√
6Δbrms, whereas entries 34 and 35

are zero. Finally we assume that the perturbations decorrelate exponentially with a correlation
length LC, so that Ni, j(ζ ) = δi jσ2

i exp(−|ζ |/LC), where δi j is the Kronecker delta. Equation
(5) therefore reduces to

Q =
1
Δz

∫

Δz
exp(z′�b×)

{
35

∑
i=1

σ2
i LCêi ×

[(
I−LC�b×

)−1
êi

]
×
}

exp(−z′�b×)dz′. (6)

In Fig. 2b we plot the delay spread versus distance assuming LB = 20m and LC = 20m, which
are typical values reported in studies conducted on single-mode fibers [11]. The solid curve
shows the results of Monte Carlo simulations based on 104 fiber realizations, whereas the
dashed curve is a plot of Eq. (4). The transition from weak to strong coupling between modes
corresponds to the transition from the quadratic to linear dependence of T 2 on the propagation
distance. With this choice of the perturbation parameter values, a delay spread of approximately
1ns2 for a system length of 4000km is obtained, so as to reproduce the data reported in Fig. 2c
of [4]. The value of κ extracted from simulations agrees with the theoretical value within an
accuracy of about 97%.

In the table shown in Fig. 3 we report the values of the delay spread coefficient obtained
from theory and simulations when varying one of the parameters b, Δbrms, LB, and LC, relative
to the configuration considered in Fig. 2, which is also shown in the first row of the table. The
accuracy of the theoretical prediction is better than 94% in all cases. The second row of the table
suggests that the delay spread coefficient increases with an increase in the coupling coefficient
b. Indeed, an increase in b results in a larger value for |bω | and hence in a larger walk-off
between the supermodes of the three-core fiber. The third to fifth rows of the table suggest that
the delay spread coefficient reduces when the fluctuations in the coupling coefficient Δbrms (or,
equivalently, in the inter-core distance) increase, or when the beat length LB or the correlation
length LC reduce. We verified that these are not local trends, but rather they represent a general
tendency in the dependence on these parameters. Indeed whenever Δbrms increases, or when LB

or LC decrease, the random mode coupling that is responsible for the transition from a linear
dependence of the delay spread on z to a square-root dependence, becomes more substantial.

4. Analysis

We start by applying the coordinate transformation�τ = exp{z�b×}�τ ′ to Eq. (3) where the term
�nω ×�τ is omitted,

∂�τ ′

∂ z
= exp{−z�b×}�bω +�n′ ×�τ ′, (7)

so that�n′ = exp{−z�b×}�n(z) is a new random process and |�τ|= |�τ ′|. An important simplification
in Eq. (7) is possible due to the fact that�b×�bω = 0, and hence exp{−z�b×}�bω =�bω . This can be
seen in the reference frame of the true fiber modes, where�b ·�Λ and�bω ·�Λ are diagonal matrices
and hence they do commute. This leaves us with the equation

∂�τ ′

∂ z
=�bω +�n′ ×�τ ′. (8)
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Simulations Theory
Accuracy

2.3 0.2 20 20 16.09 16.59 96.90%

2.74 0.2 20 20 18.74 19.32 96.91%

2.3 0.25 20 20 10.48 11.15 93.62%

2.3 0.2 5 20 13.27 13.90 95.29%

2.3 0.2 20 10 11.26 11.73 95.83%

Fig. 3. Theoretical and simulated values of the delay spread coefficient κ for various pa-
rameter settings. The first row coincides with the settings used in Fig. 2. In each of the rows
from the second to the fifth only one parameter is varied.

Note that in the absence of perturbations, namely if �n = 0, Eq. (8) yields �τ ′ =�bω z, so that
modal dispersion grows linearly with z. For this reason�bω can be referred to as the intrinsic
birefringence vector of the fiber [1]. In the general case, the equation for the mean square
length of �τ ′ is derived from Eq. (8), by using the property of the generalized vector product
�u · (�u×�v) = 0, with the result

∂ 〈τ ′2〉
∂ z

= 2

〈
�τ ′ · ∂�τ ′

∂ z

〉
= 2�bω · 〈�τ ′〉. (9)

which leaves us with the calculation of 〈�τ ′〉. To this end we first express�τ ′ as a formal solution
of Eq. (8),

�τ ′(z+Δz) =�τ ′(z)+�bω Δz+
∫ z+Δz

z
�n′(z1)×�τ ′(z1)dz1. (10)

We then use this expression iteratively in the evaluation of the increment Δ�τ =�τ(z+Δz)−�τ(z)
from Eq. (8), and obtain

Δ�τ ′ =�bω Δz+Δ�V ×�bω +Δ�W ×�τ ′(z)+
∫ z+Δz

z

∫ z′

z
�n′(z′)×�n′(z′′)×�τ ′(z′′)dz′′dz′, (11)

where we defined the vectors Δ�W and Δ�V as follows,

Δ�W =
∫ z+Δz

z
�n′(z′)dz′, Δ�V =

∫ z+Δz

z
(z′ − z)�n′(z′)dz′. (12)

Note that no approximation was made in the derivation of (11) from (8). We now assume that
the noise is small enough so as to produce small changes of the MD vector �τ ′ in the interval
Δz. Within this assumption we can replace�τ ′(z′′) with �τ ′(z) in the double integral, and we can
neglect the term Δ�V ×�bω , which is second order in Δz. Equation (11) simplifies to

Δ�τ ′ =�bω Δz+Δ�W ×�τ ′(z)+Q�τ ′(z)Δz, Q =
1
Δz

∫ z+Δz

z

∫ z′

z
�n′(z′)×�n′(z′′)×dz′′dz′. (13)

We now make the further assumption on the interval Δz being much greater than the correlation
length of the perturbations LC. It can be shown that the fluctuations of the matrix Q are of the
order of Δz, and hence, to zeroth order in Δz,

Q � 〈Q〉= 1
Δz

∫ z+Δz

z

∫ z′

z

〈[
exp(−z′�b×)�n(z′)

]
×
[
exp(−z′′�b×)�n(z′′)

]
×
〉

dz′′dz′

� 1
Δz

∫ z+Δz

z
exp(z′�b×)

{
D

∑
i, j=1

êi ×
[∫ ∞

0
Ni, j(ζ )exp[ζ�b×]dζ ê j

]
×
}

exp(−z′�b×)dz′.(14)
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In the calculation of 〈Q〉 we expressed the perturbation vector in the original reference frame
as�n = ∑D

k nkêk. The second line follows from the assumption that the correlation length of the
perturbations is much shorter than the interval Δz, namely Lc 	 Δz, which allows extending the
inner integral to the whole range of positive values of ζ = z′ −z′′. It is important to note that the

fast oscillations in the matrices exp
(
±z′�b×

)
are averaged out when integrating over several

correlation lengths. In fact the nonzero eigenvalues of the matrix�b× are imaginary and their
inverse absolute value can be of the order of millimeters or centimeters, whereas correlation
length values are estimated to be of the order of meters or tens of meters. This implies that Q is
independent of z. We verified that iterating the described procedure once more gives a second-
order correction to the expression of 〈τ ′2〉 that notably improves the accuracy of the theory,
thereby increasing the accuracies reported in the table of Fig. 3 up to 98% – 99%.

5. Conclusions

The delay spread in SDM fibers is caused mainly by the deterministic walk-off between the
fiber modes. However, due to the random mode coupling caused by imperfections in the fiber
structure, this delay spread does not accumulate linearly with propagation distance, as would
be the case with ideal fibers. Rather, in the limit of strong coupling, which is always achieved
asymptotically with the length of the link, it becomes proportional to the square root of the
propagation distance. In this work we presented a formula that relates the root-mean-square
delay spread to the main fiber parameters. Our results, when applied to the case of a three-
core fiber, indicate that the delay spread coefficient decreases in the following cases: when the
inter-core distances increases, when the magnitude of the fluctuations in the inter-core distance
increases, and when the polarization beat length in the individual cores or the perturbations
correlation length decreases.
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